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Abstract. In this paper we present a generalization of strongly Cesàro summable
and strongly lacunary summable sequences by means of considering base space, a
finite dimensional real 2-normed linear space and a generalized difference operator.
We investigate the spaces under the action of different difference operators and show
that these spaces become 2-Banach spaces when the base space is a 2-Banach space.
We also prove that convergence and completeness in the 2-norm is equivalent to those
in the derived norm as well as show that their topology can be fully described by
using derived norm. Further we compute the 2-isometric spaces, investigate the re-
lationship among the spaces and prove the Fixed Point Theorem for these 2-Banach
spaces.

Keywords and phrases: 2-norm; Difference sequence space; Cesàro summable
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1.Introduction

The concept of 2-normed spaces was initially developed by Gähler [8] in the mid of
1960’s. Since then, Gunawan and Mashadi [9], Gürdal [10], Mazaheri and Kazemi
[13] and many others have studied this concept and obtained various results.

Let X be a real vector space of dimension d, where d ≥ 2. A real valued function
‖•, •‖ on X2 satisfying the following four conditions:
2N1 :‖x1, x2‖ = 0 if and only if x1, x2 are linearly dependent,
2N2 : ‖x1.x2‖ is invariant under permutation,
2N3 : ‖αx1, x2‖ = |α| ‖x1, x2‖, for any α ∈ R,
2N4 : ‖x + x′, x2‖ ≤ ‖x, x2‖+ ‖x′, x2‖,
is called a 2-norm on X and the pair (X, ‖•, •‖) is called a 2-normed space.

A sequence (xk) in a 2-normed space (X, ‖•, •‖) is said to converge to some
L ∈ X in the 2-norm if lim

k→∞
‖xk − L, u1‖ = 0, for every u1 ∈ X.
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A sequence (xk) in a 2-normed space (X, ‖•, •‖) is said to be Cauchy sequence
with respect to the 2-norm if lim

k,l→∞
‖xk − xl, u1‖ = 0, for every u1 ∈ X.

If every Cauchy sequence in X converges to some L ∈ X, then X is said to be
complete with respect to the 2-norm. Any complete 2-normed space is said to be
2-Banach space.

The notion of difference sequence space was introduced by Kizmaz[11], who
studied the difference sequence spaces `∞(∆), c(∆) and c0(∆). The notion was
further generalized by Et and Colak [4] by introducing the spaces `∞(∆s), c(∆s)
and c0(∆s). Another type of generalization of the difference sequence spaces is due
to Tripathy and Esi [14], who studied the spaces `∞(∆m), c(∆m) and c0(∆m).

Tripathy, Esi and Tripathy [15] generalized the above notions and unified these
as follows:

Let m, s be non-negative integers, then for Z a given sequence space we have
Z(∆s

m)={x = (xk) ∈ w : (∆s
mxk) ∈ Z}, where ∆s

mx = (∆s
mxk) = (∆s−1

m xk −
∆s−1

m xk+m), and ∆0
mxk = xk for all k ∈ N , which is equivalent to the following

binomial representation:

∆s
mxk =

s∑
v=0

(−1)v

(
s
v

)
xk+mv

Let m, s be non-negative integers, then for Z a given sequence space we define:
Z(∆s

(m))={x = (xk) ∈ w : (∆s
(m)xk) ∈ Z}, where ∆s

(m)x = (∆s
(m)xk) = (∆s−1

(m)xk −
∆s−1

(m)xk−m), and ∆0
(m)xk = xk for all k ∈ N , which is equivalent to the following

binomial representation:

∆s
(m)xk =

s∑
v=0

(−1)v

(
s
v

)
xk−mv

We take xk = 0, for non-positive values of k (1.1) (see details [2])
Functional analytic studies of the spaces |σ1| of strongly Cesàro summable se-

quences can be found in Borwein [1], Freedman, Sember and Raphael [5] and Maddox
[12].

The spaces |σ1| of strongly Cesàro summable sequence is defined as follows:

|σ1| = {x = (xk) : there exists L such that 1
p

p∑
k=1

|xk − L| → 0},

which is a Banach space normed by

‖x‖ = sup
p

(
1
p

p∑
k=1

|xk|
)

.

By a lacunary sequence θ = (kp), p = 1, 2, 3, . . . , where k0 = 0, we mean an
increasing sequence of non-negative integers with hp = (kp − kp−1) →∞ as p →∞.
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We denote Ip = (kp−1, kp] and ηp = kp

kp−1
for p = 1, 2, 3, . . .. The space of strongly

lacunary summable seqauence Nθ was defined by Freedman, Sember adn Raphel [5]
as follows:

Nθ = {x = (xk) : lim
p→∞

1
hp

∑
k∈Ip

|xk − L| = 0, for some L}.

The space Nθ is a Banach space with the norm

‖x‖θ = sup
p

1
hp

∑
k∈Ip

|xk|.

2. Main results and discussions

In this section we define some new definitions, give some examples of 2-norm
and investigate the main results of this article.

A divergent sequence has no limit in the usual sense. In summability theory, one
aims at associating with certain divergent sequences a limit in a generalized sense.
There are different types of summability techniques for different purposes. Our next
aim is to extend the notion of two very famous summability methods to 2-normed
linear space valued sequences.

Let (X, ‖•, •‖)X be a finite dimensional 2-normed space and w(X) denotes X-
valued sequence space. Then for non-negative integer’s m and s, we define the
following sequence spaces:

We denote |σ1|(‖•, •‖,∆s
(m)) the set of all X-valued strongly ∆s

(m)-Cesàro summable
sequence is defined by

|σ1|(‖•, •‖,∆s
(m)) = {x ∈ w(X) : lim

p→∞
1
p

p∑
k=1

‖∆s
(m)xk −L, z1‖X = 0, for every z1 ∈ X

and for some L},
For L = 0, we write this space as |σ1|0(‖•, •‖,∆s

(m)).
Let θ be a lacunary sequence. Then we denote by Nθ(‖•, •‖,∆s

(m)) the set of all
X-valued strongly ∆s

(m)-lacunary summable sequences and defined by
Nθ(‖•, •‖,∆s

(m)) = {x ∈ w(X) : lim
p→∞

1
hp

∑
k∈Ip

‖∆s
(m)xk−L, z1‖X = 0, for every z1 ∈ X

and for some L}.
For L = 0, we write this space as N0

θ (‖•, •‖,∆s
(m)).

In the special case where θ = (2p), we have Nθ(‖•, •‖,∆s
(m)) = |σ1|(‖•, •‖,∆s

(m)).
Taking s = 0, the above spaces reduce to the spaces |σ1|(‖•, •‖) and Nθ(‖•, •‖)
introduced and studied by Dutta [3].

Also |σ1|(‖•, •‖,∆i
(m)) ⊂ |σ1|(‖•, •‖,∆s

(m)) and Nθ(‖•, •‖,∆i
(m)) ⊂ Nθ(‖•, •‖,∆s

(m)),
for every i = 0, 1, . . . , (s− 1). Proof follows from the following inequality:
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1
t

t∑
k=1

‖∆s
(m)xk, z1‖X≤1

t

t∑
k=1

‖∆s−1
(m)xk, z1‖X + 1

t

t∑
k=1

‖∆s−1
(m)xk−m, z1‖X for each t ∈ N .

Example 1. Let us take X = R2 and consider a 2-norm ‖•, •‖X defined as:

‖x1, x2‖X = abs

(∣∣∣∣∣ x11 x12

x21 x22

∣∣∣∣∣
)

where xi = (xi1, xi2) ∈ R2 for each i = 1, 2.

Consider the divergent sequence x = {1, 2, 3, . . .} ∈ w(X), where k = (k, k), for
each k ∈ N . Then x belong to |σ1|(‖•, •‖,∆) and Nθ(‖•, •‖,∆), for θ = (2p). Hence
x belongs to |σ1|(‖•, •‖,∆s

(m)) and Nθ(‖•, •‖,∆s
(m)), for θ = (2p) for each s,m > 1.

Similarly we can have the summability spaces Nθ(‖•, •‖,∆s
m) and |σ1|(‖•, •‖,∆s

m).

Proposition 2.1. The spaces Nθ(‖•, •‖,∆s
(m)) and |σ1|(‖•, •‖,∆s

(m)), Nθ(‖•, •‖,∆s
m)

and |σ1|(‖•, •‖,∆s
m) are linear

Proof. Proof is easy and so omitted.

Now we present some relationship between the spaces |σ1|(‖•, •‖,∆s
(m)) and

Nθ(‖•, •‖,∆s
(m)) and also between the spaces |σ1|(‖•, •‖,∆s

m) and Nθ(‖•, •‖,∆s
m).

We prove the results for the spaces |σ1|(‖•, •‖,∆s
(m)) and Nθ(‖•, •‖,∆s

(m)) and for
the other two spaces it will follow on applying similar arguments.

Proposition 2.2. Let θ = (kp) be a lacunary sequence with lim inf
p

ηp > 1, then

|σ1|(‖•, •‖,∆s
(m)) ⊆ Nθ(‖•, •‖,∆s

(m)).

Proof. Let lim inf
p

ηp > 1. Then there exists a ν > 0 such that 1 + ν ≤ ηp

for all p ≥ 1. Let x ∈ |σ1|(‖•, •‖,∆s
(m)). Then there exists some L ∈ X such that

lim
t→∞

1
t

t∑
k=1

‖∆s
(m)xk − L, z1‖X = 0, for every z1 ∈ X. Now we write

1
hp

∑
k∈Ip

‖∆s
(m)xk−L, z1‖X =

1
hp

∑
1≤i≤kp

‖∆s
(m)xi−L, z1‖X−

1
hp

∑
1≤i≤kp−1

‖∆s
(m)xi−L, z1‖X

=
kp

hp

 1
kp

∑
1≤i≤kp

‖∆s
(m)xi − L, z1‖X

−kp−1

hp

 1
kp−1

∑
1≤i≤kp−1

‖∆s
(m)xi − L, z1‖X

 (2.1)
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Now we have kp

hp
≤ 1+ν

ν and kp−1

hp
≤ 1

ν , since hp = kp − kp−1. Hence using (2.1), we
have x ∈ Nθ(‖•, •‖,∆s

(m)).

Proposition 2.3. Let θ = (kp) be a lacunary sequence with lim sup
p

ηp < ∞,

then Nθ(‖•, •‖,∆s
(m)) ⊆ |σ1|(‖•, •‖,∆s

(m)).

Proof. Let lim sup
p

ηp < ∞. Then there exists M > 0 such that ηp < M for all

p ≥ 1. Let x ∈ N0
θ (‖•, •‖,∆s

(m)) and ε > 0. We can find R > 0 and K > 0 such that

sup
i≥R

Si = sup
i≥R

 1
hi

ki∑
i=1

‖∆s
(m)xi, z1‖X − 1

hi

ki−1∑
i=1

‖∆s
(m)xi, z1‖X

 < ε

and Si < K for all i = 1, 2, . . . .. Then if t is any integer with kp−1 < t ≤ kp, where
p > R, we can write

1
t

t∑
i=1

‖∆s
(m)xi, z1‖X ≤ 1

kp−1

kp∑
i=1

‖∆s
(m)xi, z1‖X

=
1

kp−1
(
∑
I1

‖∆s
(m)xi, z1‖X +

∑
I2

‖∆s
(m)xi, z1‖X + · · ·+

∑
Ip

‖∆s
(m)xi, z1‖X)

=
k1

kp−1
S1 +

k2 − k1

kp−1
S2 + . . . +

kR − kR−1

kp−1
SR +

kR+1 − kR

kp−1
SR+1 + . . . +

kp − kp−1

kp−1
Sp

≤
(

sup
i≥1

Si

)
kR

kp−1
+

(
sup
i≥R

Si

)
kp−kR

kp−1

< K kR
Kp−1

+ εM

Since kp−1 → ∞ as t → ∞, it follows that x ∈ |σ1|0(‖•, •‖,∆s
(m)). The general

inclusion Nθ(‖•, •‖,∆s
(m)) ⊆ |σ1|(‖•, •‖,∆s

(m)) follows by linearity.

Proposition 2.4. Let θ = (kp) be a lacunary sequence with 1 < lim inf
p

ηp ≤
lim sup

p
ηp < ∞, then |σ1|(‖•, •‖,∆s

(m)) = Nθ(‖•, •‖,∆s
(m)).

Proof. Proof follows by combining Propostion 2.2 and Proposition2.3.

One may find it interesting to see the differences between the spaces |σ1|(‖•, •‖,∆s
(m))

and |σ1|(‖•, •‖,∆s
m) as well as between the spaces Nθ(‖•, •‖,∆s

(m)) and Nθ(‖•, •‖,∆s
m)

through the following definition of 2-norm.
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Theorem 2.5. (i) Let Y be the spaces |σ1|(‖•, •‖,∆s
(m)). We define the following

function ‖•, •‖Y on Y × Y by
‖x, y‖Y = 0 if x, y are linearly dependent,

= sup
p

1
p

p∑
k=1

‖∆s
(m)xk, z1‖X for every z1 ∈ X, if x, y are linearly independent.

Then ‖•, •‖Y is a 2-norm on Y . (2.2)
(ii) Let H be the space |σ1|(‖•, •‖,∆s

m). We define the following function ‖•, •‖H

on H ×H by
‖x, y‖H = 0 if x, y are linearly dependent,

=
ms∑
k=1

‖xk, z1‖X + sup
p

1
p

p∑
k=1

‖∆s
mxk, z1‖X for every z1 ∈ X, if x, y are

linearly independent.
Then ‖•, •‖H is a 2-norm on H. (2.3)

Proof.(i) If x1, x2 are linearly dependent, then ‖x1, x2‖Y = 0. Conversely
assume ‖x1, x2‖Y = 0. Then using (2.2) we have

sup
p

1
p

p∑
k=1

‖∆s
(m)x

1
k, z1‖X = 0,

for every z1 ∈ X. Hence we have ‖∆s
(m)x

1
k, z1‖X = 0, for all k ≥ 1 and for every

z1 ∈ X. Hence we must have ∆s
(m)x

1
k = 0 for all k ≥ 1. Let k = 1, then

∆s
(m)x

1
k =

s∑
i=0

(−1)i

(
s
v

)
x1

1−mi = 0

and so x1
1 = 0, by putting x1

1−mi = 0 for i = 1, . . . , s [See (1.1)]. Similarly taking
k = 2, . . . ,ms, we have x1

2 = x1
3 = . . . = x1

ms = 0. Next let k = ms + 1, then

∆s
(m)x

1
ms+1 =

s∑
i=0

(−1)i

(
s
v

)
x1

1+ms−mi = 0.

Since x1
1 = x1

2 = . . . = x1
ms = 0, we have x1

ms+1 = 0. Proceeding in this way we
can conclude that x1

k = 0 for all k ≥ 1. Hence x1 = θ and so x1, x2 are linearly
dependent. It is obvious that ‖x1, x2‖Y is invariant under permutation,

since ‖x2, x1‖Y = sup
p

1
p

p∑
k=1

‖z1,∆s
(m)x

1
k‖X and ‖•, •‖X is a 2-norm.

Let α ∈ R be any element. If αx1, x2 are linearly dependent then it is obvious
that ‖αx1, x2‖Y = |α| ‖x1, x2‖Y . Otherwise,

‖αx1, x2‖Y = sup
p

1
p

p∑
k=1

‖∆s
(m)x

1
k, z1‖X = |α| sup

p

1
p

p∑
k=1

‖∆s
(m)x

1
k, z1‖X = |α| ‖x1, x2‖Y .
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Lastly, let x1 = (x1
k) and y1 = (y1

k) ∈ Y . Then clearly
‖x1 + y1, x2‖Y ≤ ‖x1, x2‖Y + ‖y1, x2‖Y . Thus we can conclude that ‖x1, x2‖Y is a
2-norm on Y.

(ii) For this part we shall only show that ‖x1, x2‖H = 0 implies x1, x2 are linearly
dependent.
Proof of other conditions of 2-norm is exactly same with that of part (i).
Let us assume that ‖x1, x2‖H = 0. Then using (2.3), we have for every z1 ∈ X

ms∑
k=1

‖x1
k, z1‖X + sup

p

1
p

p∑
k=1

‖∆s
mx1

k, z1‖X = 0 (2.4)

Hence
ms∑
k=1

‖x1
k, z1‖X = 0. Hence x1

k = 0 for k = 1, 2, . . . ,ms. Also we have from

(2.4) for every z1 ∈ X

sup
p

1
p

p∑
k=1

‖∆s
mx1

k, z1‖X = 0

Hence for every z1 ∈ X, we have ‖∆s
mx1

k, z1‖X = 0 for each k ∈ N . Thus we must
have ∆s

mx1
k = 0 for each k ∈ N . Let k = 1, we have

∆s
mx1

1 =
s∑

v=0

(−1)v

(
s
v

)
x1

1+mv = 0 (2.5)

we have x1
k = 0, for k = 1 + mv, for v = 1, 2, . . . , (s− 1) (2.6)

Thus from (2.5) and (2.6) we have x1
1+nm = 0. Proceeding in this way inductively,

we have x1
k = 0 for each k ∈ N . Hence x1 = θ and so x1, x2 are linearly dependent.

Theorem 2.6. (i) Let M be the spaces Nθ(‖•, •‖,∆s
(m)). We define the following

function ‖•, •‖M on M ×M by
‖x, y‖M = 0 if x, y are linearly dependent,

= sup
p

1
hp

∑
k∈Ip

‖∆s
(m)xk, z1‖X for every z1 ∈ X, if x, y are linearly independent.

Then ‖•, •‖M is a 2-norm on M . (2.7)
(ii) Let N be the space Nθ(‖•, •‖,∆s

m). We define the following function ‖•, •‖N on
N ×N by

‖x, y‖N = 0 if x, y are linearly dependent,

=
ms∑
k=1

‖xk, z1‖X + sup
p

1
hp

∑
k∈Ip

‖∆s
mxk, z1‖X for every z1 ∈ X, if x, y are

linearly independent.
Then ‖•, •‖N is a 2-norm on N . (2.8)
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Proof. Proof follows by applying similar arguments as applied tao prove Theo-
rem 2.5.

Remark 1. It is obvious that any sequence x ∈ Z(‖•, •‖,∆s
(m)) if and only if

x ∈ Z(‖•, •‖,∆s
m), for Z = Nθ and |σ1|.

A 2-norm ‖•, •‖1 on a vector space X is said to be equivalent to a norm ‖•, •‖2

on X if there are positive numbers A and B such that for all x, y ∈ X we have

A‖x, y‖2 ≤ ||x, y||1 ≤ B||x, y‖2

This concept is motivated by the fact that equivalent norms on X define the same
topology for X.

It is clear that the two 2-norms ‖•, •‖Y and ‖•, •‖H defined by (2.2) and (2.3)
are equivalent. Also the two 2-norms ‖•, •‖M and ‖•, •‖N defined by (2.7) and (2.8)
are equivalent.

Let X and Y be linear 2-normed spaces and f : X −→ Y a mapping. We
call f an 2-isometry if ‖x1 − y1, x2 − y2‖ = ‖f(x1) − f(y1), f(x2) − f(y2)‖, for all
x1, x2, y1, y2 ∈ X.

Theorem 2.7. For Z = Nθ and |σ1|, the spaces Z(‖•, •‖,∆s
(m)) and Z(‖•, •‖,∆s

m)
are 2-isometric with the spaces Z(‖•, •‖).

Proof. We give the proof for the case Z = |σ1| and for the other case it will
follow similarly. Let us consider the mapping F : |σ1|(‖•, •‖,∆s

(m)) −→ |σ1|(‖•, •‖),
defined by Fx = y = (∆(s)

r xk) for each x = (xk) in |σ1|(‖•, •‖,∆s
(m)). Then clearly

F is linear. Since F is linear, to show F is a 2-isometry, it is enough to show that
‖F (x1), F (x2)‖1 = ‖x1, x2‖Y , for every x1, x2 in Z(‖•, •‖,∆s

(m)). Now using the
definition of 2-norm (2.1), without loss of generality we can write

‖x1, x2‖Y = sup
p

1
p

p∑
k=1

‖∆s
(m)x

1
k, z1‖X = ‖F (x1), F (x2)‖1,

where ‖•, •‖1 is the 2-norm on |σ1|(‖•, •‖) which can be obtained from (2.2) by
taking s = 0.
We can define same mapping on the spaces |σ1|(‖•, •‖), |σ1|(‖•, •‖,∆s

m) and this
completes the proof.

Theorem 2.8. Let Y be the spaces |σ1|(‖•, •‖,∆s
(m)). We define the following

function ‖ • ‖∞ on Y by
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‖x1‖∞ = 0 if x1 is linearly dependent,

= sup
p

1
p

p∑
k=1

{max
l
‖∆s

(m)x
1
k, bl‖X} if x1 are linearly independent,

where B = {b1, b2, . . . , bd} is a basis of X.
Then ‖•‖∞ is a norm on Y and we call this as derived norm on Y . (2.9)

Proof. Proof is a routine verification and so omitted.

In a similar fashion we can define derived norm (norm) on each of the spaces
|σ1|(‖•, •‖,∆s

m), Nθ(‖•, •‖,∆s
(m)) and Nθ(‖•, •‖,∆s

m). Hence we have the following
Corollary.

Corollary 2.9.The spaces |σ1|(‖•, •‖,∆s
(m)), |σ1|(‖•, •‖,∆s

m), Nθ(‖•, •‖,∆s
(m))

and Nθ(‖•, •‖,∆s
m) are normed linear spaces.

Theorem 2.10. If X is a 2-Banach space then the spaces Z(‖•, •‖,∆s
(m)) and

Z(‖•, •‖,∆s
m) for Z = Nθ and |σ1| are 2-Banach spaces.

Proof. We give the proof for the space Nθ(‖•, •‖,∆s
(m)) and for the other spaces

it will follow similarly.
Let (xi) be any Cauchy sequence in Nθ(‖•, •‖,∆s

(m)). Let ε > 0 be given. Then
there exists a positive integer n0 such that ‖xi − xj , u1‖M < ε, for all i, j ≥ n0 and
for every u1. Using the definition of 2-norm, we get

sup
p

1
hp

∑
k∈Ip

‖∆s
(m)(x

i
k − xj

k), z1‖X < ε

for all i, j ≥ n0 and for every z1 ∈ X. It follows that

‖∆s
(m)(x

i
k − xj

k), z1|X < ε,

for all i, j ≥ n0, for all k ∈ N and for every z1 ∈ X. Hence (∆s
(m)x

i
k) is a Cauchy

sequence in X for all k ∈ N and so it is convergent in X for all k ∈ N , since X
is an 2-Banach space. For simplicity, let lim

i→∞
∆s

(m)x
i
k = yk exists for each k ∈ N .

Taking k = 1, 2, 3, . . . ,ms, . . . we can easily conclude that lim
i→∞

xi
k = xk exists for

each k ∈ N . Now for i, j ≥ n0, we have

sup
p

1
hp

∑
k∈Ip

‖∆s
(m)(x

i
k − xj

k), z1‖X < ε,
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for every z1 ∈ X. Hence we can have for every z1 ∈ X,

sup
p

1
hp

∑
k∈Ip

‖∆s
(m)(x

i
k − xk), z1‖X < ε,

for all i ≥ n0 and as j → ∞. It follows that (xi − x) ∈ Nθ(‖•, •‖,∆s
(m)). Since

(xi) ∈ Nθ(‖•, •‖,∆s
(m)) and Nθ(‖•, •‖,∆s

(m)) is a linear space, so we have x =
xi − (xi − x) ∈ Nθ(‖•, •‖,∆s

(m)). This completes the proof of the theorem.

Next results of this article give us important topological structure of the intro-
duced spaces as well as highlight the importance of the concept of derived norm.
We proof the next results only for the space |σ1|(‖•, •‖,∆s

(m)) for the other spaces
it will follow on applying similar arguments.

Theorem 2.11. A sequence (xi) converges to an x in |σ1|(‖•, •‖,∆s
(m)) in the

2-norm if and only if (xi) also converges to x in the derived norm.

Proof. Let (xi) converges to x in |σ1|(‖•, •‖,∆s
(m)) in the 2-norm. Then

‖xi − x, u1‖Y −→ 0 as i −→∞ for every u1 ∈ |σ1|(‖•, •‖,∆s
(m)).

Using (2.2), we get

sup
p

1
p

p∑
k=1

‖∆s
(m)(x

i
k − xk), z1‖X → 0

as i →∞ and for every z1 ∈ X. Hence for any basis {b1, b2, . . . , bd} of X, we have

sup
p

1
p

p∑
k=1

{
max

l
‖∆s

(m)(x
1
k − xk), bl‖X

}
→ 0

as i → ∞, for each l = 1, 2, . . . , d. Thus it follows that ‖xi − x‖∞ → 0 as i → ∞.
Hence (xi) converges to x in the derived norm.
Conversely assume (xi) converges to x in the derived norm. Then we have
‖xi − x‖∞ → 0 as i →∞. Hence using (2.9), we get

sup
p

1
p

p∑
k=1

{
max

l
‖∆s

(m)(x
1
k − xk), bl‖X

}
→ 0

as i →∞, l = 1, 2, . . . , d. Therefore

sup
p

1
p

p∑
k=1

‖∆s
(m)(x

1
k − xk), bl‖X → 0
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as i →∞, for each l = 1, 2, . . . , d. Let y be the element of |σ1|(‖•, •‖,∆s
(m)). Then

‖xi − x, y‖Y = sup
p

1
p

p∑
k=1

‖∆s
(m)(x

1
k − xk), z1‖X .

Since {b1, b2, . . . , bd} is a basis for X and z1 can be written as z1 = α1b1 + α2b2 +
. . . + αdbd for some α1, α2, . . . , αd ∈ R. Now

‖xi − x, y‖Y = sup
p

1
p

p∑
k=1

‖∆s
(m)(x

1
k − xk), z1‖X

≤ |α1| sup
p

1
p

p∑
k=1

‖∆s
(m)(x

i
k − xk), b1‖X + . . . + |αd| sup

p

1
p

p∑
k=1

‖∆s
(m)(x

i
k − xk), bd‖X

for each i ∈ N . Thus it follows that ‖xi − x, y‖Y → 0 as i → ∞ for every y in
|σ1|(‖•, •‖,∆s

(m)). Hence (xi) converges to x in |σ1|(‖•, •‖,∆s
(m)) in the 2-norm.

Corollary 2.12. The space |σ1|(‖•, •‖,∆s
(m)) is complete with respect to the

2-norm if and only if it is complete with respect to the derived norm.

Remark 2. Associated to the derived norm ‖ • ‖∞, we can define balls (open)
S(x, ε) centered at x and radius ε as follows:

S(x, ε) = {y : ‖x− y‖∞ < ε}.

Using these balls, Corrollary 2.11 becomes:

Lemma 2.13. A sequence (xk) is convergent to x in |σ1|(‖•, •‖,∆s
(m)) if and

only if for every ε > 0, there exists n0 ∈ N such that xk ∈ S(x, ε) for all k ≥ n0.

Hence we have the following important result.

Theorem 2.14. The space |σ1|(‖•, •‖,∆s
(m)) is a normed space and its topology

agrees with that generated by the derived norm ‖ • ‖.

Theorem 2.15. (Fixed Point Theorem) Consider the 2-Banach space
|σ1|(‖•, •‖,∆s

(m)) under the 2-norm (2.2) and T be a contractive mapping of
|σ1|(‖•, •‖,∆s

(m)) into itself, that is, there exists a constant C ∈ (0, 1) such that

‖Ty1 − Tz1, x2‖Y ≤ C‖y1 − z1, x2‖Y ,
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for all y1, z1, x2 in Y . Then T has a unique fixed point in Y.

Proof. If we can show that T is also contractive with respect to norm, then we
are done by Corollary 2.12 and the Fixed Point Theorem for Banach spaces. Now
by hypothesis

‖Ty1 − Tz1, x2‖Y ≤ C‖y1 − z1, x2‖Y ,

for all y1, z1, x2 in Y . This implies that

sup
p

1
p

p∑
k=1

‖∆s
(m)(Ty1

k − Tz1
k), u1‖X ≤ C sup

p

1
p

p∑
k=1

‖∆s
(m)(y

1
k − z1

k), u1‖X

for every u1 in X.Then for a basis set {e1, e2, . . . , ed} of X, we get

sup
p

1
p

p∑
k=1

‖∆s
(m)(Ty1

k − Tz1
k), ei‖X ≤ C sup

p

1
p

p∑
k=1

‖∆s
(m)(y

1
k − z1

k), ei‖X ,

for all y1, z1 in Y and i = 1, 2, . . . , d. Thus we have

‖Ty1
k − Tz1

k‖∞ ≤ C‖y1
k − z1

k‖∞.

That is T is contractive with respect to derived norm. This completes the proof.
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