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SOME APPLICATIONS OF FRACTIONAL CALCULUS
OPERATORS TO CERTAIN SUBCLASS OF ANALYTIC

FUNCTIONS WITH NEGATIVE COEFFICIENTS

B.A. Frasin

Abstract. The object of the present paper is to derive various distortion theo-
rems for fractional calculus and fractional integral operators of functions in the class
BT(j, λ, α) consisting of analytic and univalent functions with negative coefficients.
Furthermore, some of integral operators of functions in the class BT(j, λ, α) is shown.
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1.Introduction and definitions

Let A(j) denote the family of functions of the form:

f(z) = z +
∞∑

n=j+1

anzn (j ∈ N = {1, 2, 3, · · · }), (1)

which are analytic in the open unit disk U = {z : |z| < 1}. A function f(z)
belonging to A(j) is in the class B(j, λ, α) if and only if

Re
{

zf ′(z) + (2λ2 − λ)z2f ′′(z)
4(λ− λ2)z + (2λ2 − λ)zf ′(z) + (2λ2 − 3λ + 1)f(z)

}
> α (2)

for some α(0 ≤ α < 1) and λ(0 ≤ λ < 1), and for all z ∈ U.
Let T(j) denote the subclass of A(j) consisting of functions of the form:

f(z) = z −
∞∑

n=j+1

anzn (an ≥ 0, j ∈ N), (3)

Further, we define the class BT(j, λ, α) by

BT(j, λ, α) = B(j, λ, α) ∩ T(j). (4)
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The class BT(j, λ, α) was introduced and studied by the author in [3]. The
class BT(j, λ, α) is of special interest because it reduces to various classes of well-
known functions as well as many new ones. For example The classes BT(1, 0, α) =
T∗(α) and BT(1, 1, α) = C(α) were first studied by Silverman [10]. The classes
BT(j, 0, α) = T∗α(j) and BT(j, 1, α) = Cα(j) were studied Srivastava et al. [13]. The
class BT(1, 1/2, α) = BT(α) was studied by Gupta and Jain [4].

In order to show our results, we shall need the following lemma.
Lemma 1. ([3]) Let the function f(z) be defined by (3). Then f(z) ∈ BT(j, λ, α)

if and only if

∞∑
n=j+1

σ(n, α, λ)an ≤ 1− α, (5)

where

σ(n, α, λ) := (2λ2 − λ)n2 + [1 + (1 + α)(λ− 2λ2)]n + (1 + 2λ2 − 3λ)α (6)

and 0 ≤ α < 1, 0 ≤ λ < 1. The result is sharp.

2.Fractional calculus

Many essentially equivalent definitions of fractional calculus (that is fractional
derivatives and fractional integrals) have been given in the literature (cf., e.g., [1],
[2, Chap. 13], [5],[7], [8], [9], [11, p.28 et. seq.]. We find it to be convenient to recall
here the following definitions which are used earlier by Owa [6] (and, subsequently,
by Srivastava and Owa [12]).

Definition 1. The fractional integral of order µ is defined, for a function f(z),
by

D−µ
z f(z) =

1
Γ(µ)

z∫
0

f(ζ)
(z − ζ)1−µ

dζ, (7)

where µ > 0, f(z) is an analytic function in a simply-connected region of the z-plane
containing the origin, and the multiplicity of (z− ζ)1−µ is removed by requiring log
(z − ζ) to be real when z − ζ > 0.

Definition 2. The fractional derivative of order µ is defined, for a function
f(z), by

Dµ
z f(z) =

1
Γ(1− µ)

d

dz

z∫
0

f(ζ)
(z − ζ)µ

dζ, (8)
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where 0 ≤ µ < 1, f(z) is an analytic function in a simply-connected region of the
z-plane containing the origin, and the multiplicity of (z − ζ)−µ is removed as in
Definition 1 above.

Definition 3. Under the hypotheses of Definition 2, the fractional derivative of
order n + µ is defined by

Dn+µ
z f(z) =

dn

dzn
Dµ

z f(z), (9)

where 0 ≤ µ < 1 and n ∈ N0 = {0, 1, 2, . . .}.
We begin by proving

Theorem 1. If f(z) ∈ BT (j, λ, α), then

∣∣D−µ
z f(z)

∣∣ ≥ |z|1+µ

Γ(2 + µ)

{
1− (1− α)Γ(j + 2)Γ(2 + µ)

σ(j + 1, α, λ)Γ(j + 2 + µ)
|z|j

}
(10)

and

∣∣D−µ
z f(z)

∣∣ ≤ |z|1+µ

Γ(2 + µ)

{
1 +

(1− α)Γ(j + 2)Γ(2 + µ)
σ(j + 1, α, λ)Γ(j + 2 + µ)

|z|j
}

, (11)

for µ > 0 and z ∈ U. The results (10) and (11) are sharp.

Proof . Define the function G(z)by

G(z) = Γ(2 + µ)z−µD−µ
z f(z)

= z −
∞∑

n=j+1

Γ(n + 1)Γ(2 + µ)
Γ(n + 1 + µ)

anzn

= z −
∞∑

n=j+1

Ψ(n)anzn,

where

Ψ(n) =
Γ(n + 1)Γ(2 + µ)

Γ(n + 1 + µ)
(n ≥ j + 1). (12)

It easy to see that

0 < Ψ(n) ≤ Ψ(j + 1) =
Γ(j + 2)Γ(2 + µ)

Γ(j + 2 + µ)
. (13)
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Furthermore, it follows from Lemma 1 that

∞∑
n=j+1

an ≤
1− α

σ(j + 1, α, λ)
, (14)

Therefore, by using (13) and (14), we can see that

|G(z)| ≥ |z|−Ψ(j +1) |z|j+1
∞∑

n=j+1

an ≥ |z|− (1− α)Γ(j + 2)Γ(2 + µ)
σ(j + 1, α, λ)Γ(j + 2 + µ)

|z|j+1 (15)

and

|G(z)| ≤ |z|+Ψ(j+1) |z|j+1
∞∑

n=j+1

an ≤ |z|+ (1− α)Γ(j + 2)Γ(2 + µ)
σ(j + 1, α, λ)Γ(j + 2 + µ)

|z|j+1 , (16)

which prove the inequalities of Theorem 1.
Finally, we can easily see that the results (10) and (11) are sharp for the function

f(z) given by

D−µ
z f(z) =

z1+µ

Γ(2 + µ)

{
1− (1− α)Γ(j + 2)Γ(2 + µ)

σ(j + 1, α, λ)Γ(j + 2 + µ)
zj

}
(17)

or
f(z) = z − 1− α

σ(j + 1, α, λ)
zj+1. (18)

Theorem 2. If f(z) ∈ BT (j, λ, α), then

|Dµ
z f(z)| ≥ |z|1−µ

Γ(2− µ)

{
1− (1− α)Γ(j + 2)Γ(2− µ)

σ(j + 1, α, λ)Γ(j + 2− µ)
|z|j

}
(19)

and

|Dµ
z f(z)| ≤ |z|1−µ

Γ(2− µ)

{
1 +

(1− α)Γ(j + 2)Γ(2− µ)
σ(j + 1, α, λ)Γ(j + 2− µ)

|z|j
}

, (20)

for 0 ≤ µ < 1 and z ∈ U. The results (19) and (20) are sharp.

Proof. Define the function H(z) by
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H(z) = Γ(2− µ)zµDµ
z f(z)

= z −
∞∑

n=j+1

Γ(n + 1)Γ(2− µ)
Γ(n + 1− µ)

anzn

= z −
∞∑

n=j+1

Φ(n)anzn,

where

Φ(n) =
Γ(n)Γ(2− µ)
Γ(n + 1− µ)

(n ≥ j + 1). (21)

It easy to see that

0 < Φ(n) ≤ Φ(j + 1) =
Γ(j + 1)Γ(2− µ)

Γ(j + 2− µ)
. (22)

Consequently, with the aid of (14) and (22), we have

|H(z)| ≥ |z|−Φ(j+1) |z|j+1
∞∑

n=j+1

nan ≥ |z|− (1− α)Γ(j + 2)Γ(2− µ)
σ(j + 1, α, λ)Γ(j + 2− µ)

|z|j+1 (23)

and

|H(z)| ≤ |z|+ Φ(j + 1) |z|j+1
∞∑

n=j+1

nan ≤ |z|+ (1− α)Γ(j + 2)Γ(2− µ)
σ(j + 1, α, λ)Γ(j + 2− µ)

|z|j+1 .

(24)
Now (19) and (20) follow from (23) and (24), respectively.

Finally, by taking the function f(z) defined by

Dµ
z f(z) =

z1−µ

Γ(2− µ)

{
1− (1− α)Γ(j + 2)Γ(2− µ)

σ(j + 1, α, λ)Γ(j + 2− µ)
zj

}
(25)

or for the function given by (18), the results (19) and (20) are easily seen to be
sharp.

Remark 1. Letting µ = 0 in Theorem 1 and µ −→ 1 in Theorem 2, we shall
obtain the corresponding results Theorem 3 and Theorem 4 in [3].
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3.Fractional integral operator

We need the following definition of fractional integral operator given by Srivas-
tava et al. [14].

Definition 4. For real number η > 0, γ and δ, the fractional integral operator
Iη,γ,δ
0,z is defined by

Iη,γ,δ
0,z f(z) =

z−η−γ

Γ(η)

z∫
0

(z − t)η−1F (η + γ,−δ; η; 1− t/z)f(t)dt, (26)

where a function f(z) is analytic in a simply-connected region of the z-plane con-
taining the origin with the order

f(z) = O(|z|ε) (z −→ 0),

with ε > max{0, γ − δ} − 1.
Here F (a, b; c; z) is the Gauss hypergeometric function defined by

F (a, b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n(1)n
, (27)

where (ν)n is the Pochhammer symbol defined by

(ν)n =
Γ(ν + k)

Γ(ν)
=

{
1 (n = 0)
ν(ν + 1)(ν + 2) · · · (ν + n− 1) (n ∈ N)

(28)

and the multiplicity of (z− t)η−1 is removed by requiring log (z− t) to be real when
z − t > 0.

Remark 2. For γ = −η, we note that

Iη,−η,δ
0,z f(z) = D−η

z f(z).

In order to prove our result for the fractional integral operator, we have to recall
here the following lemma due to Srivastava et al. [14].

Lemma 2. If η > 0 and n > γ − δ − 1, then

Iη,γ,δ
0,z zn =

Γ(n + 1)Γ(n− γ + δ + 1)
Γ(n− γ + 1)Γ(n + η + δ + 1)

zn−γ . (29)

With aid of Lemma 2., we prove
Theorem 3. Let η > 0, γ > 2, η + δ > −2, γ − δ < 2, γ(η + δ) ≤ η(j + 2), and

j ∈ N. If f(z) ∈ BT (j, λ, α), then
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∣∣∣Iη,γ,δ
0,z f(z)

∣∣∣ ≥ Γ(2− γ + δ) |z|1−γ

Γ(2− γ)Γ(2 + η + δ)

{
1− (1− α)(2− γ + δ)j(2)j

σ(j + 1, α, λ)(2− γ)j(2− γ + δ)j
|z|j

}
(30)

and

∣∣∣Iη,γ,δ
0,z f(z)

∣∣∣ ≤ Γ(2− γ + δ) |z|1−γ

Γ(2− γ)Γ(2 + η + δ)

{
1 +

(1− α)(2− γ + δ)j(2)j

σ(j + 1, α, λ)(2− γ)j(2− γ + δ)j
|z|j

}
(31)

for z ∈ U0, where

U0 =
{

U (γ ≤ 1),
U−{0} (γ > 1).

(32)

The equalities in (30) and (31) are attained for the function f(z) given by (18).
Proof . By using Lemma 2, we have

Iη,γ,δ
0,z f(z) =

Γ(2− γ + δ)
Γ(2− γ)Γ(2 + η + δ)

z1−γ

= −
∞∑

n=j+1

Γ(n + 1)Γ(n− γ + δ + 1)
Γ(n− γ + 1)Γ(n + η + δ + 1)

anzn−γ (z ∈ U0).

Letting

Ω(z) =
Γ(2− γ)Γ(2 + η + δ)

Γ(2− γ + δ)
zγIη,γ,δ

0,z f(z)

= z −
∞∑

n=j+1

∆(n)anzn, (33)

where

∆(n) =
(2− γ + δ)n−1(2)n−1

(2− γ)n−1(2 + γ + δ)n−1
(n ≥ j + 1), (34)

we can see that the function ∆(n) is non-increasing for integers n ≥ j + 1, then we
have

0 < ∆(n) ≤ ∆(j + 1) =
(2− γ + δ)j(2)j

(2− γ)j(2 + γ + δ)j
. (35)

129



B.A. Frasin - Some applications of fractional calculus operators...

Therefore, by using (14) and (35), we have

|Ω(z)| ≥ |z| −∆(j + 1) |z|j+1
∞∑

n=j+1

an

≥ |z| − (1− α)(2− γ + δ)j(2)j

σ(j + 1, α, λ)(2− γ)j(2 + γ + δ)j
|z|j+1

and

|Ω(z)| ≤ |z|+ ∆(j + 1) |z|j+1
∞∑

n=j+1

an

≤ |z|+ (1− α)(2− γ + δ)j(2)j

σ(j + 1, α, λ)(2− γ)j(2 + γ + δ)j
|z|j+1

for z ∈ U0, where U0 is defined by (32). This completes the proof of Theorem 3.
Remark 3. Taking γ = −η in Theorem 3, we get the result of Theorem 1.

4.Integral operators

Theorem 4. Let the functions f(z) defined by (3) be in the class BT (j, λ, α),
and c be a real number such that c > −1. Then the function F (z) defined by

F (z) =
c + 1
zc

∫ z

0
tc−1f(t)dt (c > −1) (36)

also belonging to the class BT (j, λ, α).
Proof. From (36) we have

F (z) = z −
∞∑

n=j+1

(
c + 1
c + n

)
anzn.

Therefore,

∞∑
n=j+1

σ(n, α, λ)
(

c + 1
c + n

)
an ≤

∞∑
n=j+1

σ(n, α, λ)an ≤ 1− α,

since f(z) ∈ BT (j, λ, α). Hence, by Lemma 1, F (z) ∈ BT (j, λ, α).
Theorem 5. Let the function
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F (z) = z −
∞∑

n=j+1

anzn (an ≥ 0)

be in the class BT (j, λ, α) and let c be a real number such that c > −1. Then the
function given by (36) is univalent in |z| < R∗, where

R∗ = R∗(n, α, c) = inf
n

[
σ(n, α, λ)(c + 1)
n(1− α)(c + n)

]1/(n−1)

(n ≥ 2). (37)

The result is sharp, with the function f(z) given by

f(z) = z − (1− α)(c + n)
σ(n, α, λ)(c + 1)

zn (n ≥ 2). (38)

Proof. From (36), we have

f(z) =
z1−c(zcF (z))′

c + 1
= z −

∞∑
n=j+1

(
c + n

c + 1

)
anzn.

In order to obtain the required result, it suffices to show that
|f ′(z)− 1| < 1 whenever |z| < R∗, where R∗ is given by (37). Now

∣∣f ′(z)− 1
∣∣ ≤ ∞∑

n=j+1

n(c + n)
c + 1

an |z|n−1 .

Thus |f ′(z)− 1| < 1 if

∞∑
n=j+1

n(c + n)
c + 1

an |z|n−1 < 1. (39)

But from Lemma 1, (39) will be satisfied if

n(c + n)
c + 1

an |z|n−1 <
σ(n, α, λ)

1− α
, (40)

that is, if

|z| ≤
[
σ(n, α, λ)(c + 1)
n(1− α)(c + n)

]1/(n−1)

(n ≥ 2). (41)

Therefore, f(z) is univalent in |z| < R∗.
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