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SOME RESULTS ON THE COMPLEX OSCILLATION THEORY OF
SOME DIFFERENTIAL POLYNOMIALS

Benharrat Beläıdi and Abdallah El Farissi

Abstract. In this paper, we investigate the complex oscillation of the differ-
ential polynomial gf = d2f

′′
+ d1f

′
+ d0f, where dj (j = 0,1,2) are meromorphic

functions with finite iterated p−order not all equal to zero generated by solutions of
the differential equation f

′′
+A (z) f = 0, where A (z) is a transcendental meromor-

phic function with finite iterated p−order ρp (A) = ρ > 0.

2000 Mathematics Subject Classification: 34M10, 30D35.

1. Introduction and main results

Throughout this paper, we assume that the reader is familiar with the funda-
mental results and the standard notations of the Nevanlinna’s value distribution
theory (see [5, 7, 10]). In addition, we will use λ (f) and λ (1/f) to denote respec-
tively the exponents of convergence of the zero-sequence and the pole-sequence of a
meromorphic function f , ρ (f) to denote the order of growth of f , λ (f) and λ (1/f)
to denote respectively the exponents of convergence of the sequence of distinct ze-
ros and distinct poles of f . In order to express the rate of growth of meromorphic
solutions of infinite order, we recall the following definition.

Definition 1.1 [9, 11, 13] Let f be a meromorphic function. Then the hyper order
ρ2 (f) of f (z) is defined by

ρ2 (f) = lim
r→+∞

log log T (r, f)
log r

, (1.1)

where T (r, f) is the Nevanlinna characteristic function of f (see [5, 10]) .

Definition 1.2 [6, 9, 11] Let f be a meromorphic function. Then the hyper exponent
of convergence of the sequence of distinct zeros of f (z) is defined by

λ2 (f) = lim
r→+∞

log logN
(
r, 1

f

)
log r

, (1.2)
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where N
(
r, 1

f

)
is the counting function of distinct zeros of f (z) in {|z| < r}.

Consider the linear differential equation

f
′′

+A (z) f = 0, (1.3)

where A (z) is a transcendental meromorphic function. Many important results have
been obtained on the fixed points of general transcendental meromorphic functions
for almost four decades (see [14]). However, there are a few studies on the fixed points
of solutions of differential equations. In [12] , Wang and L

..
u have investigated the

fixed points and hyper order of solutions of second order linear differential equations
with meromorphic coefficients and their derivatives and have obtained the following
result:

Theorem A [12] Suppose that A (z) is a transcendental meromorphic function
satisfying δ (∞, A) = lim

r→+∞

m(r,A)
T (r,A) > 0, ρ (A) = ρ < +∞. Then every meromorphic

solution f (z) 6≡ 0 of the equation (1.3) satisfies that f and f
′
, f

′′
all have infinitely

many fixed points and

λ (f − z) = λ
(
f

′ − z
)

= λ
(
f

′′ − z
)

= ρ (f) = +∞, (1.4)

λ2 (f − z) = λ2

(
f

′ − z
)

= λ2

(
f

′′ − z
)

= ρ2 (f) = ρ. (1.5)

In [9], Theorem A has been generalized to higher order linear differential equa-
tions by Liu Ming-Sheng and Zhang Xiao-Mei as follows :

Theorem B [9] Suppose that k ≥ 2 and A (z) is a transcendental meromorphic
function satisfying δ (∞, A) = δ > 0, ρ (A) = ρ < +∞. Then every meromorphic
solution f (z) 6≡ 0 of

f (k) +A (z) f = 0 (1.6)

satisfies that f and f
′
, f

′′
, ..., f (k) all have infinitely many fixed points and

λ (f − z) = λ
(
f

′ − z
)

= ... = λ
(
f (k) − z

)
= ρ (f) = +∞, (1.7)

λ2 (f − z) = λ2

(
f

′ − z
)

= ... = λ2

(
f (k) − z

)
= ρ2 (f) = ρ. (1.8)
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Recently, Theorem A has been generalized to differential polynomials by the
first author as follows:

Theorem C [2] Let A (z) be a transcendental meromorphic function of finite order
ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose, moreover, that either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
Let dj (j = 0,1,2) be polynomials that are not all equal to zero, and let ϕ (z) 6≡ 0 be
a meromorphic function of finite order. If f (z) 6≡ 0 is a meromorphic solution of
(1.3) with λ

(
1
f

)
< +∞, then the differential polynomial gf = d2f

′′
+ d1f

′
+ d0f

satisfies λ (gf − ϕ) = +∞.

The first main purpose of this paper is to improve Theorem C. The first theorem
considers the case ” dj (j = 0,1,2) are meromorphic functions and h 6≡ 0” which is

different from ” dj (j = 0,1,2) are polynomials and λ
(

1
f

)
< +∞” in Theorem C.

Let us denote by

α1 = d1, α0 = d0 − d2A, β1 = −d2A+ d0 + d
′
1, (1.9)

β0 = −d1A− (d2A)
′
+ d

′
0, (1.10)

h = α1β0 − α0β1, (1.11)

where A , dj (j = 0.1.2) , ϕ are meromorphic functions. We first obtain:

Theorem 1.1 Let A (z) be a transcendental meromorphic function of finite order
ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Let dj (j = 0,1,2) be meromorphic
functions with finite order not all equal to zero such that h 6≡ 0 and let ϕ (z) (6≡ 0) be
a meromorphic function of finite order such that α1ϕ

′−β1ϕ 6≡ 0. Suppose, moreover,
that either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
If f (z) 6≡ 0 is a meromorphic solution of (1.3) , then the differential polynomial
gf = d2f

′′
+ d1f

′
+ d0f satisfies λ (gf − ϕ) = ρ (f) = +∞ and λ2 (gf − ϕ) =

ρ2 (f) = ρ (A) = ρ.

The second main purpose of this paper is to study the relation between dif-
ferential polynomials generated by solutions of the differential equation (1.3) and
meromorphic functions of finite iterated order.
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Before we can state our second result, we need to give some definitions.

For the definition of the iterated order of a meromorphic function, we use the same
definition as in [6] , [3, p. 317] , [7, p. 129] . For all r ∈ R, we define exp1 r := er

and expp+1 r := exp
(
expp r

)
, p ∈ N. We also define for all r sufficiently large

log1 r := log r and logp+1 r := log
(
logp r

)
, p ∈ N. Moreover, we denote by exp0 r :=

r, log0 r := r, log−1 r := exp1 r and exp−1 r := log1 r.

Definition 1.3 (see [6, 7]) Let f be a meromorphic function. Then the iterated
p−order ρp (f) of f is defined by

ρp (f) = lim
r→+∞

logpT (r, f)
log r

(p ≥ 1 is an integer) . (1.12)

For p = 1, this notation is called order and for p = 2 hyper-order.

Definition 1.4 (see [6, 7]) The finiteness degree of the order of a meromorphic
function f is defined by

i (f) =


0, for f rational,

min
{
j ∈ N : ρj (f) < +∞

}
, for f transcendental for which

some j ∈ N with ρj (f) < +∞ exists,
+∞, for f with ρj (f) = +∞ for all j ∈ N.

(1.13)

Definition 1.5 (see [8]) Let f be a meromorphic function. Then the iterated expo-
nent of convergence of the sequence of distinct zeros of f (z) is defined by

λp (f) = lim
r→+∞

logpN
(
r, 1

f

)
log r

(p ≥ 1 is an integer) . (1.14)

For p = 1, this notation is called exponent of convergence of the sequence of distinct
zeros and for p = 2 hyper-exponent of convergence of the sequence of distinct zeros
(see [9]).

Definition 1.6 (see [8]) Let f be a meromorphic function. Then the iterated expo-
nent of convergence of the sequence of distinct fixed points of f (z) is defined by

τp (f) = λp (f − z) = lim
r→+∞

logpN
(
r, 1

f−z

)
log r

(p ≥ 1 is an integer) . (1.15)

For p = 1, this notation is called exponent of convergence of the sequence of distinct
fixed points and for p = 2 hyper-exponent of convergence of the sequence of distinct
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fixed points (see [9]). Thus τp (f) = λp (f − z) is an indication of oscillation of
distinct fixed points of f (z) .

We obtain the following result:

Theorem 1.2 Let A (z) be a transcendental meromorphic function of finite iterated
p−order ρp (A) = ρ > 0 such that δ (∞, A) = δ > 0. Let dj (j = 0,1,2) be mero-
morphic functions with finite iterated p−order not all equal to zero such that h 6≡ 0
and let ϕ (z) (6≡ 0) be a meromorphic function of finite iterated p−order such that
α1ϕ

′ − β1ϕ 6≡ 0. Suppose, moreover, that either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
If f (z) 6≡ 0 is a meromorphic solution of (1.3) , then the differential polynomial
gf = d2f

′′
+ d1f

′
+ d0f satisfies λp (gf − ϕ) = ρp (f) = +∞ and λp+1 (gf − ϕ) =

ρp+1 (f) = ρp (A) = ρ.

Setting p = 1 and ϕ (z) = z in Theorem 1.2, we obtain the following corollary:

Corollary 1.1 Let A (z) be a transcendental meromorphic function of finite order
ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0, let dj (j = 0,1,2) be meromorphic
functions with finite order not all equal to zero such that h 6≡ 0 and α1 − β1z 6≡ 0.
Suppose, moreover, that either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
If f (z) 6≡ 0 is a meromorphic solution of (1.3) , then the differential polynomial
gf = d2f

′′
+d1f

′
+d0f has infinitely many fixed points and satisfies τ (gf ) = ρ (f) =

+∞, τ2 (gf ) = ρ2 (f) = ρ (A) = ρ.

2. Several Lemmas

We need the following lemmas in the proofs of our theorems.

Lemma 2.1 (see Remark 1.3 of [6]) . If f is a meromorphic function with i (f) =
p ≥ 1, then ρp (f) = ρp

(
f

′
)
.

Lemma 2.2 [8] If f is a meromorphic function with 0 < ρp (f) < ρ (p ≥ 1) , then
ρp+1 (f) = 0.

Lemma 2.3 [4] Let A0, A1, ..., Ak−1, F 6≡ 0 be finite order meromorphic functions.
If f is a meromorphic solution with ρ (f) = +∞ of the equation

f (k) +Ak−1f
(k−1) + ...+A1f

′
+A0f = F, (2.1)

then λ (f) = λ (f) = ρ (f) = +∞.
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Lemma 2.4 [2] Let A0, A1, ..., Ak−1, F (6≡ 0) be finite order meromorphic functions.
If f is a meromorphic solution of the equation (2.1) with ρ (f) = +∞ and ρ2 (f) = ρ,
then f satisfies λ2 (f) = λ2 (f) = ρ2 (f) = ρ.

Lemma 2.5 [2] Let k ≥ 2 and A (z) be a transcendental meromorphic function of
finite order ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose, moreover, that
either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
Then every meromorphic solution f (z) 6≡ 0 of (1.6) satisfies ρ (f) = +∞ and
ρ2 (f) = ρ (A) = ρ.

Lemma 2.6 [1] Let k ≥ 2 and A (z) be a transcendental meromorphic function
of finite iterated p−order ρp (A) = ρ > 0 such that δ (∞, A) = δ > 0. Suppose,
moreover, that either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
Then every meromorphic solution f (z) 6≡ 0 of (1.6) satisfies i (f) = p + 1 and
ρp (f) = +∞, ρp+1 (f) = ρp (A) = ρ.

Lemma 2.7 [1] Let A0, A1, ..., Ak−1, F 6≡ 0 be finite iterated p−order meromorphic
functions. If f is a meromorphic solution with ρp (f) = +∞ and ρp+1 (f) = ρ <

+∞ of the equation (2.1) , then λp (f) = ρp (f) = +∞ and λp+1 (f) = ρp+1 (f) = ρ.

Lemma 2.8 Let A (z) be a transcendental meromorphic function with finite iter-
ated p−order ρp (A) = ρ > 0 such that δ (∞, A) = δ > 0, let dj (j = 0,1,2) be
meromorphic functions with finite iterated p−order not all equal to zero such that
h 6≡ 0. Suppose, moreover, that either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
If f (z) 6≡ 0 is a meromorphic solution of (1.3) , then the differential polynomial
gf = d2f

′′
+d1f

′
+d0f satisfies i (gf ) = p+1 and ρp (gf ) = ρp (f) = +∞, ρp+1 (gf ) =

ρp+1 (f) = ρp (A) = ρ.

Proof. Suppose that f (6≡ 0) is a meromorphic solution of equation (1.3) . Then by
Lemma 2.6, we have ρp (f) = +∞ and ρp+1 (f) = ρp (A) = ρ. Set gf = d2f

′′
+d1f

′
+

d0f, we need to prove ρp (gf ) = +∞ and ρp+1 (gf ) = ρ. By substituting f
′′

= −Af
into gf , we get

gf = d1f
′
+ (d0 − d2A) f. (2.18)

Differentiating both a sides of equation (2.18), we obtain

g
′
f = (−d2A+ d0 + d

′
1)f

′
+ (−d1A− (d2A)

′
+ d

′

0)f. (2.19)
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Then by (1.9) , (1.10), (2.18) and (2.19) , we have

α1f
′
+ α0f = gf , (2.20)

β1f
′
+ β0f = g

′
f . (2.21)

Set
h = α1β0 − β1α0. (2.22)

By the condition h 6≡ 0 and (2.20)− (2.22) , we get

f =
α1g

′
f − β1gf

h
. (2.23)

If ρp (gf ) < +∞, then by (2.23) and Lemma 2.1 we obtain ρp (f) < +∞, and this is
a contradiction. Hence ρp (gf ) = ρp (f) = +∞.

Now we prove that ρp+1 (gf ) = ρp+1 (f) = ρp (A) = ρ. By (2.18), Lemma 2.1 and
Lemma 2.2 we have ρp+1 (gf ) 6 ρp+1 (f) and by (2.23) we get ρp+1 (f) 6 ρp+1 (gf ) .
Hence ρp+1 (gf ) = ρp+1 (f) = ρp (A) = ρ.

Lemma 2.9 Let A (z) be a transcendental meromorphic function with finite order
ρ (A) = ρ > 0 such that δ (∞, A) = δ > 0, let dj (j = 0,1,2) be meromorphic
functions with finite order not all equal to zero such that h 6≡ 0. Suppose, moreover,
that either:
(i) all poles of f are of uniformly bounded multiplicity or that
(ii) δ (∞, f) > 0.
If f (z) 6≡ 0 is a meromorphic solution of (1.3) , then the differential polynomial
gf = d2f

′′
+d1f

′
+d0f satisfies ρ (gf ) = ρ (f) = +∞ and ρ2 (gf ) = ρ2 (f) = ρ (A) =

ρ.

Proof. Suppose that f (6≡ 0) is a meromorphic solution of equation (1.3) . Then
by Lemma 2.5, we have ρ (f) = +∞ and ρ2 (f) = ρ (A) = ρ. By using a similar
arguments as in the proof of Lemma 2.8, we can prove Lemma 2.9.

3. Proof of Theorem 1.1

Suppose that f (z) 6≡ 0 is a meromorphic solution of (1.3) . Then by Lemma 2.5
we have ρ (f) = +∞ and ρ2 (f) = ρ (A) = ρ. Set w (z) = d2f

′′
+ d1f

′
+ d0f − ϕ.

Since ρ (ϕ) < +∞, then by Lemma 2.9 we have ρ (w) = ρ (gf ) = ρ (f) = +∞ and
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ρ2 (w) = ρ2 (gf ) = ρ2 (f) = ρ (A) = ρ. In order to prove λ (gf − ϕ) = +∞ and
λ2 (gf − ϕ) = ρ (A) = ρ we need to prove only λ (w) = +∞ and λ2 (w) = ρ (A) = ρ.
Substituting gf = w + ϕ into (2.23), we get

f =
α1w

′ − β1w

h
+ ψ, (3.1)

where

ψ =
α1ϕ

′ − β1ϕ

h
. (3.2)

Substituting (3.1) into equation (1.3) , we obtain

α1

h
w

′′′
+ φ2w

′′
+ φ1w

′
+ φ0w = −

(
ψ

′′
+A (z)ψ

)
= W, (3.3)

where φj (j = 0, 1, 2) are meromorphic functions with ρ
(
φj

)
< +∞ (j = 0, 1, 2).

By ρ (ψ) < +∞ and the condition ψ 6≡ 0, it follows by Lemma 2.5 that W 6≡ 0.
Then by Lemma 2.3 and Lemma 2.4, we obtain λ (w) = λ (w) = ρ (w) = +∞ and
λ2 (w) = λ2 (w) = ρ2 (w) = ρ, i.e., λ (gf − ϕ) = ρ (f) = +∞ and λ2 (gf − ϕ) =
ρ2 (f) = ρ (A) = ρ.

4. Proof of Theorem 1.2

Suppose that f (z) 6≡ 0 is a meromorphic solution of (1.3) . Then by Lemma 2.6 we
have ρp (f) = +∞ and ρp+1 (f) = ρp (A) = ρ. Set w (z) = d2f

′′
+ d1f

′
+ d0f − ϕ.

Since ρp (ϕ) < +∞, then by Lemma 2.8 we have ρp (w) = ρp (gf ) = ρp (f) = +∞
and ρp+1 (w) = ρp+1 (gf ) = ρp+1 (f) = ρp (A) = ρ. In order to prove λp (gf − ϕ) =
+∞ and λp+1 (gf − ϕ) = ρp (A) = ρ, we need to prove only λp (w) = +∞ and
λp+1 (w) = ρp (A) = ρ. Substituting gf = w + ϕ into (2.23) and using a similar
reasoning as in the proof of Theorem 1.1, we get that

α1

h
w

′′′
+ φ2w

′′
+ φ1w

′
+ φ0w = −

(
ψ

′′
+A (z)ψ

)
= W, (4.1)

where φj (j = 0, 1, 2) are meromorphic functions with ρp

(
φj

)
<∞ (j = 0, 1, 2). By

ρp (ψ) < +∞ and the condition ψ 6≡ 0, it follows by Lemma 2.6 that W 6≡ 0. By
Lemma 2.7, we obtain λp (w) = ρp (w) = +∞ and λp+1 (w) = ρp+1 (w) = ρ, i.e.,
λp (gf − ϕ) = ρp (f) = +∞ and λp+1 (gf − ϕ) = ρp+1 (f) = ρp (A) = ρ.
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