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CERTAIN APPLICATION OF DIFFERENTIAL SUBORDINATION
ASSOCIATED WITH GENERALIZED DERIVATIVE OPERATOR
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ABSTRACT.The purpose of the present paper is to introduce several new sub-
classes of analytic function defined in the unit disk D = {z€ C : |z| < 1}, using
derivative operator for analytic function, introduced in [1]. We also investigate var-
ious inclusion properties of these subclasses. In addition we determine inclusion
relationships between these new subclasses and other known classes.
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1. INTRODUCTION AND DEFINITIONS

Let A denote the class of functions of the form
o
f(z) =z + Zak P ap s complex number (1)
k=2

which are analytic in the open unit disk U = {z € C: |z| < 1} on the complex
plane C. Let S, S*(a), K(a) (0 < a < 1) denote the subclasses of A consisting
of functions that are univalent, starlike of order a and convex of order « in U,
respectively. In particular, the classes S*(0) = S*and K(0) = K are the familiar
classes of starlike and convex functions in U, respectively.

oo o
Let be given two functions f(z) = z+ >_ arz® and g(z) = 2+ 3. bpz* analytic

k=2 k=2
in the open unit disk U = {z € C: |z| < 1}. Then the Hadamard product (or
convolution) f * g of two functions f, g is defined by

f(z)xg(z) = (f*xg)(2) =2+ Zakbkzk .
k=2
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Next, we give simple knowledge in subordination. If f and g are analytic in U,
then the function f is said to be subordinate to g, and can be written as

f=g and f(z) <g(2) (z€U),

if and only if there exists the Schwarz function w, analytic in U, with w(0) =

0 and |w(z)] <1 such that f(z) = g(w(z)) (z €U).

If g is univalent in U, then f < g if and only if f(0) = ¢g(0) and f(U) C g(U). [9, p-36].
Now, (z)x denotes the Pochhammer symbol (or the shifted factorial) defined by

(@) = 1 for k=0, z € C\{0},
Tl 2+ D)@ +2).(x+k—1) for ke N={1,2,3,..}and z € C.

Let

o0
where a is any real number. It is easy to verify that k,(2) = 2z + Y E‘B:‘i 2F. Thus
k=2 "

ko * f, denotes the Hadamard product of k, with f that is

* z)=2z - (a)k_la 2k
(ka f)()_ +k22(1)k—1 k< -

Let N denotes the class of functions which are analytic, convex, univalent in U, with
normalization h(0) = 1 and Re(h(z)) > 0 (2 € U) Al_Shagsi and Darus [1] defined
the following generalized derivative operator.
Definition 1 ([1]). For f € A the operator K% is defined by k% : A — A
Ky f(2) = (1= NR"f(2) + A2(R"f(2)), (2 €U), (2)

where n € Ng = NU {0}, A > 0 and R"f(z) denote for Ruscheweyh derivative
operator [11].
If f is given by (1), then we easily find from the equality (2) that

Ry f(z) =2+ ) (14+ Ak — 1) c(n, k)ap2", (z€U),
k=2

where n € Ng = {0,1,2...}, A > 0 and ¢(n, k) = (n+k—1) = (?T)lk)fl‘l.

Let % (2) = 24+ > (1 4+ A(k — 1)) c(n, k)2*, where n € Ng, A > 0 and (2 € U), the

k=2
operator k% written as Hadamard product of ¢} (z) with f(z), that is

rx f(2) = 03X (2) * f(2) = (&3 * [)(2)-
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Note that for A=0, k{ f(z2) = R"f(z) which Ruscheweyh derivative operator [11].
Now, let remind the well known Carlson-Shaffer operator L(a, c¢) [3] associated with
the incomplete beta function ¢(a, c; z), defined by

L(a,c): A— A
L(a,c) := ¢(a,c;2) x f(2) (z€U), where ¢(a,c;z)=2z+ Z (a)k (@k-1 k-

k 1

It is easily seen that k)f(z) = L(0,0)f(z) = f(2) and s}f(z) = L(2,1)f(z) = zf’
and also if A = 0, n = a — 1, we see k3~ ' f(2) = L(a,1)f(z), wherea = 1,2,3,...
Therefore, we write the following equality which can be verified easily for our result.

(1= B)RRF(2) + Bz(k3f(2)) = B+ n)r3 T f(2) — (B +n) = DrYf(2)  (3)

By using the generalized derivative operator x} we define new subclasses of A:
For some 3(0 < 3 < 1), some h € N andforall z € U.

AP + BRI
0= DS + Baimif Y < M ’} |

Forsome a(a > 0), some h € N andforall z € U.

kS (2)

Pil(h,ﬂ):{fEA

Tf\l(h,a)—{fEA: (1-a) + a(kY f(2)) <h(z)}
and finally RY(h,a) = {f € A: (k% f(2)) + az(k}f(2))" < h(z)}.

We note that the class Py~ " (h,0) = S,(h) was studied by Padmanabhan Par-
vatham in [8], Py~ (h,1) = ka(h), T¢ ' (R,0) = Ry(h) andT§ (h,1) = pa(h)
were studied by Padmanabhan and Manjini in [7] and the classes Py~ '(h,) =
P.(h,B), T¢"Y(h, B) = Tu(h,B) and Ry~ (R, 3) = Ra(h, B) were studied by Ozkan
and Altintas [6]. Also note that the class B (w, B) was studied by Altintas
[2]. Obviously, for the special choices function h and variables «, 3, A\, n we have the
following relationships:

1+2 1+2 1+z2
—.0 S*, P, K, F ,00= K
1_2:7 ) 0(1 ) 0(1 Z )

P

and PO(W,O) = S*(a), PO(W, 1)=K(a) (0<a<l).

2. THE MAIN INCLUSION RELATIONSHIPS
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In proving our main results, we need the following lemmas.

Lemma 1 (Ruscheweyh and Sheil-Small [12,p.54]). If f € K, g € S*, then for
each analytic function h,

(f * hg) (U)
(f+9)(U)

where coh(U) denotes the closed convex hull of h(U).

C coh(U),

Lemma 2 (Ruscheweyh [10]). Let 0 < a < 3, if > 2 or o+ 3 > 3, then the
function

— - (O‘)k—lzk -
¢(a7ﬁ7 Z) - + 2 (ﬂ)k—l ( € U)

belongs to the class K of convex functions.

Lemma 3 ([5]). Let h be analytic, univalent, convex in U, with h(0) =1 and
Re(Bh(z) +7v) >0 (B,7€C; zeU).
If p(z) is analytic in U, with p(0) = h(0), then

zp’(z)
p(z) + =——— < h(z) = p(z) < h(2).
Lemma 4 ([5]). Let h be analytic, univalent, convex in U, with h(0) = 1.

Also let p(z) be analytic in U, with p(0) = h(0). If p(z) + # < h(z) then
z

p(2) < q(2) < h(z), where q(z) = L [t7 h(t)dt (2 € U; Re(y) = 0; v # 0).
0

Lemma 5 ([4, p.248]). If¢ € K and g € S, and F' is an analytic function with
ReF (z) > 0 for z € U, then we have

(¢ * Fyg) (2)

Re e ()

>0 (zeU).

Lemma 6 ([13]). If0 < a < ¢ then Re(2%%2)) > 1 forallz € U.

z
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Theorem 1. f(z) € P{(h,B) if and only if g(z) = Bzf'(2) + (1 = B) f(2) €
P(h,0).

Proof. (=) Let f € P}(h,3), we want to show Z(:ébgg((j)))/ < h(z). Using the

well-known property of convolution z(f * g)'(z) = (f * 2¢')(z) we obtain
2(R5f(2) + B22(R5f(2))" _ 2(@R(2) * f(2)) + B22(gR(2) = f(2))"
(1= B)r3f(2) + B2(s31(2)) (1= B) (&%(2) * f(2)) + Bz($h(2) * f(2))
N

(2
_ 93(2) x2[f'(2) + B2 (2)] (2) * 24/ (2)
P (2) * (1= B)f(2) + B2f'(2)]  d3(2) * g(2)
Therefore g(z) € P{(h,0).
(<) Obvious. Let g(z) € P{(h,0), by using same property of convolution and
arguments, in the last proof, we obtain

2(KRg(2)) _ PN (2) * z¢'(2) _ 2(KYf(2)) + B2 (kY f(2))" < h(2)
Khg(2) Ph(z) xg(z) (1= B)rY[(2) + Bz(k3f(2)) '

Therefore f(z) € P{(h, ).

=< h(z).

Remark 1. If §=1 in Theorem 1, then we deduce Theorem 3(i) of Padmanab-
han and Manjini [7].

Theorem 2. Let h € N, I} ,
1 or ny +ng > 1, then Py*(h,3) C P\*(h, 3

Proof. We suppose that f € P{?(h,(). Then by the definition of the class
P{?(h, ) we have

2(K32 (=) + B22(K32 f(2))"
(1= B)ry2f(2) + B2(r32f(2))
where h is convex univalent in U with Re(h(z)) >0 (2 € U), and |w(z)| <1 inU

with w(0) = h(0) — 1. By using the fact ¢(n, k) = %

0<06<1,0<n; <n9andni,ng € Ny,if no >
- ).

= h(w(2)),

Setting kY f(z) = k3*f(2) ol (z) where @il (z) =2z + f %zk we get
k=2
2R3 f(2) + B2 (R f(2))"  a(k3PF(2) * i (2)) + B2 (K3 (=) * @i (2))"

(1= B)RX f(2) + B2(6y fF(2)) (1= B) (k32 F(2) * wns(2)) + B2(k32F(2) * ong(2))

_ o (2) + [a(62f(2) + B2 (532 f(2)"] _ ena(2) x h(w(2))p(2)
oy (2) = [(1 = B) (537 f(2)) + Bz(K3? f(2))] ony(2) xp(z)

(4)
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where p(z) = (1 — 8) (k32 f(2)) + Bz(k32f(2))'. It follows from Lemma 2 that
©nt(2) € K and it follows from the Theorem 1 and from the definition of P{(h, 3)
that p(z) € S*. Therefor applying Lemma 1 we get

{Sozi(;?)t%?z(fg()gi e coh(w(U)) C h(U).

Since h is convex univalent, thus (4) is subordinate to h in U and consequently
f(z) € P{"(h, ). This completes the proof of the Theorem 2.

Remark 2. Ozkan and Altintas in [6] obtained the result: for a > 1, P,y q(h,\) C
P,(h, ). If we take A=0, n; = a; — 1 and ny = ag — 1 in Theorem 2 we obtain fol-
lowing result improving the above mentiond.

Corollary 1. Let 0 < a1 < ag, if ag > 2 or a; + az > 3, then Py, (h,\) C
Py (h,N).

Theorem 3. For A >0, n € Ny and 0 < B < 1, then Pyt (h,3) < PR(h, B).

Proof. We suppose that f € Pf“(h, (). Then by the definition of the class
P (h, B) we have

2Ry (2)) + B2 (K3 f(2)”
(1= B)RY T f(2) + B2(k3 T f(2))
where h is convex univalent in U with Re(h(z)) >0 (2 € U), and |w(z)| <1 inU

with w(0) = h(0) — 1. By using the fact c¢(n, k) = %

o0
Setting kY f(z) = Hi\lﬂf(z) * on(2), where p,(2) =z + k:Z %zlﬁ we get
=2

= h(w(2)),

2K (2)) + B2 (R3S (2))" 2K (2) * on(2)) + B2 (KT F(2) * on(2))”
(1= B)R3f(2) + B2(r3f(2)) (1= B) (kYT F(2) % on(2)) + B2(k} T (2) % on(2))

_en(e) * [T () + B2 (AT ()] pnl(z)  h(w(2))p(2)
on(2) % [(1=8) (R F(2)) + B2(s5 F(2)Y]  enl2)xp(z)
Here p(z) = (1 — B) (3T f(2)) + B2(k3T'f(2))'. It follows from Lemma 2 that

¢vn(z) € K and it follows form the Theorem 1 and from the definition of P} (h, 3)
that p(z) € S*. Therefore applying Lemma 1 we get

()
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Since h is convex univalent, thus (5) is subordinate to h in U and consequently
f(z) € P{(h,3). This completes the proof of Theorem 3.
Theorem 4. Let h€ N, 0 < <1 and 0 < Ay < Ay then Py (h, 3) C Pfl(h,ﬂ).

Proof. Let f € Py (h,3). Applying the definition of the class P} (h,3). And
using the same arguments as in the proof of Theorem 2. We get

(B 0E) + 82 (0,0:) (B @) + 822 (5,56 )

(1= B3, f(2) + 62 (w3, 7)) (L= B3, 0 (2) = 030 () + B2 (5, () = 0 (2))
A (2) * h(w(2))q(2)
92 *a(2)

where |w(z)| < 1in Uwith w(0) = 0, ¢(2) = (1 — B)r}, f(2) + Bz (H%f(z))/ and

@Df\‘;(z) =2z + Z }i;li 1) ZF. Tt follows from the Theorem 1 and the definition

of PY(h,p) that_ q(z) € S*. And by classical results in the class of convex, the

coefficients problem for convex: |a,| <1 we find 1,[)5\‘; (z) € K. Hence it follows from
Lemma 1 that

{¥Ai(=) % hlw(=))a} (U)
(v +a} @)

because h is convex univalent, and consequently f € PY (h, 3).

C ecoh(w(U)) C h(U)

Theorem 5. If f(z) € P{(h,3) for n € Ny then F,(f) € P{(h,B3) where F, is
the integral operator defind by

Fu(f) = Fu(f)(z) = /Hl/t“_lf(t)dt (n=0). (6)

VAl
0
Proof. Let f(z) € P{(h, ) and

2(K5FW(f))'(2) + B2 (K3 Fu(f))" ()
(1= B)(RYEW())(2) + Bz(k3FL(f))(2)
)

from (6), we have z(F,(f)) () + pF.(f)(z) = (0 + 1) f(2) and so

(65 % 2(Fu(£)) )(2) + 1 (85 % Fu(f) (2) = (u+ 1) (85 = f) (2).

p(z) =
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Using the fact 2(¢} * F.(f))'(2) = (¢} * 2F},(f))(2) we obtain
2(RFu()'(2) + p(r3Fu())(2) = (1 + D)X (2)- (7)

Differentiating (7), we have
(1 = B) (w3 f(2) + Bz(k3 f(2))
(1= B)(RAEL()(2) + B2(k3Fu(f)) (2)

Making use of the logarithmic differentiation on both sides of (8) and multiplying
the resulting equation by z, we have

2/(2) _ 2(RRf(2)) + B2 (kR f(2)"
POY G 0~ - BB + B3 ) )
By applying Lemma 3 to (9), it follows that p < h in U, that is F,(f) € P{(h, ).

p(2) + 1= (n+1) (8)

Remark 3. Special cases of Theorems 3 and 5 with 6 = 0, A =0, n =
a—1land =1, A=0, n=a— 1 were given earlier in [8,7], respectively.

Remark 4. By putting 8 =0, A =0, n = 0and h(z) = £ (2 € U) in
Theorem 3, we obtain K C S*.

Theorem 6. If f € pY(h,[) then ¢y =3f + (1 - foT dt € pY(h,1).
0

Proof. Let f € P{(h,3). Applying Theorem 1 at f=1 we get
fepr(hl) & zf € PY(h,0) (10)
now z)' = fzf' + (1 — B)f thatis z¢p’ € P{(h,0), by (10) we see ¢ € P{(h,1).
Theorem 7. Lethe N, a>0and 0 <n; <ng ifne >1o0rny+ no >1 then
T\?(h, o) C T\ (h, o).

Proof. Let f € T\*(h, ). We obtain that

n2
(1- a)ﬁ)‘ Z(z) + o (/@Tf(z))/ < h(z), (11)
where h € N.
Setting, k3! f(z) = K 2f(z) * ¢k (2), where Y1l (z) = z zzlgzk Applying
(11) and the properties of convolution we find that
ni n1 no
(1-a)2 2 f(z) +a (k1 f(z) = “22(2) (1 -2 f('z) ta(s2f(2)| . (12)
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Under the hypothesis 0 < ny < ng, it follows from Lemma 6 that the function
ny
z — %27(3) has its real part greater than or equal to % in U. From the Herglotz

ny
Theorem we thus obtain 22 — / dulz) (z € U), when p(zx) is a probability

z 1—xz
|z[=1

measure on the unit circle |z| = 1, that is, [ du(z) = 1. It follows from (12) that
|z|=1

Y. 910

Fa (K () = / h(w2)du(z) < h(2)
|z|=1

because h is convex univalent in U. This proves Theorem 7.

Remark 5. By putting A =0, ng +1 =ag, and n; +1 = a1 in the Theorem 7
we deduce the following result which improves Theorem 5 of [6].

Corollary 2. If0 < a1 < ay then Ty, (h,a) C Ty, (h, «).
Theorem 8. Forn € Ny and A > 0 then T (h,a) C T (h, ).

Proof. Let f € Tyt (h,a) and  p(2) = (1 — a)%(z) +a (kY f(2))
Taking f=1 in (3), we obtain the following equality:

2 (K3 f(2)) = (n+1) 637 f(2) = nil f(2). (13)
Using (13) and the differentiation of (13), we have
/ n+1
pe)+ 2 = - ) SIO (g1 7) <), (14

By applying Lemma 4 to (14), we can write p < h(z) in U. Thus f € T{(h, a).

Theorem 9. If f € T{(h,«) then F,(f) € TY(h, ).

Proof. We assume that if f € T (h,a) and p(2) = (l—a)w—ka (KYFL () (2).
Differentiating (7), we have

o)+ 28— - gy

from Lemma 4, we write p(z) < h(z) in U and hence F,(f) € T} (h,a).
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Theorem 10. f € RY(h,«a) if and only if zf € T{(h, o).
Proof. Using the equality z(¢%(2) * f) = (¢4 * 2f') (2) we see that.
(1-0) BCDE | (1) () = (10— ) BEEDVE o gy )
= (1) (85 ) (2) + (2 (85 + 1) (2) = (R3S (2) + @z (k3 f(2))"
Theorem 11. Let h € N, a > 0 and n1,n2 € Ng. If 0 < n1 < no then
R\?(h,a) C RY'(h,q).
Proof. Applying Theorem 10 we immediately find that
f€RV(h,a) s zf € TV?(h,a) = zf € T\ (h,a) & f € Ry (h, ).
This completes the proof of Theorem 11.
Theorem 12. R}y (h,a) C R}(h,a). Proof. Let f € Ry (h,a) and p(2) =

(55 (2)) + az (k5f(2))"
Differentiating (13), we have

/

2p/ (2 n n
p(z) + of) = (K f(2)) + az (k27H(2)".
From Lemma 4, we have p < h in U. Thus f € RY(h, «).
Theorem 13. If f € RY(h,«) then F,(f) € RY(h, ).

Proof. We assume that f € R}(h,a) and p(z) = (k}F,(f)) + az (k}E.(f))".
Differentiating (7), we have

pe) + L = ((2)) + a2 (421" < G2

From Lemma 4, we write p < h in U. Thus F,(f) € RY(h,®).

Theorem 14. RY(h,a) C T (h, a).

Proof. Let f € RY(h,a) and p(2) = (1 — ) HT;JZC(Z) +a (kY f(2)) .
Thus, we obtain

p(2) + 20/ (2) = (53f(2)) + az (3 f(2))" < h(2).
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Hence, from Lemma 4, we have f € TV (h, o).

Theorem 15.
(i) If f € TV (h, @) then f € TY(h,0).
(ii) For a > >0, T{(h,a) C T{(h, §).

Proof.
(i) Let f € T{(h,«) and p(z) = %(Z) Then, we find that

p(e) +az/(2) = (1—0) S o (g ey

From Lemma 4, we have p < h in U. Thus f(z) € T}'(h,0).
(ii) If p=0, then the statement reduces to (i). Hence we suppose that 5 # 0 and let
f €Ty (h,a). Let z; be arbitrary point in U. Then
11—« m+a k2 f(z1)) € h(U). From i,sincew € h(U), we write the
zZ1 A z
following equality:

z « z

-9 sy = (1-2) BB B o) By a gy

Since 5/04 < 1 and h(U) is convex,

raf(2)

z

1-75) +B(k3f(2)) € MU).
Thus f € T (h, §).

Theorem 16.
(i) If f € RY(h,«a) then f € RY(h,0).

(ii)For o > 8 = 0, RY(h,a) C RY(h, ).
Proof. (i) Let f € RY(h,a) and p(z) = (k%f(2))’ then we have

p(2) +azp'(2) = (K3 f(2)) + az (k3 f(2))"

Hence from Lemma 4, we have p < h in U. Thus f(z) € R}(h,0).
(ii) If /=0, then the statement reduces to (i). Hence we suppose that 8 # 0 and let
f € RY(h,«). Let z; be arbitrary point in U. Then

(kXS (21)) + az1 (K5 f(21))" € h(U).
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From (i) we write the following equality:

(L)) + Bz (3 (2))" = (1 - 5) (WLF(2)) +

(07

g

(07

[(K3f(2)) + az (k3 £(2))"] -

Since 5/(1 < 1 and h(U) is convex,
(53 (2)) + Bz (53 f(2))" (2) € A(U).
Thus f € RY(h, 3).

3. CONVOLUTION RESULTS AND ITS APPLICATIONS

Theorem 17. Leth € N, n € Ng and 0 < 3 < 1. Ifg e K and f € P{(h,()
then fx g € P{(h, ).

Proof. We begin by assuming f € P{'(h,3) and g € K. In the proof we use the
same idea as in the proof of Theorem 2. Let

2(K3(2)) + B22 (K5 f(2))"
(1= 0) w3 f(2) + Bz(3f(2))

= h(w(z)),
and

p(2) = (1 = B) w3 f(2) + Bz(k3f(2))"

Using the following equalities:

2(Gh ) (2) = ($h = 2f") (2) and 22 (¢} = )" (2) = (6} » 22 f") (2),

e e (53 (f #9) () + 82205 (f ) (2))"
(1= B) Ky (f *9) (2) + Bz(s5 (f + g) (2))
_ A xfr9)(2) + B [ 9)(2)
(1= B) (6% fxg) (2) + Bz (¢} = fx g) (2)
_9x [2( () + B2(RRF ()] g x h(w(2)p(2)
g* (1= B) w3 f(2) + B(k3f(2))] g% p(z)
Consequently f * g € P{(h, ().

=< h(z).

Theorem 18. Let h € N, n € Ny, « > 0 and Re (g(;)) > 1/2. If g € K and
feT{(h,a) then fxge T{(h,a).
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Proof. By observing that

B | g (129 (1) = 22 [(1 - o) gy

(1-a)
and by applying the same methods in the proof of Theorem 7 we get Theorem 18.

Theorem 19. Let h € N, n € Ny, a > 0 and Re (@) > 1/2. If g € K and
f € RY(h,a) then fxg € RY(h,a).

Proof. If f € RY(h,a) then, from Theorem 10 we have zf" € T} (h,a) and using
Theorem 18, we obtain zf' * g € T{(h,«). Therefore

2f'(2) % g(2) = 2(f x 9)'(2) € T3 (h, ).

By applying Theorem 10 again, we conclude that f * g € RY(h,a). The proof is
complete.
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