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A BETTER NUMERICAL SOLUTION STABILITY BY USING THE
FUNCTION DEVELOPMENTS IN CAZACU’S PROPER SERIES

Mircea Dimitrie Cazacu

Abstract. Starting from the centred finite difference definitions for an analytic
function, we obtain a better approximation of its value in a neighbouring point with
respect to that, in which one gives the function and its partial differential values.

Using the partial differential expressions, extracted from these proper series and
calculating the algebraic relation associated to the stream line function, correspond-
ing to the Navier-Stokes’ partial differential equations of viscous fluid flow hydro-
dynamics, one establishes the error propagation relations by numerical calculus in
the domain, tracing the grid relaxation diagrams, which show the error propagation
manner in the net on different calculus directions and the limit values of the product
between the global Reynolds number, the local relative velocity and the grid relative
step.

The use of these proper series gives a better numerical solution stability, because
the 4th order partial differentials of the stream line function, which intervene in the
stable linear part of the stream line partial differential equation, are greater of about
2 time than these obtained by using of Taylor’s series developments and of 32.667
time greater than these obtained by the finite difference method.

2000 Mathematics Subject Classification Number : 40 - 99, 65 P 40, 76 M 25, 35
Q 75.

1. Introduction

My former professor and Ph.D. surveyor, Dr.doc. engineer and mathematician
Dumitru Dumitrescu, member of Romanian Academy, introduced in 1955 [1] in Ro-
mania the numerical integration of partial differential equations for solving of some
hydrodynamic problems, by so called relaxation method, using the finite differentials
method to express the function discrete values in a grid.

Because I was interested to solve many technical problems, described by compli-
cated non-linear partial differential equation systems, I introduced in my doctoral
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thesis asserted in 1957 [2] the function developments in series of the renowned
English mathematician Brook Taylor (1685-1731) for the numerical solving of hy-
perbolic equations, for which the grid relaxation have no-sense and I obtained the
first important results between 1964 [3][4][6] and 1970 [5], when I studied the viscous
fluid steady flows, given by the non-linear equation system of Navier and Stokes and
I developed the numerical integration techniques, concerning a better approximation
expressions of the partial differentials higher order, by Brook Taylor’s series devel-
opments, the boundary conditions in viscous fluid hydrodynamics and the stability
of numerical solutions.

In 1979 I introduced the stability of linearity idea [7], showing that the 4th
order partial differentials deduced by Brook Taylor series, which intervened in the
stable linear part of the stream line function equation, are sixteenth time greater
than those obtained by finite difference method Ψiv|DTS = 16 × Ψiv|FD [8] and in
2005 I introduced my proper series developments [9].

2. The developments in proper series of a function

Generally, it is very known the fact that the approximation of a continuous,
uniform and bounded analytical function in the neighbourhood of a regular point
of a domain, by development in infinite series, consist in addition of the partial
derivatives in the regular considered point, multiplied by the convenient exponent of
the step and some coefficients, whose size diminish in a sufficient measure with the
partial differential order, to assure the process of convergence of the approximated
function value.

Figure 1: a) grid step division and b) knots numbering in two-dimensional grid

Considering the idea of centred finite differences, I writhed the development in
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series as
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justified by the expressions of the centred finite differences:
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Using the formula (1) we shall fused written the following function developments
in finite series for a two-dimensional grid with different steps a 6= b [7], for the
neighbouring points of an ordinary point 0, corresponding to the notations from
fig.1,b: for the points 1÷ 4, disposed at the first steps in the small cross position:
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for the points numbered with 5÷ 8, placed in the small square position, we have:
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3. The partial differential expressions

By simple algebraic calculus we can deduce the new partial differential expres-
sions, fused written, which are the same with these obtained from Taylor’s series
developments till the 2nd order, and the same with these deduced [3] from the finite
difference method:
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the partial differentials of 3rd order being 4/3 time greater as these obtained from
Taylor’s series developments and 16/3 time greater as these obtained from finite
difference method, instead that the differentials of 4th order being 8/3 time greater
as these obtained from Taylor’s series developments and 42.66 . . . time greater as
these obtained by finite difference method
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4. Algebraic relation, associated to partial differential equation,
in the case of a = b = χ

Introducing the partial differential expressions (15) ÷ (18) in the stream line
equation, deduced from the Navier and Stokes’ equation system of a viscous fluid
flow [3][4] in the case of square grid
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one obtain the associate algebraic relation as general numerical solution for the
stream line current
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4.1. The solution stability and the relaxation diagram

For the case of a parallel current with 0x axle, corresponding to a stable relaxed
grid, the error propagation relations in the current direction and perpendicularly to
it [5] are for local Reynolds number denoted by R = Reχu:
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2
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1
20

δΨn−1,

(22)
(22) with that we can trace the error propagation diagram as in figure 2

Figure 2: Error relaxation diagram on the ±x current direction and perpendicularly
on it ±y.

where, we represented the extreme curves, corresponding to the limit values of so
called Reynolds local number R = Reχ (u or v), which assure the numerical solution
stability by diminishing of the errors.

In the case, when we lead the calculus on the diagonal directions, the stability
is better
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5. Algebraic relation, associated to partial differential equation, in
the case a 6= b

In the case of a rectangular grid with different steps a 6= b, the associated alge-
braic relation (21) becomes a more complicated expression (23), as well as its error
propagation relations on the different calculus direction in the domain, but offers a
better numerical solution stability for any special kinds of grid passing (fig. 3).
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5.1. The solution stability and the relaxation diagram

Considering the three possible directions to calculus leading and that the error
come from the back of the 0 point, the relations of error propagation on different
directions being in this case:

-on the fluid flow direction

δΨ±
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6α4 + 8α2 + 6
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1
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-perpendicularly on the current
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δΨn −
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-and on the diagonal directions

δΨ×
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−α2

6α4 + 8α2 + 6

(
1± Reua

2

)
δΨn, (26)

what put into the evidence the advantageous (favorable) manner to run (traverse)
the rectangular grid in different directions, the local Reynolds number having the
expressions

Re = Reua+ =
12α4 + 8α2 + 6

α(1 + 2α2)
, Re = Reua− =

12α4 + 24α2 + 22
α(3 + 2α2)

, (27)

respectively on the current direction, and their variation with the mesh ratio as in
diagram fig. 3, that in the condition of the sub unitary coefficients and for the step
admitted values b = 0, 1 respectively a = 0, 5 for a interesting slope tgα = b/a = 1/5,
conducted us to the following diagram:

Figure 3: Variation with network step ratio α = a/b of the local Reynolds number,
which assure the numerical solution stability at the net run in the current direction

6. Conclusions

The main results of this research are the followings:
- for any non-linear with partial differential equation systems we can assure the

numerical solution stability, determining for all directions of iterative calculus the
error propagation relations, deduced from the algebraic relations associated to
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the equations with partial differentials and respecting the condition that the error
propagation coefficients be sub-unitary,

- the numerical solution stability is included in even the partial differential
equations, depending of: the shape of equations, the manner of the grid running
by calculus, the fineness of the grid, the local characteristic parameter (for instance
in viscous fluid hydrodynamics, of the local Reynolds number , equal to the product
between the global Reynolds number Re, the grid relative pitch χ and the local
dimensionless velocity u, calculated after the formula Re·χ·u = UmB

v · h
B ·

U
Um

= U ·h
v ).
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