PSEUDO PROJECTIVELY FLAT MANIFOLDS SATISFYING CERTAIN CONDITION ON THE RICCI TENSOR

Bandana Das and Arindam Bhattacharyya

Abstract

In this paper we consider pseudo projectively flat Riemannian manifold whose Ricci tensor S satisfies the condition $S(X, Y)=r T(X) T(Y)$, where r is the scalar curvature, T is a non-zero 1-form defined by $g(X, \xi)=T(X), \xi$ is a unit vector field and prove that the manifold is of pseudo quasi constant curvature, integral curves of the vector field ξ are geodesic and ξ is a proper concircular vector field, manifold is locally product type and it can be expressed as a warped product $I X e^{q} M^{\star}$ where M^{\star} is an Einstein manifold.

2000 Mathematics Subject Classification: 53C25.

1. Introduction

In 2006, De and Matsuyama studied quasi conformally flat manifolds [2] satisfying the condition

$$
\begin{equation*}
S(X, Y)=r T(X) T(Y) \tag{1}
\end{equation*}
$$

where r is the scalar curvature and T is a 1-form defined by $T(X)=g(X, \xi)$, and ξ is a unit vector field. The present paper deals with the pseudo projectively flat manifold ($\left.M^{n}, g\right)(n>3)$ whose Ricci tensor S satisfies the condition (1.1). For the scalar curvature r we suppose that $r \neq 0$ for each point of M and we have proved that the manifold is of pseudo quasi constant curvature, the integral curves of the vector field ξ are geodesic and ξ is a proper concircular vector field. The manifold is a locally product manifold and can be expressed as a locally warped product $I X e^{q} M^{\star}$ where M^{\star} is an Einstein manifold.

From [5] we know that a pseudo-projective curvature tensor \bar{P} is defined by

$$
\bar{P}(X, Y) Z=a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y]
$$

$$
\begin{equation*}
-\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y] \tag{2}
\end{equation*}
$$

where a, b are constants such that $a, b \neq 0 ; R, S$ and r are the Riemannian curvature tensor of type $(1,3)$, the Ricci tensor and the scalar curvature respectively. We have defined pseudo quasi constant curvature as follows

Definition 1. A Riemannian manifold $\left(M^{n}, g\right)(n>3)$ is said to be of pseudo quasi-constant curvature if it is pseudo projectively flat and its curvature tensor R of type $(0,4)$ satisfies the condition

$$
\begin{gather*}
\dot{R}(X, Y, Z, W)=a[g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \\
+P(Y, Z) g(X, W)-P(X, Z) g(Y, W) \tag{3}
\end{gather*}
$$

where a is constant and $g(R(X, Y) Z, W)=\dot{R}(X, Y, Z, W)$ and P is a non-zero (0,2) tensor.
From (1.2) we obtain

$$
\begin{align*}
\left(\nabla_{W} \bar{P}\right)(X, Y) Z & =a\left(\nabla_{W} R\right)(X, Y) Z+b\left[\left(\nabla_{W} S\right)(Y, Z) X-\left(\nabla_{W} S\right)(X, Z) Y\right] \\
& -\frac{d r(W)}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y] \tag{4}
\end{align*}
$$

where ∇ is the covariant differentiation with respect to the Riemannian metric g. We know that

$$
(\operatorname{div} R)(X, Y) Z=\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)
$$

Hence contracting (1.4) we obtain

$$
\begin{gather*}
(\operatorname{div} \bar{P})(X, Y) Z=(a+b)\left[\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)\right] \\
-\frac{1}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) d r(X)-g(X, Z) d r(Y)] \tag{5}
\end{gather*}
$$

Here we consider pseudo projectively flat manifold i.e., $\bar{P}(X, Y) Z=0$. Hence $(\operatorname{div} \bar{P})(X, Y) Z=0$ where 'div' denotes the divergence. If $a+b \neq 0$, then from (1.5) it follows that

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)-\left(\nabla_{Y} S\right)(X, Z)=\alpha[g(Y, Z) d r(X)-g(X, Z) d r(Y)] \tag{6}
\end{equation*}
$$

where $\alpha=\frac{1}{n(a+b)}\left[\frac{a}{n-1}+b\right]$.

2.PSEUDO PROJECTIVELY FLAT MANIFOLD SATISFYING THE CONDITION (1.1)

Proposition 2.1. A pseudo projectively flat manifold satisfying
$S(X, Y)=r T(X) T(Y)$ under the assumption of $r \neq 0$ is a manifold of pseudo quasi-constant curvature.

Proof. From (1.2) we get

$$
\begin{align*}
\bar{P}(X, Y, Z, W) & =a \dot{R}(X, Y, Z, W)+b[S(Y, Z) g(X, W)-S(X, Z) g(Y, W)] \\
& -\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{7}
\end{align*}
$$

If the manifold is pseudo projectively flat, then we obtain

$$
\begin{align*}
& \dot{R}(X, Y, Z, W)=\frac{b}{a}[S(X, Z) g(Y, W)-S(Y, Z) g(X, W)] \\
& \quad+\frac{r}{a n}\left[\frac{a}{n-1}+b\right][g(Y, Z) g(X, W)-g(X, Z) g(Y, W)] \tag{8}
\end{align*}
$$

which implies that it is a manifold of pseudo quasi-constant curvature.
Theorem No 2.1.In a pseudo projectively flat Riemannian manifold satisfying $S(X, Y)=r T(X) T(Y)$ under the assumption of $r \neq 0$, the integral curves of the vector field ξ are geodesic.

Proof. Differentiating covariantly to (1.1) along Z we have

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(X, Y)=d r(Z) T(X) T(Y)+r\left[\left(\nabla_{Z} T\right)(X) T(Y)+T(X)\left(\nabla_{Z} T\right)(Y)\right] \tag{9}
\end{equation*}
$$

Substituting (2.3) in (1.6), we obtain

$$
\begin{gather*}
d r(Z) T(X) T(Y)+r\left[\left(\nabla_{Z} T\right)(X) T(Y)+T(X)\left(\nabla_{Z} T\right)(Y)\right] \\
-d r(X) T(Z) T(Y)-r\left[\left(\nabla_{X} T\right)(Z) T(Y)+T(Z)\left(\nabla_{X} T\right)(Y)\right] \\
=\alpha[g(X, Y) d r(Z)-g(Y, Z) d r(X)] \tag{10}
\end{gather*}
$$

Now putting $Y=Z=e_{i}$ in the above expression where $\left\{e_{i}\right\}$ define an orthonormal basis of the tangent space at each point of the manifold and taking summation over $i, 1 \leq i \leq n$, we get

$$
\begin{equation*}
\alpha(1-n) d r(X)=d r(\xi) T(X)+r\left(\nabla_{\xi} T\right)(X)+r T(X)(\delta T)-d r(X) \tag{11}
\end{equation*}
$$

where $\delta T=\left(\nabla_{e_{i}} T\right)\left(e_{i}\right)$.

Again $Y=Z=\xi$ in (2.4), we have

$$
\begin{equation*}
r\left(\nabla_{\xi} T\right)(X)=(\alpha-1)[d r(\xi) T(X)-d r(X)] \tag{12}
\end{equation*}
$$

Substituting (2.6) in (2.5), we get

$$
\begin{equation*}
\alpha(n-2) d r(X)+\alpha d r(\xi) T(X)+r T(X)(\delta T)=0 \tag{13}
\end{equation*}
$$

Now putting $X=\xi$ in (2.7), it yields

$$
\begin{equation*}
\alpha(n-1) d r(\xi)+r(\delta T)=0 \tag{14}
\end{equation*}
$$

From (2.7) and (2.8) it follows that

$$
\alpha d r(X)=\alpha d r(\xi) T(X)
$$

since $\alpha \neq 0$, we have

$$
\begin{equation*}
d r(X)=d r(\xi) T(X) \tag{15}
\end{equation*}
$$

Putting $Y=\xi$ in (2.4) and using (2.9) we get

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Z)-\left(\nabla_{Z} T\right)(X)=0 \tag{16}
\end{equation*}
$$

since $r \neq 0$.
This means that the 1-form T defined by $g(X, \xi)=T(X)$ is closed, i.e., $d T(X, Y)=$ 0.

Hence it follows that

$$
\begin{equation*}
g\left(\nabla_{X} \xi, Y\right)=g\left(\nabla_{Y} \xi, X\right) \tag{17}
\end{equation*}
$$

for all X.
Now putting $Y=\xi$ in (2.11), we obtain

$$
\begin{equation*}
g\left(\nabla_{X} \xi, \xi\right)=g\left(\nabla_{\xi} \xi, X\right) \tag{18}
\end{equation*}
$$

Since $g\left(\nabla_{X} \xi, \xi\right)=0$, from (2.12) it follows that $g\left(\nabla_{\xi} \xi, X\right)=0$ for all X.

Hence $\nabla_{\xi} \xi=0$. This means that the integral curves of the vector field ξ are geodesic.

Theorem No 2.2.In a pseudo projectively flat manifold satisfying

$$
S(X, Y)=r T(X) T(Y)
$$

under the assumption of $r \neq 0$, the vector field ξ is a proper concircular vector field.

Proof. From (2.6), by virtue of (2.9) we get

$$
\begin{equation*}
\left(\nabla_{\xi} T\right)(X)=0 \tag{19}
\end{equation*}
$$

From (2.9) and (2.10) in (2.4), we get
$r\left[T(Z)\left(\nabla_{X} T\right)(Y)-\left(\nabla_{Z} T\right)(Y) T(X)\right]=\alpha d r(\xi)[g(Y, Z) T(X)-g(X, Y) T(Z)]$
Now putting $Z=\xi$ in the above expression, we have

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Y)=\frac{\alpha}{r} d r(\xi)[T(X) T(Y)-g(X, Y)] \tag{20}
\end{equation*}
$$

If we consider the scalar function $f=\frac{\alpha}{r} d r(\xi)$, differentiating covariantly along X We get

$$
\begin{equation*}
\left(\nabla_{X} f\right)=\frac{\alpha}{r^{2}}\left[d r(\xi) T\left(\nabla_{X} \xi\right) r-d r(\xi) d r(X)\right]+\frac{\alpha}{r} d^{2} r(\xi, X) \tag{21}
\end{equation*}
$$

From (3.9) it follows that
$d^{2} r(Y, X)=d^{2} r(\xi, Y) T(X)+d r(\xi) T\left(\nabla_{Y} \xi\right) T(X)+d r(\xi)\left(\nabla_{Y} T\right)(X)$
from which we get

$$
\begin{equation*}
d^{2} r(\xi, Y) T(X)=d^{2} r(\xi, X) T(Y) \tag{22}
\end{equation*}
$$

Now putting $X=\xi$ in (2.16) we obtain $d^{2} r(\xi, Y)=d^{2} r(\xi, \xi) T(Y)$ since $T(\xi)=1$.
Thus from (2.15) by using(2.9) it follows that

$$
\begin{equation*}
\left(\nabla_{X} f\right)=\mu T(X) \tag{23}
\end{equation*}
$$

where $\mu=\frac{\alpha}{r}\left[d^{2} r(\xi, \xi)-\frac{d r(\xi)}{r} d r(\xi)\right]$
By considering $\omega(X)=f T(X),(2.14)$ it can be written as

$$
\begin{equation*}
\left(\nabla_{X} T\right)(Y)=-f g(X, Y)+\omega(X) T(Y) \tag{24}
\end{equation*}
$$

since T is closed, ω is obviously closed.
This means that the vector field ξ defined by $g(X, \xi)=T(X)$ is a proper concircular vector field ([4], [6]).

Theorem No 2.3. If a pseudo projectively flat manifold satisfies $S(X, Y)=$ $r T(X) T(Y)$ under the assumption of $r \neq 0$, the manifold is a locally product manifold.

Proof. From (2.18) it follows that

$$
\begin{equation*}
\nabla_{X} \xi=-f X+\omega(X) \xi \tag{25}
\end{equation*}
$$

Let ξ^{\perp} denote the ($\mathrm{n}-1$) dimensional distribution in a pseudo projectively flat manifold orthogonal to ξ.
If X and Y belong to ξ^{\perp}, then

$$
\begin{equation*}
g(X, \xi)=0 \tag{26}
\end{equation*}
$$

and

$$
\begin{equation*}
g(Y, \xi)=0 \tag{27}
\end{equation*}
$$

Since $\quad\left(\nabla_{X} g\right)(Y, \xi)=0$, it follows from (2.19) and (2.21) that

$$
-g\left(\nabla_{X} Y, \xi\right)=+g\left(\nabla_{X} \xi, Y\right)=-f g(X, Y)
$$

Similarly, we getm

$$
-g\left(\nabla_{Y} X, \xi\right)=+g\left(\nabla_{Y} \xi, X\right)=-f g(X, Y)
$$

Hence we have

$$
\begin{equation*}
g\left(\nabla_{X} Y, \xi\right)=g\left(\nabla_{Y} X, \xi\right) \tag{28}
\end{equation*}
$$

Now $[X, Y]=\nabla_{X} Y-\nabla_{Y} X$ and therefore by (2.22) we obtain $g([X, Y], \xi)=0$.

Hence $[X, Y]$ is orthogonal to ξ; i.e., $[X, Y]$ belongs to ξ^{\perp}.
Thus the distribution is involutively by [1]. Hence from Frobenius' theorem on [1] it follows that ξ^{\perp} is integrable.

This implies the pseudo projectively flat manifold is a locally product manifold.
Theorem No 2.4.A pseudo projectively flat manifold satisfying $S(X, Y)=$ $r T(X) T(Y)$ under the assumption of $r \neq 0$ can be expressed as a locally warped product $I X e^{q} M^{\star}$, where M^{\star} is an Einstein manifold.

Proof. If a pseudo projectively flat manifold satisfies $S(X, Y)=r T(X) T(Y)$ under the assumption of $r \neq 0$, then in view of proposition 2.1 , theorem 2.2 and theorem 2.3 we obtain

$$
g\left(\nabla_{X} Y, \xi\right)=-\left(\nabla_{X} T\right)(Y)
$$

for the local vector fields X, Y belonging to ξ^{\perp}.
Then from (2.17) the second fundamental form k for each leaf satisfies

$$
k(X, Y)=f g(X, Y)=\frac{\alpha}{r} d r(\xi) g(X, Y)
$$

Hence we know that each leaf is totally umbilic. Therefore each leaf is a manifold of constant curvature. Hence it must be a locally warped product $I X e^{q} M^{\star}$, where M^{\star} is a Einstein manifold (by [6], [3]).

References

[1] Brickell F. and Clark R.S., Differentiable manifold, Van Nostrand Reinhold Comp. London(1978).
[2] De U.C. and Matsuyama Y., Quasi-conformally flat manifolds satisfying certain condition on the Ricci tensor, SUT Journ. of Mathematics, Vol.42, No.2, (2006), pp.295-303.
[3] Gebarowski A., Nearly conformally symmetric warped product manifolds, Bulletin of the Inst. of Math. Academia Sinica 4, (1992), pp.359-371.
[4] Schouten J.A., Ricci-Calculus, Springer, Berlin (1954).
[5] Tarafdar M., Bhattacharyya A. and Debnath D., A type of pseudo projective and Recurrent trans-Sasakian Manifold, Anal.Still.Ale.Univ."AL.I.CUZA", IASI.Tomul LII, S.I.Matematica, f.2, (2006), pp.417-422.
[6] Yano, K, Concircular Geometry I, Proc.Imp.Acad.Tokyo 16, (1940), pp.195200.

Bandana Das and Arindam Bhattacharyya
Department of Mathematics
Jadavpur University
Kolkata-700032, INDIA.
email:badan06@yahoo.co.in; arin1968@indiatimes.com

