
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 23/2010
pp. 69-77

ZARANTONELLO’S INEQUALITY AND THE ISOMETRIES OF
THE M-DIMENSIONAL EUCLIDEAN SPACE

Teodora Andrica

Abstract. The main purpose of this paper is to use Zarantonello’s inequality
(see reference [9]) in order to prove that any isometry of the Euclidean m-space is
affine, and then describe all the isometries of the Euclidean m-space.
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1. Introduction and preliminaries

Let (X, d) be a metric space. The map f : X → X is called an isometry
with respect to the metric d (or a d-isometry), if f is surjective and preserves the
distances. That is for any points x, y ∈ X the relation d(f(x), f(y)) = d(x, y)
holds. From this relation it follows that the map f is injective, hence it is bijective.
Denote by Isod(X) the set of all isometries of the metric space (X, d). It is clear that
(Isod(X), ◦) is a subgroup of (S(X), ◦), where S(X) denotes the group of all bijective
transformations f : X → X. We will call (Isod(X), ◦) the group of isometries of the
metric space (X, d). A general, important and complicated problem is to describe
the group (Isod(X), ◦). This problem was formulated in paper [1] for metric spaces
with a metric that is not given by a norm and it is of great interest (see for instance
[3]).

In this article we want to prove a standard result of Ulam concerning the group of
isometries of the Euclidean space Rm, using the so-called Zarantonello’s inequality.
In the space Rm we consider the Euclidean metric, which is defined by the inner
product. The inner product of two vectors x, y ∈ Rm is given by

〈x, y〉 = x1y1 + x2y2 + · · ·+ xmym.

The norm of vector x is given by

‖x‖ =
√
〈x, x〉 =

√
(x1)2 + (x2)2 + · · ·+ (xm)2.
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The Euclidean metric is defined by

d(x, y) = ‖x− y‖ =
√

(x1 − y1)2 + (x2 − y2)2 + · · ·+ (xm − ym)2.

Here are few standard examples of isometries with respect to this metric.

Example 1. 1. If A ∈ O(m) is an orthogonal matrix, i.e. AT A = I, then the
linear map fA : Rm → Rm, defined by fA(x) = Ax is an isometry.

2. If b ∈ Rm, then the translation of vector b, tb : Rm → Rm, tb(x) = x + b, is an
isometry. Moreover, the inverse of tb is t−b.

From the well-known result of S.Mazur and S.Ulam (see the original reference
[5]) we have:

Every isometry f : E → F between real normed spaces is affine. In this case an
isometry is a surjective map satisfying for any x, y ∈ E the relation ||f(x)−f(y)||F =
||x− y||E . This result was proved by S.Mazur and S.Ulam in 1932. A simple proof
was given by J.Vaisala [7], the proof is based on the ideas of A.Vogt [8], and it uses
reflections in points. If we apply this result for the normed spaces E = F = Rm

with the Euclidean norm ‖ · ‖, then it follows that any isometry is affine. Therefore,
it is sufficient to see which are the affine maps that preserve the distances.

Our purpose is to use Zarantonello’s inequality (see the reference [9]) in order
to prove that any isometry of the Euclidean m-space is affine, and then describe all
the isometries of the Euclidean m-space. In paper [2] we have used the same idea in
the complex plane. In this respect we need few auxiliary results.

Theorem 1 (Lagrange’s theorem). Let n, m be positive integers, let x1, x2, . . . , xn ∈
Rm and α1, α2, . . . , αn ∈ R be real numbers such that α1 + · · ·+ αn = 1. Then for
each x ∈ Rm the following relation holds:

n∑
k=1

αk‖x− xk‖2 = ‖x− α1x1 − · · · − αnxn‖2 +
n∑

k=1

αk‖xk − α1x1 − · · · − αnxn‖2.

Proof. Using the properties of the inner product, we get:

n∑
k=1

αk‖x− xk‖2 =
n∑

k=1

αk〈x− xk, x− xk〉 =
n∑

k=1

αk(‖x‖2 − 2〈x, xk〉+ ‖xk‖2)

= ‖x‖2 − 2
n∑

k=1

αk〈x, xk〉+
n∑

k=1

αk‖xk‖2. (1)
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On the other hand:

‖x− α1x1 − · · · − αnxn‖2 +
n∑

k=1

αk‖xk − α1x1 − · · · − αnxn‖2

= 〈x− α1x1 − · · · − αnxn, x− α1x1 − · · · − αnxn〉

+
n∑

k=1

αk〈xk − α1x1 − · · · − αnxn, xk − α1x1 − · · · − αnxn〉

= ‖x‖2 − 2
n∑

k=1

αk〈x, xk〉+ 2‖α1x1 + · · ·+ αnxn‖2 +
n∑

k=1

αk‖xk‖2

−2
n∑

k=1

αk〈xk, α1x1 + · · ·+ αnxn〉 = ‖x‖2 − 2
n∑

k=1

αk〈x, xk〉+
n∑

k=1

αk‖xk‖2. (2)

From (1) and (2) we obtain the desired relation.

Theorem 2 (Stewart’s theorem). Let m be a positive integer, x1, x2 ∈ Rm and
a ∈ R. Then for each x ∈ Rm the following relation holds:

‖x− ax1 − (1− a)x2‖2 = a‖x− x1‖2 + (1− a)‖x− x2‖2 − a(1− a)‖x1 − x2‖2.

Proof. Using the properties of the inner product, the left hand side of the desired
relation can be written as:

‖x− ax1 − (1− a)x2‖2 = ‖x + ax− ax− ax1 − (1− a)x2‖2

= ‖a(x− x1) + (1− a)(x− x2)‖2

= 〈a(x− x1) + (1− a)(x− x2), a(x− x1) + (1− a)(x− x2)〉

= a2‖x− x1‖2 + (1− a)2‖x− x2‖2

+2a(1− a)〈x− x1, x− x2〉 = a2‖x− x1‖2 + (1− a)2‖x− x2‖2

+2a(1− a)(‖x‖2 − 〈x, x1〉 − 〈x, x2〉+ 〈x1, x2〉).

We get:

‖x−ax1−(1−a)x2‖2 = a2‖x−x1‖2+(1−a)2‖x−x2‖2+a(1−a)(‖x−x1‖2+‖x−x2‖2

−‖x1‖2 − ‖x2‖2 + 2〈x1, x2〉) = a‖x− x1‖2 + (1− a)‖x− x2‖2 − a(1− a)‖x1 − x2‖2.
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Stewart’s theorem can be extended in the following way:

Theorem 3. Let n, m be positive integers, n ≥ 2, m ≥ 1, x1, x2, . . . , xn ∈ Rm,
a1, a2, . . . , an ∈ R such that a1 + · · ·+ an = 1. Then for each x ∈ Rm the following
relation holds:∥∥∥∥∥x−

n∑
k=1

akxk

∥∥∥∥∥
2

=
n∑

k=1

ak‖x− xk‖2 −
∑

1≤k<l≤n

akal‖xk − xl‖2.

Proof. The relation we want to prove is equivalent to:

〈x−
n∑

k=1

akxk, x−
n∑

k=1

akxk〉 =
n∑

k=1

ak〈x− xk, x− xk〉 −
∑

1≤k<l≤n

akal〈xk − xl, xk − xl〉

and we get

‖x‖2 − 2
n∑

k=1

ak〈x, xk〉+
∑

1≤k,l≤n

akal〈xk, xl〉 =

n∑
k=1

ak(‖x‖2 − 2〈x, xk〉+ ‖xk‖2)−
∑

1≤k<l≤n

akal(‖xk‖2 − 2〈xk, xl〉+ ‖xl‖2).

It suffices to prove that

∑
1≤k<l≤n

akal(‖xk‖2 + ‖xl‖2) +
n∑

k=1

a2
k‖xk‖2 =

n∑
k=1

ak‖xk‖2,

which is equivalent to

n∑
k=1

ak(1− ak)‖xk‖2 =
∑

1≤k<l≤n

akal(‖xk‖2 + ‖xl‖2),

and we get

n∑
k=1

ak(a1 + · · ·+ ak−1 + ak+1 + · · ·+ an)‖xk‖2 =
∑

1≤k<l≤n

akal(‖xk‖2 + ‖xl‖2),

which is true and the desired result is proved.

Theorem 3 has some interesting consequences.
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Corollary 1. If n, m, are positive integers, n ≥ 2, m ≥ 1, x1, x2, . . . , xn ∈ Rm,
then for each x ∈ Rm the following relation holds:∥∥∥∥x− x1 + x2 + · · ·+ xn

n

∥∥∥∥2

=
1
n

n∑
k=1

‖x− xk‖2 − 1
n2

∑
1≤k<l≤n

‖xk − xl‖2.

Proof. In Theorem 3 we take a1 = a2 = · · · = an =
1
n
.

Corollary 2. If n, m are positive integers, n ≥ 2, m ≥ 1, x1, x2, . . . , xn ∈ Rm, then
the following relation holds:

n∑
k=1

∥∥∥∥xk −
x1 + x2 + · · ·+ xn

n

∥∥∥∥2

=
n∑

k=1

‖xk‖2 − n

∥∥∥∥x1 + x2 + · · ·+ xn

n

∥∥∥∥2

.

Proof. In Corollary 1 we take x = 0, then x =
x1 + x2 + · · ·+ xn

n
and we obtain the

desired relation.

Corollary 3. If n, m are positive integers, n ≥ 2, m ≥ 1, x1, x2, . . . , xn ∈ Rm, then
the following relation holds:

∑
1≤k<l≤n

‖xk − xl‖2 = n
n∑

k=1

‖xk‖2 − n2

∥∥∥∥∥ 1
n

n∑
k=1

xk

∥∥∥∥∥
2

.

Proof. In Corollary 1 we take x = 0.

Corollary 4. If n, m are positive integers, n ≥ 2, m ≥ 1, x1, x2, . . . , xn ∈ Rm,
a1, a2, . . . , an, b1, b2, . . . , bn ∈ R such that a1 + a2 + · · ·+ an = b1 + b2 + · · ·+ bn = 1,
then the following relation holds:

‖b1x1 + · · ·+ bnxn − a1x1 − · · · − anxn‖2 = −
∑

1≤k<l≤n

(ak − bk)(al − bl)‖xk − xl‖2.

Proof. By applying Theorem 3, we get:

‖b1x1 + · · ·+ bnxn − a1x1 − · · · − anxn‖2 = a1‖x1 − b1x1 − · · · − bnxn‖2 + · · ·+

+an‖xn − b1x1 − · · · − bnxn‖2 −
∑

1≤k<l≤n

akal‖xk − xl‖2 = a1(b1‖x1 − x1‖2 + · · ·+

+bn‖x1 − xn‖2 −
∑

1≤k<l≤n

bkbl‖xk − xl‖2) + · · ·+ an(b1‖xn − x1‖2 + · · ·+
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+bn‖xn − xn‖2 −
∑

1≤k<l≤n

bkbl‖xk − xl‖2)−
∑

1≤k<l≤n

akal‖xk − xl‖2.

Since a1 + a2 + · · ·+ an = 1, we obtain:

‖b1x1+· · ·+bnxn−a1x1−· · ·−anxn‖2 =
∑

1≤k,l≤n

akbl‖xk−xl‖2−
∑

1≤k<l≤n

akal‖xk−xl‖2

−
∑

1≤k<l≤n

bkbl‖xk − xl‖2 = −
∑

1≤k<l≤n

(ak − bk)(al − bl)‖xk − xl‖2.

2. Zarantonello’s inequality and the group of isometries

In this section we will use the previous results in order to prove the so-called
Zarantonello’s inequality in the Euclidean m-space. This inequality was proved in
[9] for mappings in Hilbert spaces. It will give us an useful instrument to describe
the isometries of the space Rm.

Theorem 4 (Zarantonello’s inequality in Rm). Let m be a positive integer and
let f : Rm → Rm be a function such that ‖f(x)−f(y)‖ ≤ ‖x−y‖, for each x, y ∈ Rm.
Then for each positive integer n, n ≥ 2 and for any real numbers a1, a2, . . . , an ≥ 0
such that a1 +a2 + · · ·+an = 1 and x1, x2, . . . , xn ∈ Rm the following relation holds:

‖f(a1x1 + · · ·+ anxn)− a1f(x1)− · · · − anf(xn)‖2

≤
∑

1≤k<l≤n

akal(‖xk − xl‖2 − ‖f(xk)− f(xl)‖2).

Proof. By applying Theorem 3, we get:

‖f(a1x1 + · · ·+ anxn)− a1f(x1)− · · · − anf(xn)‖2

= a1‖f(a1x1 + · · ·+ anxn)− f(x1)‖2 + · · ·+

+an‖f(a1x1 + · · ·+ anxn)− f(xn)‖2 −
∑

1≤k<l≤n

akal‖f(xk)− f(xl)‖2. (3)

Using the contraction condition for f , we get:

a1‖f(a1x1 + · · ·+ anxn)− f(x1)‖2 + · · ·+ an‖f(a1x1 + · · ·+ anxn)− f(xn)‖2

≤ a1‖x1 − a1x1 − · · · − anxn‖2 + · · ·+ an‖xn − a1x1 − · · · − anxn‖2. (4)

Taking in Theorem 3 x = a1x1 + · · ·+ anxn, we obtain:

a1‖x1−a1x1−· · ·−anxn‖2+· · ·+an‖xn−a1x1−· · ·−anxn‖2 =
∑

1≤k<l≤n

akal‖xk−xl‖2,

and together with (3) and (4) we obtain the desired inequality.
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Let S be a subset of the Euclidean m-space. The map f : Rm → Rm is called a
S-isometry if it preserves distances for the points in S, i.e. ‖f(x)− f(y)‖ = ‖x− y‖,
for each x, y ∈ S.

Corollary 5. Let f : Rm → Rm be a function such that

‖f(x)− f(y)‖ ≤ ‖x− y‖,

for each x, y ∈ Rm, and let x1, x2, . . . , xn ∈ Rm be given points. If ‖f(xk)−f(xl)‖ =
‖xk − xl‖, for k, l = 1, 2, ..., n, k 6= l, then for any real numbers a1, a2, . . . , an ≥ 0
with a1 + a2 + · · ·+ am = 1, we have:

f(a1x1 + · · ·+ anxn) = a1f(x1) + · · ·+ anf(xn).

Proof. Indeed, we have ‖xk − xl‖2 − ‖f(xk) − f(xl)‖2 = 0 and akal ≥ 0 for k, l =
1, 2, ..., n, k 6= l. From Zarantonello’s inequality it follows ‖f(a1x1 + · · ·+ anxn)−
a1f(x1)− · · · − anf(xn)‖2 = 0, hence the conclusion.

The result contained in the previous Corollary shows that any function f : Rm →
Rm satisfying the contraction condition ‖f(x)− f(y)‖ ≤ ‖x− y‖, for any x, y ∈ Rm

and preserving all distances in the set S = {x1, x2, . . . , xm}, i.e. f is a S-isometry,
is affine on the convex envelope of this set.

Remark 1. If f : Rm → Rm is an isometry, i.e. ‖f(x)− f(y)‖ = ‖x− y‖, for each
x, y ∈ Rm, then for each positive integer n, n ≥ 2 and for each a1, a2, . . . , an ≥ 0
such that a1 +a2 + · · ·+an = 1 and x1, x2, . . . , xn ∈ Rm the following relation holds:

f(a1x1 + · · ·+ anxn) = a1f(x1) + · · ·+ anf(xn).

Lemma 1. If f : Rm → Rm is an isometry, i.e. ‖f(x) − f(y)‖ = ‖x − y‖, for each
x, y ∈ Rm, then the function g : Rm → Rm, defined by g(x) = f(x) − f(0m) is
additive, i.e. g(x + y) = g(x) + g(y), for each x, y ∈ Rm.

Proof. We note that g is also an isometry and by applying the previous remark, we
get:

g

(
x + y

2

)
=

g(x) + g(y)
2

,

for each x, y ∈ Rm. Since g(0m) = 0m, we obtain g
(x

2

)
=

g(x)
2

, for each x ∈ Rm.
Consequently:

g(x + y) = 2g

(
x + y

2

)
= 2

g(x) + g(y)
2

= g(x) + g(y),

for each x, y ∈ Rm.
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The next result gives the general form of the isometries of the space Rm with
the Euclidean metric.

Theorem 5. Let m be a positive integer. A function f : Rm → Rm is an isometry if
and only if there exists an orthogonal matrix A ∈Mm(R) and there exists x0 ∈ Rm

such that f(x) = Ax + x0, for each x ∈ Rm.

Proof. Let f : Rm → Rm, f(x) = Ax + x0, where A ∈ Mm(R) is an orthogonal
matrix and x0 ∈ Rm. We have:

‖f(x)− f(y)‖2 = ‖Ax−Ay‖2 = 〈A(x− y), A(x− y)〉

= (x− y)T AT A(x− y) = (x− y)T (x− y) = 〈x− y, x− y〉 = ‖x− y‖2.

Thus f is an isometry.
Conversely, let us define g : Rm → Rm, g(x) = f(x)− f(0m). From the previous

remark, g is additive, i.e. g(x+y) = g(x)+g(y), for each x, y ∈ Rm. g is a Lipschitz
function of constant 1, so g is continuous. Using the fact that g is continuous, it
is easy to prove that g(t · x) = t · g(x), for each t ∈ R and x ∈ Rm. We have
obtained that g is linear, so g(x) = Ax, where A ∈Mm(R), for each x ∈ Rm. Then
f(x) = g(x) + f(0m), and we get that f(x) = Ax + x0, where x0 = f(0m). Thus it
suffices to prove that A is an orthogonal matrix.

First step. We will prove that the map g preserves the inner product.
For each x, y ∈ Rm, we have:

‖x− y‖2 = 〈x− y, x− y〉 = ‖x‖2 − 2〈x, y〉+ ‖y‖2 (5)

Also, we have:

‖g(x)− g(y)‖2 = ‖g(x)‖2 − 2〈g(x), g(y)〉+ ‖g(y)‖2. (6)

Using the fact that f is an isometry, we obtain that g is also an isometry, thus
‖x − y‖ = ‖g(x) − g(y)‖, for each x, y ∈ Rm. Taking y = 0m, we obtain that
‖x‖ = ‖x− 0m‖ = ‖g(x)− g(0m)‖ = ‖g(x)− 0m‖ = ‖g(x)‖, for each x ∈ Rm. Using
(5) and (6), we get that 〈x, y〉 = 〈g(x), g(y)〉, for each x, y ∈ Rm.

Second step. We will prove that if {e1, . . . , em} is the canonical base of the
space Rm, then {g(e1), . . . , g(em)} is an orthonormal base of the space Rm.

We know that e1, . . . , em are orthonormal vectors. Using the first step, we obtain
that g(e1), . . . , g(em) are also orthonormal vectors. Since orthonormal vectors are
linearly independent and dim Rm = m, we obtain that {g(e1), . . . , g(em)} is an
orthormal base of the space Rm.

Third step. We now prove that matrix A satisfies AT A = I, thus it is an
orthogonal matrix.

76



T. Andrica - Zarantonello’s inequality and the isometries of the m-dimensional...

Indeed, we have:

g(ei)T g(ej) = 〈g(ei), g(ej)〉 = 〈ei, ej〉 = δij .

If A = (aij)1≤i≤j≤m, we get
m∑

k=1

akiakj = δij ,

for each i, j = 1, . . . ,m, which means that matrix A is orthogonal.

Corollary 6. The isometry group Iso(Rm) is isomorphic to Om(R) · T (m), where
T (m) is the translations group of the space Rm, Om(R) denotes the orthogonal group
of the space Rm, and ” · ” is the semi-direct product of groups.
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