ON L^{1}-CONVERGENCE OF THE R-TH DERIVATIVE OF COSINE SERIES WITH SEMI-CONVEX COEFFICIENTS

Xhevat Z. Krasniqi and Naim L. Braha

Abstract. We study L^{1}-convergence of $r-t h$ derivative of modified sine sums introduced by K. Kaur [2] and deduce some corollaries.

2000 Mathematics Subject Classification: 42A20, 42A32.

1. Introduction and Preliminaries

Let

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{k=1}^{\infty} a_{k} \cos k x \tag{1}
\end{equation*}
$$

be cosine trigonometric series with its partial sums denoted by $S_{n}(x)=\frac{a_{0}}{2}+$ $\sum_{k=1}^{n} a_{k} \cos k x$, and let $f(x)=\lim _{n \rightarrow \infty} S_{n}(x)$.

For convenience, in the following of this paper we shall assume that $a_{0}=0$.
A sequence $\left(a_{n}\right)$ is said to be semi-convex, or briefly $\left(a_{n}\right) \in(S C)$, if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, and

$$
\sum_{n=1}^{\infty} n\left|\Delta^{2} a_{n-1}+\Delta^{2} a_{n}\right|<\infty
$$

where $\Delta^{2} a_{k}=a_{k}-2 a_{k+1}+a_{k+2}$.
We shall generalize the class of sequences $(S C)$ in the following manner:
A sequence $\left(a_{n}\right)$ is said to be semi-convex of order $r,(r=0,1, \ldots)$ or $\left(a_{n}\right) \in$ $(S C)^{r}$, if $a_{n} \rightarrow 0$ as $n \rightarrow \infty$, and

$$
\sum_{n=1}^{\infty} n^{r+1}\left|\Delta^{2} a_{n-1}+\Delta^{2} a_{n}\right|<\infty
$$

It is clear that $(S C) \subset(S C)^{r},(r=1,2, \ldots)$ and $(S C) \equiv(S C)^{0}$.

Xh. Z. Krasniqi, N. L. Braha - On L^{1}-convergence of the r-th derivative of...
R. Bala and B. Ram [1] have proved that for series (1) with semi-convex null coefficients the following theorem holds true.

Theorem A. If $\left(a_{n}\right)$ is a semi-convex null sequence, then for the convergence of the cosine series (1) in the metric L^{1}, it is necessary and sufficient that $a_{n-1} \log n=$ $o(1), n \rightarrow \infty$.

Later on, K. Kaur [2] introduced new modified sine sums as

$$
K_{n}(x)=\frac{1}{2 \sin x} \sum_{k=1}^{n} \sum_{j=k}^{n}\left(\Delta a_{j-1}-\Delta a_{j+1}\right) \sin k x
$$

where $\Delta a_{j}=a_{j}-a_{j+1}$, and studied the L^{1}-convergence of this modified sine sum with semi-convex coefficients proving the following theorem.

Theorem B. Let $\left(a_{n}\right)$ be a semi-convex null sequence, then $K_{n}(x)$ converges to $f(x)$ in L^{1}-norm.

The main goal of the present work is to study the L^{1}-convergence of $r-t h$ derivative of these new modified sine sums with semi-convex null coefficients of order r and to deduce the sufficient condition of Theorem A and Theorem B as corollaries.

As usually with $D_{n}(x)$ and $\tilde{D}_{n}(x)$ we shall denote the Dirichlet and its conjugate kernels defined by

$$
D_{n}(x)=\frac{1}{2}+\sum_{k=1}^{n} \cos k x, \quad \tilde{D}_{n}(x)=\sum_{k=1}^{n} \sin k x .
$$

Everywhere in this paper the constants in the O-expression denote positive constants and they may be different in different relations.

To prove the main results we need the following lemmas:
Lemma 1. ([3]) For the r-th derivatives of the Dirichlet's kernels $D_{n}(x)$ and $\tilde{D}_{n}(x)$ the following estimates hold
(1) $\left\|D_{n}^{(r)}(x)\right\|_{L^{1}}=\frac{4}{\pi} n^{r} \log n+O\left(n^{r}\right), r=0,1,2, \ldots$
(2) $\left\|\tilde{D}_{n}^{(r)}(x)\right\|_{L^{1}}=O\left(n^{r} \log n\right), r=0,1,2, \ldots$

Xh. Z. Krasniqi, N. L. Braha - On L^{1}-convergence of the r-th derivative of...

Lemma 2. If $x \in[\epsilon, \pi-\epsilon], \epsilon \in(0, \pi)$ and $m \in N$, then the following estimate holds

$$
\left|\left(\frac{\tilde{D}_{m}(x)}{2 \sin x}\right)^{(r)}\right|=O_{r, \epsilon}\left(m^{r+1}\right), \quad(r=0,1,2 \ldots)
$$

where $O_{r, \epsilon}$ depends only on r and ϵ.
Proof. By Leibniz formula we have

$$
\begin{align*}
\left(\frac{\tilde{D}_{m}(x)}{2 \sin x}\right)^{(r)} & =\sum_{i=0}^{r}\binom{r}{i}\left(\frac{1}{2 \sin x}\right)^{(r-i)}\left(\tilde{D}_{m}(x)\right)^{(i)} \\
& =\sum_{i=0}^{r}\binom{r}{i}\left(\frac{1}{2 \sin x}\right)^{(r-i)} \sum_{j=1}^{m} j^{i} \sin \left(j x+\frac{i \pi}{2}\right) \\
& =O(1) m^{r+1} \sum_{i=0}^{r}\binom{r}{i}\left(\frac{1}{2 \sin x}\right)^{(r-i)} . \tag{2}
\end{align*}
$$

We shall prove by mathematical induction the equality $\left(\frac{1}{2 \sin x}\right)^{(\tau)}=\frac{P_{\tau}(\cos x)}{\sin ^{\tau+1} x}$, where P_{τ} is a cosine polynomial of degree τ.

Namely, we have $\left(\frac{1}{2 \sin x}\right)^{\prime}=\frac{(-1 / 2) \cos x}{\sin ^{2} x}=\frac{P_{1}(\cos x)}{\sin ^{2} x}$, so that for $\tau=1$ the above equality is true.

Assume that the equality $F(x):=\left(\frac{1}{2 \sin x}\right)^{(\tau)}=\frac{P_{\tau}(\cos x)}{\sin ^{\tau+1} x}$ holds. For the $(\tau+1)-t h$ derivative of $\frac{1}{2 \sin x}$ we get

$$
\begin{align*}
& F^{\prime}(x):= \\
= & \frac{\left(-\sin ^{\tau+2} x\right) P_{\tau}^{\prime}(\cos x)-(r+1) P_{\tau}(\cos x) \sin ^{\tau} x \cos x}{\sin ^{2 \tau+2} x} \\
= & \frac{\left(-\sin ^{2} x\right) P_{\tau}^{\prime}(\cos x)-(\tau+1) P_{\tau}(\cos x) \cos x}{\sin ^{\tau+2} x} \\
= & \frac{\left(\cos ^{2} x-1\right) P_{\tau}^{\prime}(\cos x)-(\tau+1) P_{\tau}(\cos x) \cos x}{\sin ^{\tau+2} x} \\
= & \frac{P_{\tau+1}(\cos x)}{\sin ^{\tau+2} x}, \tag{3}
\end{align*}
$$

where $P_{\tau+1}(\cos x)$, is a cosine polynomial of the degree $\tau+1$.
Therefore for $x \in[\epsilon, \pi-\epsilon], \epsilon>0$, from (2) dhe (3) we obtain

$$
\left|\left(\frac{\tilde{D}_{m}(x)}{2 \sin x}\right)^{(r)}\right|=O(1) m^{r+1} \sum_{i=0}^{r}\binom{r}{i} \frac{\left|P_{r-i}(\cos x)\right|}{\sin ^{r-i+1} x}=O_{r, \epsilon}\left(m^{r+1}\right) .
$$

Xh. Z. Krasniqi, N. L. Braha - On L^{1}-convergence of the r-th derivative of...

2.Main Results

At the begining we prove the following result:
Theorem 1. Let $\left(a_{n}\right)$ be a semi-convex null sequence of order r, then $K_{n}^{(r)}(x)$ converges to $g^{(r)}(x)$ in L^{1}-norm.

Proof. We have

$$
\begin{aligned}
K_{n}(x) & =\frac{1}{2 \sin x} \sum_{k=1}^{n} \sum_{j=k}^{n}\left(\Delta a_{j-1}-\Delta a_{j+1}\right) \sin k x \\
& =\frac{1}{2 \sin x}\left[\sum_{k=1}^{n}\left(a_{k-1}-a_{k+1}\right) \sin k x-\left(a_{n}-a_{n+2}\right) \tilde{D}_{n}(x)\right]
\end{aligned}
$$

Applying Abel's transformation (see [4], p. 17), we get

$$
\begin{aligned}
K_{n}(x) & =\frac{1}{2 \sin x} \sum_{k=1}^{n}\left(\Delta a_{k-1}-\Delta a_{k+1}\right) \tilde{D}_{k}(x) \\
& =\frac{1}{2 \sin x} \sum_{k=1}^{n}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) \tilde{D}_{k}(x)
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
K_{n}^{(r)}(x)=\sum_{k=1}^{n}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right)\left(\frac{\tilde{D}_{k}(x)}{2 \sin x}\right)^{(r)} \tag{4}
\end{equation*}
$$

On the other side we have

$$
\begin{align*}
S_{n}(x) & =\frac{1}{\sin x} \sum_{k=1}^{n} a_{k} \cos k x \sin x=\frac{1}{2 \sin x} \sum_{k=1}^{n} a_{k}[\sin (k+1) x-\sin (k-1) x] \\
& =\frac{1}{2 \sin x} \sum_{k=1}^{n}\left(a_{k-1}-a_{k+1}\right) \sin k x+a_{n+1} \frac{\sin n x}{2 \sin x}+a_{n} \frac{\sin (n+1) x}{2 \sin x} \\
& =\frac{1}{2 \sin x} \sum_{k=1}^{n}\left(\Delta a_{k-1}+\Delta a_{k}\right) \sin k x+a_{n+1} \frac{\sin n x}{2 \sin x}+a_{n} \frac{\sin (n+1) x}{2 \sin x} \tag{5}
\end{align*}
$$

Xh. Z. Krasniqi, N. L. Braha - On L^{1}-convergence of the r-th derivative of...

Applying Abel's transformation to the equality (5) we get

$$
\begin{aligned}
S_{n}(x)=\sum_{k=1}^{n} & \left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right) \frac{\tilde{D}_{k}(x)}{2 \sin x} \\
& +\left(a_{n}-a_{n+2}\right) \frac{\tilde{D}_{n}(x)}{2 \sin x}+a_{n+1} \frac{\sin n x}{2 \sin x}+a_{n} \frac{\sin (n+1) x}{2 \sin x} .
\end{aligned}
$$

Thus

$$
\begin{align*}
S_{n}^{(r)}(x)= & \sum_{k=1}^{n}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right)\left(\frac{\tilde{D}_{k}(x)}{2 \sin x}\right)^{(r)}+\left(a_{n}-a_{n+2}\right)\left(\frac{\tilde{D}_{n}(x)}{2 \sin x}\right)^{(r)} \\
& +a_{n+1}\left(\frac{\sin n x}{2 \sin x}\right)^{(r)}+a_{n}\left(\frac{\sin (n+1) x}{2 \sin x}\right)^{(r)} \tag{6}
\end{align*}
$$

By Lemma 1 and since $\left(a_{n}\right)$ is semi-convex null sequence of order r, we have

$$
\begin{align*}
& \left|\left(a_{n}-a_{n+2}\right)\left(\frac{\tilde{D}_{n}(x)}{2 \sin x}\right)^{(r)}\right| \\
= & O_{r, \epsilon}\left(\left|(n+1)^{r+1}\left(a_{n}-a_{n+2}\right)\right|\right)=O_{r, \epsilon}\left(\left|(n+1)^{r+1} \sum_{k=n}^{\infty}\left(\Delta a_{k}-\Delta a_{k+2}\right)\right|\right) \\
= & O_{r, \epsilon}\left(\left|(n+1)^{r+1} \sum_{k=n+1}^{\infty}\left(\Delta a_{k-1}-\Delta a_{k+1}\right)\right|\right) \\
= & O_{r, \epsilon}\left(\sum_{k=n+1}^{\infty} k^{r+1}\left|\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right|\right)=o(1), n \rightarrow \infty \tag{7}
\end{align*}
$$

Also after some elementary calculations and by virtue of Lemma 2 we obtain

$$
\begin{gathered}
a_{n+1}\left(\frac{\sin n x}{2 \sin x}\right)^{(r)}+a_{n}\left(\frac{\sin (n+1) x}{2 \sin x}\right)^{(r)}= \\
=a_{n+1}\left[\left(\frac{\tilde{D}_{n}(x)}{2 \sin x}\right)^{(r)}-\left(\frac{\tilde{D}_{n-1}(x)}{2 \sin x}\right)^{(r)}\right]+a_{n}\left[\left(\frac{\tilde{D}_{n+1}(x)}{2 \sin x}\right)^{(r)}-\left(\frac{\tilde{D}_{n}(x)}{2 \sin x}\right)^{(r)}\right] \\
=a_{n+1} O_{r, \epsilon}\left(n^{r+1}+(n-1)^{r+1}\right)+a_{n} O_{r, \epsilon}\left((n+1)^{r+1}+n^{r+1}\right) \\
=O_{r, \epsilon}\left((n+1)^{r+1}\left(a_{n}+a_{n+1}\right)\right)
\end{gathered}
$$

Xh. Z. Krasniqi, N. L. Braha - On L^{1}-convergence of the r-th derivative of...

$$
\begin{gather*}
=O_{r, \epsilon}\left((n+1)^{r+1}\left[\left(a_{n}-a_{n+2}\right)+\left(a_{n+1}-a_{n+3}\right)+\left(a_{n+2}-a_{n+4}\right)+\cdots\right]\right) \\
=O_{r, \epsilon}\left(\sum_{k=n+1}^{\infty} k^{r+1}\left|\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right|+\sum_{k=n+2}^{\infty} k^{r+1}\left|\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right|+\cdots\right)=o(1), n \rightarrow \infty . \tag{8}
\end{gather*}
$$

Because of (7) and (8), when we pass on limit as $n \rightarrow \infty$ to (4) and (6) we get

$$
\begin{align*}
g^{(r)}(x) & =\lim _{n \rightarrow \infty} S_{n}^{(r)}(x) \\
& =\lim _{n \rightarrow \infty} K_{n}^{(r)}(x)=\sum_{k=1}^{\infty}\left(\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right)\left(\frac{\tilde{D}_{k}(x)}{2 \sin x}\right)^{(r)} \tag{9}
\end{align*}
$$

Using Lemma 2, from (4) and (9) we have

$$
\begin{aligned}
& \int_{-\pi}^{\pi}\left|g^{(r)}(x)-K_{n}^{(r)}(x)\right| d x \\
= & 2 \int_{0}^{\pi} \sum_{k=n+1}^{\infty}\left|\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right|\left|\left(\frac{\tilde{D}_{k}(x)}{2 \sin x}\right)^{(r)}\right| d x \\
= & O_{r, \epsilon}\left(\sum_{k=n+1}^{\infty} k^{r+1}\left|\Delta^{2} a_{k-1}+\Delta^{2} a_{k}\right|\right)=o(1), n \rightarrow \infty,
\end{aligned}
$$

which fully proves the Theorem 1.
Remark 1. If we replace $r=0$ in Theorem 1 we get Theorem B.
Corollary 1. Let $\left(a_{n}\right) \in(S C)^{r}$, then the sufficient condition for L^{1}-convergence of the $r-t h$ derivative of the series (1) is $n^{r} a_{n} \log n=o(1)$, as $n \rightarrow \infty$.

Proof. We have

$$
\left\|g^{(r)}(x)-S_{n}^{(r)}(x)\right\| \leq\left\|g^{(r)}(x)-K_{n}^{(r)}(x)\right\|+\left\|K_{n}^{(r)}(x)-S_{n}^{(r)}(x)\right\|
$$

Xh. Z. Krasniqi, N. L. Braha - On L^{1}-convergence of the r-th derivative of...

$$
\begin{aligned}
&= o(1)+\left\|\left(a_{n}-a_{n+2}\right)\left(\frac{\tilde{D}_{n}(x)}{2 \sin x}\right)^{(r)}\right\| \\
&+\left\|a_{n+1}\left(\frac{\sin n x}{2 \sin x}\right)^{(r)}+a_{n}\left(\frac{\sin (n+1) x}{2 \sin x}\right)^{(r)}\right\| \quad \\
&\left.\left.\quad \begin{array}{ll}
\leq & \\
\leq & o(1)+a_{n}\left\|\tilde{D}_{n}^{(r)}(x)\right\| \\
= & o(1)+O\left(n^{r} a_{n} \log n\right)=o(1) .
\end{array} \quad \text { (by (b) } 7\right)\right) \\
& \quad \text { (by Lemma 1) }
\end{aligned}
$$

Remark 2. If we replace $r=0$ in Corollary 1 we get the sufficient condition of Theorem A.

Acknowledgments: The authors would like to thank the anonymous referee for his/her valuable comments and suggestions to improve this article.

References

[1] Bala R. and Ram B., Trigonometric series with semi-convex coefficients, Tamkang J. Math. 18 (1) (1987), 75-84.
[2] Kaur K., Bhatia S. S., and Ram B., Integrability and L^{1}-convergence of modified sine sums, Georgian Math. J. 11, No. 1, (2004), 99-104.
[3] S. Sheng, The extension of the theorems of C. V. Stanojević and V. B. Stanojević, Proc. Amer. Math. Soc. 110 (1990), 895-904.
[4] Bary K. N., Trigonometric series, Moscow, (1961)(in Russian).
Xhevat Z. Krasniqi
Faculty of Education
University of Prishtina
Agim Ramadani St., Prishtinë, 10000, Kosova
email: xheki00@hotmail.com
Naim L. Braha
Department of Mathematics and Computer Sciences
University of Prishtina
Avenue "Mother Theresa " 5, Prishtinë, 10000, Kosova
email: nbraha@yahoo.com

