SOME RESULTS FOR GENERALIZED COCHAINS

DORIN WAINBERG

ABSTRACT. In the first part of the paper a generalized *p*-cochain on $C^{\infty}(M)$ is defined, followed in the second part by some of its properties and applications in distributional symplectic geometry.

2000 Mathematics Subject Classification: 70E50.

1. INTRODUCTION

Let M be a smooth 2n-dimmensional manifold and ω a symplectic structure on M. We denote by $C^{\infty}(M)$ (resp. X'(M), resp. D'(M)) the space of smooth (C^{∞}) functions (resp. the spaced of generalized vector fields, resp. the space of p-De Rham currents) on M endowed with the uniform convergence topology. We remind that in local chart a generalized vector field (resp. an p-De Rham current) is a smooth vector field (resp. a smooth p-form) with distributions coefficients instead of smooth ones.

Definition 1.1. A generalized p-cochain on $C^{\infty}(M)$ is an alternating plinear map

$$m: C^{\infty}(M) \times \ldots \times C^{\infty}(M) \longrightarrow \overset{0}{D'}(M).$$

We shall denote by $\overset{p}{C'}(C^{\infty})$ the space of generalized *p*-cochains on $C^{\infty}(M)$.

Examples. 1) Each generalized vector field $X \in X'(M)$ defines in a natural way a generalized 1-cochain.

2) The map \Im defined by

$$K: \overset{p}{D'}(M) \longrightarrow K(T) \in \overset{p}{C'}(C^{\infty}),$$

$$K(T)(f_1, \dots, f_p) \stackrel{def}{=} T(\xi_{f_1}, \dots, \xi_{f_p})$$

is a generalized 1-cochain.

3) There exists a linear map K from the space of De Rham currents into the space of generalized cochains, namely:

$$K: \overset{p}{D'}(M) \longrightarrow K(T) \in \overset{p}{C'}(C^{\infty}),$$

$$K(T)(f_1, \dots, f_p) \overset{def}{=} T(\xi_{f_1}, \dots, \xi_{f_p})$$

for any $f_1, ..., f_p \in C^{\infty}(M)$ and where ξ_{f_i} is the Hamiltonian vector field associated to f_i (i.e. $L_{\xi_{f_i}} \omega + df_i$).

The coboundary of generalized p-cochains is defined as usual; in the particular case of a generalized 1-cochain we have:

$$\partial m(f_1, f_2) = L_{\xi_{f_i}} m(f_2) - L_{\xi_{f_2}} m(f_1) - m\{f_1, f_2\}.$$

2. Some properties of generalized cochains

Some properties for generalized cochains are given in the following statements:

Proposition 2.1. i) K is an injective map.

ii) If $T = T_{\omega}$ is the form like 2-current defind by the symplectic form ω (i.e. $T_{\omega}: \varphi \in D^{2n-2}(M) \longrightarrow \langle T_{\omega}, \varphi \rangle = \int_{M} \omega \wedge \varphi$, where D(M) denotes the space of *p*-forms with compact support on M), then

$$K(T_{\omega}) = -\partial \Im.$$

iii) For each $\alpha \in \mathbb{R}$, $S \in \overset{1}{D'}(M)$ we have

$$K(\alpha T_{\omega} + dS) = -\partial(\alpha \Im + K(S)).$$

The proof can be obtained immediately using the definitions of K and \mathfrak{T} . **Proposition 2.2.** i) If $\tilde{\omega}$ is the canonical isomorphism given by

$$\tilde{\omega}: X \in X'(M) \longrightarrow \tilde{\omega}(X) \stackrel{def}{=} X \ \lrcorner \ \omega \in \overset{1}{D'}(M)$$

then

$$K \left| \stackrel{1}{D'}(M) \right| = -\tilde{\omega}^{-1}.$$

ii) Let X be a generalized vector field on M. Then for each $f, g \in C^{\infty}(M)$ we have:

$$X(f,g) = -L_X \omega(\xi_f, \xi_g).$$

iii) $X \in X'(M)$ is a generalized 1-cocycle (i.e. $\partial X = 0$) if and only if $X \in X'_{loc}(M)$ (i.e. $L_X \omega = 0$).

iv) $X \in X'(M)$ is a generalized 1-coboundary if and only if $X \in X'_{glob}(M)$ (i.e. $X \sqcup \omega + dH = 0$).

Proof. i) Since the space D'(M) can be identified with $\{X \sqcup \omega \mid X \in X'(M)\}$, for any $f \in C^{\infty}(M)$, we get successively:

$$K\tilde{\omega}(X)(f) = \tilde{\omega}(X)(\xi_f) = (X \sqcup \omega)(\xi_f) = -X(f).$$

 \mathbf{SO}

$$K \circ \tilde{\omega} = -Id_{X'(M)},$$

or equivalent:

$$K = -\tilde{\omega}^{-1}$$

ii) For any
$$f, g \in C^{\infty}(M)$$
 we can write:
 $\partial X(f,g) = \partial \tilde{\omega} \tilde{\omega}^{-1}(X)(f,g)$
 $= -d \tilde{\omega}(X)(\xi_f, \xi_g)$
 $= -d(X \sqcup \omega)(\xi_f, \xi_g)$
 $= -L_X \omega(\xi_f, \xi_g).$

Now the relation iii) and iv) can be derived immediately from ii)

Definition 2.1. We say that $m \in \hat{C}'(C^{\infty})$ is a locally generalized p-cochain if, given an open set $U \subset M$ and p-functions $f_1, ..., f_p$ with

$$f_1|_U = f_2|_U = \dots = f_p|_U,$$

then

$$m(f_1, ..., f_p)|_U = 0.$$

Proposition 2.3. Let $T \in \overset{2}{D'}(M)$ be an 2-De Rham current on M. Then

- i) K(T) is a locally generalized 2-cochain.
- ii) For any $f, g \in C^{\infty}(M)$ the following equality holds:

$$K(T)(f^2,g) = 2fK(T)(f,g).$$

Proof. i) Let U be an open set in M and $f \in C^{\infty}(M)$ such that $f|_U = 0$. Then for each $g \in C^{\infty}(M)$ we have:

$$K(T)(f,g)|_U = T(\xi_f,\xi_g)|_U.$$

Since

$$\xi_f = \sum_{i=1}^n \left(\frac{\partial f}{\partial p_i} \frac{\partial}{\partial q^i} - \frac{\partial f}{\partial q^i} \frac{\partial}{\partial p_i} \right),$$

and

$$T|_U = \sum_{i,j=1}^n (T^{ij}dp_i \wedge dp_j + T_{ij}dq^i \wedge dq^j + \ldots),$$

it follows that:

$$T(\xi_f,\xi_g)|_U = \sum_{i,j=1}^n \left(T^{ij} \frac{\partial f}{\partial q^i} \frac{\partial g}{\partial q^j} + T_{ij} \frac{\partial f}{\partial p_i} \frac{\partial g}{\partial p_j} + \dots \right).$$

Since each term involves a partial derivative of f, clearly $T(\xi_f, \xi_g)$ vanishes on U, so K(T) is a locally generalized 2-cochain.

ii) For any $f, g \in C^{\infty}(M)$ we can write successively:

$$K(T)(f^{2},g) = T(\xi_{f^{2}},\xi_{g})$$

= $T(2f\xi_{f},\xi_{g})$
= $2fT(\xi_{f},\xi_{g})$
= $2fK(T)(f,g)$.

Also, as for classical cochains we can prove the following result:

Remark 2.1 Let (M, ω) be a non-compact symplectic manifold and $m \in \overset{2}{C'}(C^{\infty})$. Then m is a locally generalized 2-cochain if and only if m has the same property.

References

[1] J. E. Marsden, *Generalized Hamiltonian mechanics*, Arch. Rational Mech. Anal., 28, pp 323-361, 1968.

[2] Phillip E. Parker, *Distributional geometry*, Journal of Mathematical Physics, Volume 20, pp. 1423-1426, 1979.

[3] M. Puta, Hamiltonian Mechanical Systems and Geometric Quantinization, Kluwer, 1993.

[4] M. Puta, *Poisson integrators*, Analele Universitatii Timisoara, 1993, 267-272

[5] C. J. Isham, Some Quantum Field Theory Aspects of the Superspace Quantization of General Relativity, Proc. of the Royal Soc. of London., Mathematical and Physical Sciences, No. 1665, pp. 209-232, 1976

[6] L.Hormander, Linear partial differential operators, Springer-Verlag, 1964

[7] H. Lewy, An example of an smooth linear partial equation without solution, An. Math. (2) 66, 1957

Author:

Dorin Wainberg Department of Mathematics "1 Decembrie 1918" University Alba Iulia Romania e-mail: dwainberg@uab.ro

187