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1. Introduction

We study in this paper metric conditions implied by a combinatorial curvature
condition, called the 8-property, on a finite, simply connected cubical 2-complex.
Namely, we show that any finite, simply connected cubical 2-complex with the 8-
property, admits a strongly convex metric.

Our proof uses results proven in [5] on square 2-complexes with the 8-property
the fact that collapsible cubical 2-complexes admit a strongly convex metric. A proof
of this fact is one of the paper’s objects. W. White obtained in [8] a similar result.
Namely, he showed that a collapsible simplicial 2-complex admits a strongly convex
metric. Hence, since a finite, simply connected, simplicial 2-complex with the 6-
property, collapses to a point (see [4]), we may immediately conclude that simplicial
2-complexes with the 6-property admit a strongly convex metric. We obtain in this
paper a similar result on cubical 2-complexes with the 8-property.

In dimension 2, the 6-property (8-property) coincides with the CAT(0) property
of the standard piecewise Euclidean metric on a simplicial (cubical) complex (see
[3], chapter II.5, page 207). Therefore, since CAT(0) spaces have a strongly convex
metric (see [3], chapter II.1, page 160), it is clear that simplicial (cubical) 2-complex
with the 6-property (8-property) also have a strongly convex metric, when endowed
with the standard piecewise Euclidean metric. Their collapsibility, however, implies
that all simplicial (cubical) 2-complexes with the 6-property (8-property) admit a
strongly convex metric, not only those endowed with the standard piecewise Eu-
clidean metric.
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2.Preliminaries

We present in this section basic facts about geometric notions such as distance,
strongly convex metric, concave collection, elementary collapse and 8-property.

Definition 2.1. Let (X, d) be a metric space. If x,m, y are three points in X
such that d(x, m) + d(m, y) = d(x, y), then we say that m lies between x and y. We
call m the midpoint of x and y if d(x,m) = d(m, y) = 1

2d(x, y).

Definition 2.2. Let (X, d) be a metric space. X is a convex metric space if
for any two points x, y in X, there exists at least one midpoint m. X is a strongly
convex metric space if for any two points x, y in X, there exists exactly one midpoint
m.

Definition 2.3. Let (X, d) be a metric space and let x, y be two distinct points
in X. A segment c : [a, b] → X in X connecting x to y is a path which has, among
all path joining x to y in X, the shortest length.

Theorem 2.4. Let (X, d) be a metric space. Let x and y be two distinct points
in X.

1. A subset S of X containing x and y is a segment joining x to y if there exists a
closed real line interval [a, b] and an isometry c : [a, b] → X such that c(a) = x
and c(b) = y.

2. A path c : [a, b] → X joining x to y is a segment from x to y if and only if
l(c) = d(x, y).

For the proof see [2], chapter II.2, page 76.

Theorem 2.5. Let (X, d) be a complete metric space. There exists a segment
in X (which is not necessarily unique) between any two distinct points x, y in X if
and only if X is a convex metric space.

For the proof we refer to [6].

Theorem 2.6. Let (X, d) be a complete metric space. There exists a unique
segment in X between any two distinct points x, y in X if and only if X is a strongly
convex metric space.

For the proof we refer to [6].

Definition 2.7. Let (X, d) be a metric space. A geodesic path joining x ∈ X to
y ∈ X is a path c : [a, b] → X such that c(a) = x, c(b) = y and d(c(t), c(t′)) = |t− t′|
for all t, t′ ∈ [a, b]. The image α of c is called a geodesic segment with endpoints x
and y. We denote any geodesic segment from a point x to a point y in X, by [x, y].
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Definition 2.8. Let X be a compact metric space with a strongly convex metric
d. The concave collection T is a finite set of segments in X which satisfy the
following condition: ∀ρ, τ ∈ T , ∀x1, x2 ∈ ρ, ∀y1, y2 ∈ τ , we have

d(xm, ym) ≤ 1
2 [d(x1, y1) + d(x2, y2)]

where we have denoted by xm and ym the midpoints of the segments [x1, x2] and
[y1, y2].

The unit n-cube In is the n-fold product [0, 1]n; it is isometric to a cube in Rn

with edges of length one. By convention, I0 is a point. We will call a unit 2-cube
simply a square.

We define a cubical complex by mimicking the definition of a simplicial complex,
using unit cubes instead of simplices. Cubical complexes are more rigid objects than
simplicial complexes and in many ways they are easier to work with.

Definition 2.9. An n-dimensional cubical complex K is the quotient of a dis-
joint union of cubes X =

⋃
Λ Inλ by an equivalence relation ∼. The restrictions

pλ : Inλ → K of the natural projection p : X → K = X|∼ are required to satisfy:

1. for every λ ∈ Λ, the map pλ is injective;

2. if pλ(Inλ)
⋂

pλ′(Inλ′ ) 6= ∅, then there is an isometry hλ,λ′ from a face Tλ ⊂ Inλ

onto a face Tλ′ ⊂ Inλ′ such that pλ(x) = pλ′(x′) if and only if x′ = hλ,λ′(x).

In other words, K is a cubical complex if and only if each of its cells Cλ is
isometric to a cube Inλ , each of the maps pλ is injective, and the intersection of any
two cells in K is empty or a single face.

There are many interesting examples of cubical complexes all of whose cells are
cubes, but which do not satisfy all the conditions of the above definition (see [1], [3]).
We use the term cubed complex to describe this larger class of complexes, except
that in the 2-dimensional case we use the term square complex.

We define further the notion of collapsing a cell complex.

Definition 2.10. Let K be a cell complex and let α be an i-cell of K. If β is
a k-dimensional face of α but not of any other cell in K, then we say there is an
elementary collapse from K to K ′ = K \ {α, β}. We denote an elementary collapse
by K ↘ K ′. If K = K0 ⊇ K1 ⊇ ... ⊇ Kn = L are cell complexes such that there is
an elementary collapse from Kj−1 to Kj, 1 ≤ j ≤ n, then we say that K collapses
to L.

Let K be a cell complex. A closed edge is an edge together with its endpoints.
An oriented edge of K is an oriented 1-cell of K, e = [v0, v1]. We denote by i(e) = v0,
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the initial vertex of e, by t(e) = v1, the terminus of e, and by e−1 = [v1, v0], the
inverse of e. A finite sequence α = e1e2...en of oriented closed edges in K such that
t(ei) = i(ei+1) for all 1 ≤ i ≤ n − 1, is called an edge-path in K. If t(en) = i(e0),
then we call α a closed edge-path or a cycle. We denote by |α| the number of 1-cells
contained in α and we call |α| the length of α.

Definition 2.11. Let K be a cell complex and let σ be a cell of K. The link of
K at σ, denoted Lk(σ,K), is the subcomplex of K consisting of all cells which are
disjoint from σ and which together with σ span a cell of K.

Definition 2.12. Let K be a cell complex. A subcomplex L in K is called full
(in K) if any cell of K spanned by a set of vertices in L is a cell of L. A full cycle
in K is a cycle that is full as subcomplex of K.

Definition 2.13. Let K be a cell complex. We define the systole of K by

sys(K) = min{|α| : α is a full cycle in K}.
Definition 2.14. A 2- dimensional cell complex has the k-property if the link

of each vertex is a graph of systole at least k, k ∈ {6, 8}.
The main result of the paper is based on the following results.

Theorem 2.15. Let K be a finite, simply connected, 2-dimensional square com-
plex with the 8-property. Then K is collapsible.

For the proof see [5].

Theorem 2.16. Any finite cell complex that admits a strongly convex metric is
contractible and locally contractible.

For the proof we refer to [7].

3. Cubical 2-complexes with the 8-property
admit a strongly convex metric

We prove in section that finite, simply connected cubical 2-complexes with the
8-property, admit a strongly convex metric. The result follows since finite, simply
connected cubical 2-complexes with the 8-property, are collapsible (see [5]). An
essential step in the proof is to show that collapsible cubical 2-complexes admit a
strongly convex metric.

We start by proving an important lemma.
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Lemma 3.17. Let X be a finite metric space that admits a strongly convex
metric d. Let T be a concave collection for d. Let σ be a 2-cell such that X ∪ σ is a
metric space and X ∩ σ = {τ1, τ2, τ3} where τ1, τ2, τ3 are segments contained in T .
Let abcd be a square and let ϕ : abcd → σ be a homeomorphism such that

1. ϕ(bc) = τ1;

2. ϕ(cd) = τ2;

3. ϕ(da) = τ3;

4. d(ϕ(x), ϕ(y)) = dR2(x, y) for all x, y ∈ τi, 1 ≤ i ≤ 3.

Then there exists a strongly convex metric d′ for X ∪ σ such that T ′ = T ∪ {ϕ(ab)}
is a concave collection for d′.

Proof. Since d(ϕ(x), ϕ(y)) = dR2(x, y) for all x, y ∈ τi, 1 ≤ i ≤ 3, and ϕ :
abcd → σ is a homeomorphism, we may attach the square abcd to X along its sides
bc, cd and da.

We define the metric d′ as follows:

d′(x, y) =





d(x, y) for all x, y ∈ X;
dR2(ϕ−1(x), ϕ−1(y)) for all x, y ∈ σ;
minz∈τ1{d′(x, z) + d′(z, y)} for all x ∈ σ, y ∈ X or x ∈ X, y ∈ σ;
minz∈τ2{d′(x, z) + d′(z, y)} for all x ∈ σ, y ∈ X or x ∈ X, y ∈ σ;
minz∈τ3{d′(x, z) + d′(z, y)} for all x ∈ σ, y ∈ X or x ∈ X, y ∈ σ.

We will prove that the metric d′ defined above is a strongly convex metric by showing
that any segment in X ∪ σ belongs to a concave collection T ′ = T ∪ {ϕ(ab)} for d′.

Figure 1.
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Let [a, e] be a segment in X ∪ σ and let [x, y] be a segment in X. We denote
by z the intersection point of [a, e] and [c, d]. We denote by m1 be the midpoint of
[a, e], by m2 the midpoint of [e, z], and by m3 the midpoint of [x, y].

We must show that the following relation holds

d′(m1,m3) ≤ 1
2
[d′(a, x) + d′(e, y)]. (1)

Firstly, we notice that

d′(m1, m2) = d′(e,m1)− d′(e,m2) =
1
2
d′(e, a)− 1

2
d′(e, z) =

1
2
d′(a, z). (2)

Secondly, we notice that, since the segments [z, e] and [x, y] belong to the concave
collection T for d, the following relation holds

d′(m2, m3) ≤ 1
2
[d′(e, y) + d′(z, x)]. (3)

Since z lies on the segment τ2 which belongs to T , d′(z, x) = d′(z, d) + d′(d, x).
This holds since X is a complete strongly convex metric spaces. There exists there-
fore a unique segment [d, x] ([z, d]) joining d to x (z to d) that belongs to T , and
whose length equals d′(d, x) (d′(z, d)). Similarly, since σ is a complete strongly con-
vex metric spaces, there exists a unique segment [a, z] joining a to z that belongs to
σ, and whose length equals d′(a, z).

Altogether, we have

d′(m1,m3) ≤ d′(m1,m2) + d′(m2, m3) ≤

≤ 1
2[d′(e, y) + d′(a, z) + d′(z, d) + d′(d, x)] =

= 1
2[d′(e, y) + d′(a, x)].

The above relation implies that the segment [a, e] belongs to the concave collection
T for d. The metric d′ is therefore a strongly convex metric, and a concave collection
T ′ for d′ is T ′ = T ∪ {ϕ(ab)}.

We present an important result of the section.

Theorem 3.18. Let X be a 2-dimensional cubical complex that admits a strongly
convex metric d. Let T be a concave collection for d which covers |X(1)|. Let σ(2)

and τ (1) be two cells such that τ is a free face of the square σ. We consider the cu-
bical 2-complex X ′ = X ∪{σ, τ} such that X ′ ↘ X is an elementary collapse. Then
X ′ admits a strongly convex metric d′ such that d′(x, y) = d(x, y) for all x, y ∈ |X|.
Furthermore, there exists a concave collection T ′ for d′ which covers |X ′(1)|.
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Figure 2.

Proof. Let X ∩ σ = {τ1, τ2, τ3}. Because the concave collection T of d covers
|X(1)|, the segments τ1, τ2 and τ3 belong to T . Hence, according to Lemma 3.18,
X ′ = X ∪ {σ, τ} admits a strongly convex metric d′ and T ′ = T ∪ τ is a concave
collection for d′ which covers |X ′(1)|.

The above theorem implies the following result.

Corollary 3.19. Any collapsible cubical 2-complex admits a strongly convex
metric.

According to Theorem 2.15, the above corollary implies the main result of the
paper.

Corollary 3.20. Any finite, simply connected cubical 2-complex with the 8-
property, admits a strongly convex metric.

According to Theorem 2.16, the following corollary holds.

Corollary 3.21. Any finite, simply connected cubical 2-complex with the 8-
property, is contractible and locally contractible.

We note that, due to their collapsibility, it was already clear that finite, simply
connected cubical 2-complexes with the 8-property are contractible.
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