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1. Introduction and preliminaries

Recently, Akram et al[2] introduced the following new class of contraction maps
called A-contractions.

Let R+ denote the set of all nonnegative real numbers and A the set of all
functions α : R3

+ −→ R+ satisfying the following conditions.
(i) α is continuous on the set R3

+

(ii) a ≤ kb for some k ∈ [0, 1) whenever a ≤ α(a, b, b) or a ≤ α(b, a, b) or a ≤ α(b, b, a)
for all a, b ∈ R+.

Definition 1. A selfmap T on a metric space X is said to be an A-contraction
if it satisfies

d(Tx, Ty) ≤ α(d(x, y), d(x, Tx), d(y, Ty)) (1)

for all x, y ∈ X and some α ∈ A.

It was shown in [2] that the classes of contractions studied by Bianchini[3], Kan-
nan[5], Khan[6] and Reich[8] are all special cases of the A-contractions.

Definition 2. (See [3],[5],[6],[8]). Let X be a metric space. Then for all x, y ∈ X,
T : X −→ X is said to be
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(i) B-contraction if there exists a number b ∈ [0, 1) such that

d(Tx, Ty) ≤ bmax{d(x, Tx), d(y, Ty)}; (2)

(ii) K-contraction if there exists a number r ∈ [0, 1
2) such that

d(Tx, Ty) ≤ r[d(x, Tx) + d(y, Ty)]; (3)

(iii) M -contraction if there exists a number h ∈ [0, 1) such that

d(Tx, Ty) ≤ h
√

d(x, Tx)d(y, Ty); (4)

(iv) R-contraction if there exist nonnegative numbers a, b, c satisfying a + b + c ≤ 1
such that

d(Tx, Ty) ≤ ad(x, Tx) + bd(y, Ty) + cd(x, y); (5)

Theorems 1-4, and Example 1 of [2] can be summarized as follows.

Theorem 1. [2] Let X be a metric space. Then
(i) M-contractions and K-contractions are proper sub-classes of A-contractions,
(ii) Every B-contraction is an A-contraction and
(iii) Every R-contraction is an A-contraction.

The following fixed point theorems proved in [2] extended some of the results of
Ahmad and Rehman[1] to the A-contractions.

Theorem 2. [2] Let T be an A-contraction on a complete metric space X. Then
T has a unique fixed point in X such that the sequence {Tnx0} converges to the fixed
point, for any x0 ∈ X.

The purpose of this paper is to prove common fixed point theorems for two pairs
of weakly compatible selfmaps of X, satisfying a generalized A-contractive condition,
such that X need not be complete.

2.Main Results

Let F,G, S and T be selfmaps of a metric space X satisfying

SX ⊆ FX; TX ⊆ GX. (7)

Then for any point x0 ∈ X, we can find points x1, x2, x3 ..., all in X, such that

Sx0 = Fx1, Tx1 = Gx2, Sx2 = Fx3 . . ..
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Therefore, by induction, we can define a sequence {yn} in X as

yn =
{

Sxn = Fxn+1, when n is even
Txn = Gxn+1, when n is odd,

wheren = 0, 1, 2, . . ..

The following theorem establishes existence of coincidence and unique common
fixed point of F,G, S and T where the union of the ranges of F and G is required to
be complete. The set of coincidence points of T and F is denoted by C(T, F ), and
the set of natural numbers denoted by N.

Theorem 3. Let F, G, S and T be selfmaps of a metric space X satisfying (7)
and, for all x, y ∈ X,

d(Sx, Ty) ≤ α(d(Gx,Fy), d(Gx, Sx), d(Fy, Ty)), (8)

where α ∈ A. Suppose FX ∪GX is a complete subspace of X, then the sets C(T,F)
and C(S,G) are nonempty.
Suppose further that (T,F) and (S,G) are weakly compatible, then F, G, S and T
have a unique common fixed point.

Proof. Assuming n ∈ N is even, then

d(yn, yn+1) = d(Sxn, Txn+1)
≤ α(d(Gxn, Fxn+1), d(Gxn, Sxn), d(Fxn+1, Txn+1))
= α(d(yn−1, yn), d(yn−1, yn), d(yn, yn+1))

which implies d(yn, yn+1) ≤ kd(yn−1, yn).

On the other hand, assuming n ∈ N is odd,

d(yn, yn+1) = d(Txn, Sxn+1)
≤ α(d(Gxn+1, Fxn), d(Gxn+1, Sxn+1), d(Fxn, Txn))
= α(d(yn, yn−1), d(yn, yn+1), d(yn−1, yn)).

This means d(yn, yn+1) ≤ kd(yn−1, yn).
Thus whether n is odd or even, we have d(yn, yn+1) ≤ kd(yn−1, yn) for some k ∈
[0, 1).
Inductively,

d(yn, yn+1) ≤ kd(yn−1, yn) ≤ k2d(yn−2, yn−1) ≤ ... ≤ knd(y0, y1).
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That is, d(yn, yn+1) ≤ knd(y0, y1) for some k ∈ [0, 1). Hence {yn} is Cauchy in
X.
Observe that {yn} is contained in FX∪GX. Now since {yn} is Cauchy and FX∪GX
is complete, there exists a point p ∈ FX ∪GX such that limn→∞ yn = p.

Without loss of generality, let p ∈ GX. It means we can find a point q ∈ X such
that p = Gq. Putting x = q, y = xm, m odd, into (8) yields

d(Sq, Ty) ≤ α(d(Gq, Fxm), d(Gq, Sq), d(Fxm, Txm)),

i.e.,
d(Sq, ym) ≤ α(d(p, ym−1), d(p, Sq), d(ym−1, ym)).

Letting m →∞, recalling that α is continuous on R3
+, we obtain

d(Sq, p) ≤ α(d(p, p), d(p, Sq), d(p, p)).

That is, d(Sq, p) ≤ α(0, d(p, Sq), 0), which implies that d(Sq, p) ≤ k0 = 0.
Consequently, Sq = p.
From SX ⊆ FX we know that there exists a point u ∈ X such that Fu = Sq = p =
Gq.
Choosing x = q, y = u, (8) gives d(p, Tu) ≤ α(0, 0, d(p, Tu)) so that d(p, Tu) ≤
k0 = 0.
Hence, Fu = Tu = p = Sq = Gq. This proves the first part of the theorem.

Now suppose (F, T ) and (S, G) are weakly compatible pairs, then F and T com-
mute at u, and G and S commute at q so that

Fp = FFu = FTu = TFu = Tp and Sp = SSq = SGq = GSq = Gp. (9)

Now with x = p, y = u, (8) and (9) yield d(Sp, p) ≤ α(d(Sp, p), 0, 0), and this
implies d(Sq, p) ≤ k0 = 0. Therefore p = Sp = Gp.
In a similar way, letting x = y = p, (8) and (9) yield p = Tp = Fp.
Thus, Sp = Gp = p = Tp = Fp.

Finally, we show that p is unique in X.
Suppose p∗ is another common fixed point of the four maps. Then from (8),

x = p∗, y = p ⇒ d(Sp∗, Tp) ≤ α(d(Gp∗, Fp), d(Gp∗, Sp∗), d(Fp, Tp))
⇒ d(p∗, p) ≤ α(d(p∗, p), 0, 0)
⇒ d(p∗, p) ≤ k0 = 0

Hence, p∗ = p and this completes the proof.
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The following corollary is obtained by letting F = G in the preceding theorem.

Corrolary 1. Let F, S and T be selfmaps of a metric space X satisfying SX ∪
TX ⊆ FX and, for all x, y ∈ X,

d(Sx, Ty) ≤ α(d(Fx, Fy), d(Fx, Sx), d(Fy, Ty)),

where α ∈ A. Suppose FX is a complete subspace of X, then F, S and T have a
coincidence point.
Suppose further that F commutes with both S and T at this coincidence point, then
F, S and T have a unique common fixed point.

Choosing F to be the identity map of X in Corollary 1, the following result
follows immediately.

Corrolary 2. Let S and T be selfmaps of a complete metric space X satisfying

d(Sx, Ty) ≤ α(d(x, y), d(x, Sx), d(y, Ty)), for all x, y ∈ X,

where α ∈ A. Then S and T have a unique common fixed point.

Remarks.
1. It is clear that Theorem 2 can be obtained from Corollary 2 by letting T = S.
2. By virtue of Theorems 1 and 3, suppose α ∈ A and F,G, S, T are selfmaps of a
metric space X satisfying (7) and any of the following inequalities for all x, y ∈ X,

(i) d(Sx, Ty) ≤ bmax{d(Gx, Tx), d(Fy, Ty)} for some b ∈ [0, 1)
(ii) d(Sx, Ty) ≤ r[d(Gx, Sx) + d(Fy, Ty)] for some r ∈ [0, 1

2)
(iii) d(Sx, Ty) ≤ h

√
d(Gx, Tx)d(Fy, Ty) for some h ∈ [0, 1)

(iv) d(Sx, Ty) ≤ ad(Gx, Tx) + bd(Fy, Ty) + cd(Gx,Fy) for some nonnegative
numbers a, b, c satisfying a + b + c ≤ 1.

Then, F,G, S and T always have a unique common fixed point provided the pairs
(T, F ) and (S, G) are weakly compatible.

The following Example illustrates Theorem 3.

Example. Let X = [ 1
10 , 1], d(x, y) = |x−y|, α(a, b, c) = 1

4(a+b+c) for all a, b, c ∈
R+. It is clear that α is well-defined, for (i) α is continuous on R3

+, and (ii) a ≤ 2
3b

whenever a ≤ α(a, b, b) or a ≤ α(b, a, b) or a ≤ α(b, b, a) for all a, b ∈ R+.
Define the selfmaps S, G, T, F of X = [ 1

10 , 1] as follows

Sx =
{

1
10 if x = 1

10
3
20 if x > 1

10

, Gx =
{

1
10 if x = 1

10
3
10 if x > 1

10

,
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Ty =
{

1
10 if y = 1

10 or y > 1
4

3
10 if 1

10 < y ≤ 1
4 ,

Fy =


1
10 if y = 1

10
3
5 if 1

10 < y ≤ 1
4

y − 3
20 if y > 1

4 .

Clearly, SX = { 1
10 , 3

20}, GX = { 1
10 , 3

10}, TX = { 1
10 , 3

10}, SX = { 1
10} ∪ ( 1

10 , 17
20 ] =

[ 1
10 , 17

20 ]. We observe that condition (7) is satisfied, and FX ∪GX = [ 1
10 , 17

20 ] is com-
plete. To verify condition (8), we consider the six exhaustive cases below.

Case 1: When x = y = 1
10 , using (8), we have

| 1
10 −

1
10 | ≤ α(| 1

10 −
1
10 |, |

1
10 −

1
10 |, |

1
10 −

1
10 |) = α(0, 0, 0) = 0. True.

Case 2: x > 1
10 , y = 1

10 , using (8),
1
20 = | 3

20 −
1
10 | ≤ α(| 3

10 −
1
10 |, |

3
10 −

3
20 |, |

1
10 −

1
10 |) = α(1

5 , 3
10 , 0) = 1

8 . True.

Case 3: x = 1
10 , 1

10 < y ≤ 1
4 , using (8), 1

5 = | 1
10 −

3
10 | ≤ α(1

2 , 0, 3
10) = 1

5 . True.

Case 4: x > 1
10 , 1

10 < y ≤ 1
4 yields 3

20 = | 3
20 −

3
10 | = α( 3

10 , 3
20 , 3

10) = 3
16 . True.

Case 5: x = 1
10 , y > 1

4 gives 0 ≤ α(y− 1
4 , 0, y− 1

4) = 1
4(2y− 1

2), that is, 0 ≤ y− 1
4 . True.

Case 6: When x > 1
10 , y > 1

4 , we have 1
20 ≤ α(|y − 9

20 |,
3
20 , |y − 1

4 |) = 1
4(|y −

9
20 |+

3
20 + y − 1

4). That is, 3
10 ≤ y + |y − 9

20 |, which is true for y > 1
4 .

Moreover, it is obvious that C(T, F ) = C(S, G) = { 1
10}. Also, TF ( 1

10) = FT ( 1
10) =

1
10 and SG( 1

10) = GS( 1
10) = 1

10 . Thus, (T, F ) and (S, G) are weakly compatible pairs.
The four maps have a unique common fixed point 1

10 ∈ X.

Finally, we present the following generalization of Theorem 3.

Theorem 4. Let F, G, S and T be selfmaps of a metric space X, and let {Sn}∞n=1

and {Tn}∞n=1 be sequences on S and T satisfying

SnX ⊆ FX; Tn ⊆ GX, n = 1, 2, ... (7′)

and, for all x, y ∈ X,

d(Six, Tjy) ≤ α(d(Gx,Fy), d(Gx, Six), d(Fy, Tjy)), (8′)

where α ∈ A. Suppose FX ∪GX is a complete subspace of X, then for each n ∈ N,
(i) the sets C(F, Tn) and C(G, Sn) are nonempty.
Further, if Tn commutes with F and Sn commutes with G at their coincidence points,
then
(ii) F, G, Sn and Tn have a unique common fixed point.
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Proof. For any arbitrary x0 ∈ X and n = 0, 1, 2, ..., following a similar argument
as in the beginning of this section, we can define a sequence {y′n} in X as

y′n =
{

Snxn = Fxn+1, when n is even
Tnxn = Gxn+1, when n is odd.

Now for each i = 1, 3, 5, ... and j = 2, 4, 6, ..., from (8′) we have
d(y′i, y

′
i+1) ≤ kd(y′i−1, y

′
i) and d(y′j , y

′
j+1) ≤ kd(y′j−1, y

′
j). That is,

d(y′n, y′n+1) ≤ kd(y′n−1, y
′
n) n = 1, 2, 3, . . ..

By induction (as in the proof of Theorem 4), we have d(y′n, y′n+1) ≤ knd(y′0, y
′
1) for

some k ∈ [0, 1). Consequently, {y′n} is Cauchy in FX ∪GX, a complete subspace of
X.
The rest of the proof is similar to the corresponding part of the proof of Theorem 4.
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