# SOME CHARACTERIZATIONS OF FILED PRODUCT OF QUASI-ANTIORDERS 

Daniel A. Romano


#### Abstract

It is known that the filed product of two quasi-antiorders need not to be a quasi-antiorder. After some preparations, we give some sufficient conditions in order that the filed product of two quasi-antiorder relations on the same set is a quasi-antiorder again.


2000Mathematics Subject Classification: Primary 03F65, Secondary 04A05, 08A02
Keywords and phrases: Constructive mathematics, set with apartness, quasiantiorder, commutativity properties of filled product

## 1. Introduction

Issues of commuting relations on sets draw attention for more years. Many authors are investigated commuting properties of equivalences, orders and quasi-orders ([4]-[12], [14], [15], [20]-[23]).

Setting of this article is the Constructive Mathematics, mathematics based on the Intuitionistic Logic, in the sense of books [1]-[3] and [13]. One of important relations in Constructive Mathematics is quasi-antiorder relation. For relation $R$ in set $(X,=, \neq)$ with apartness we say that it is a quasi-antiorder relation on $X$ if satisfies the following conditions:

$$
R \subseteq \neq(\text { consistency }) \text { and } R \subseteq R * R \text { (cotransitivity) }
$$

where the operation "*", the filled operation between relations $R$ and $S$ on set $X$, is defined by

$$
S * R=\{(x, y) \in X \times X:(\forall t \in X)((x, t) \in R \vee(t, y) \in S)\}
$$

This author investigated characteristics of this relation in several of his papers, for example in [16]-[19].

In this article we investigate one of commuting problems of these relations. If $R$ and $S$ are quasi-antiorders, then their filed products need not to be quasi-antiorders again, in general case. After some preparations, we give some sufficient conditions in order that the filed product of two quasi-antiorder relations on the same set is a quasi-antiorder again.

## 2. A few basic facts on relations

As usual, a subset $R$ of a product set $X^{2}=X \times X$ is called a relation on $X$. In particular, the relation $\triangle=\{(x, x): x \in X\}$ is called the identity relation on $X$, and $\nabla=\left\{(x, y) \in X^{2}: x \neq y\right\}$ is the diversity relation on $X$. If $R$ is a relation on $X$, and moreover $x \in X$, then the sets $x R=\{y \in X:(x, y) \in R\}$ and $R x=\{z \in X:(z, x) \in R\}$ are called left and right classes of $R$ generated by the element $x$. The relation $R=\left\{(y, x) \in X^{2}:(x, y) \in R\right\}$ is the inverse of $R$ and denoted by $R^{-1}$. Moreover, if $R$ and $S$ are relations on $X$, then the filled product of $R$ and $S$ are defined by the usual way as the relation

$$
S * R=\{(x, y) \in X 2:(\forall t \in X)((x, t) \in R \vee(t, y) \in S)\}
$$

Since the filled product is associative, in particular, for all natural number $n \geq 2$, we put ${ }^{n} R=R *{ }^{(n-1)} R={ }^{(n-1)} R * R$ and ${ }^{1} R=R$ and ${ }^{0} R=\nabla$. A relation $R$ on $X$ is called:
(1) consistent if $R \subseteq \nabla$,
(2) cotransitive if $R \subseteq R * R$ and
(3) linear if $\nabla \subseteq R \cup R^{-1}$.

Moreover, a consistent and cotransitive relation is called a quasi-antiorder relation, and a linear quasi-antiorder relation is called an anti-order relation on set $X$. A consistent, symmetric and cotransitive relation is called a coequivality relation on $X$. For any relation $R$ on $X$, we define $c(R)=\bigcap\left\{{ }^{n} R: n \in \mathbf{N} \cup\{0\}\right\}$. Thus, $c(R)$ is the biggest quasi-antiorder relation on $X$ contained in $R$ (see, for example [16] or [19]).

For undefined notions and notations we refer on articles [16]-[19].

## 3. Characterizations of filed products

Theorem 1. If $R$ and $S$ are relations on $X$, then the following assertions are equivalent:
(1) $S * R \subseteq R * S$;
(2) $x R \cup S y=X$ implies $x S \cup R y=X$ for all $x, y \in X$.

Proof: To check this, note that for any $x, y \in X$ we have

$$
\begin{aligned}
(x, y) \in S * R & \Longleftrightarrow(\forall t \in X)((x, t) \in R \vee(t, y) \in S) \\
& \Longleftrightarrow(\forall t \in X)(t \in x R \cup S y) \\
& \Longleftrightarrow x R \cup S y=X,
\end{aligned}
$$

and similarly $(x, y) \in R * S \Longleftrightarrow x S \cup R y=X$.
Now, as some immediate consequences of Theorem 1, we can also state:
Colorallary 1. If $R$ is a relation on $X$, then the following assertions are equivalent: (1) $R^{-1} * R \subseteq R * R^{-1}$;
(2) $x R \cup y R=X$ implies $R x \cup R y=X$ for all $x, y \in X$.

Concerning cotransitive relations we can prove:
Theorem 2. If $R$ and $S$ are cotransitive relations on $X$ such that $S * R \subseteq R * S$, then $R * S$ is also a cotransitive relation on $X$.

Proof: We evidently have

$$
R * S \subseteq(R * R) *(S * S)=R *(R * S) * S \subseteq R *(S * R) * S=(R * S) *(R * S)
$$

The following example shows that commuting property for cotransitive relations need not be satisfies.

Example: If $X=\{1,2,3\}$, and moreover

$$
\begin{aligned}
R & =\{(1,1),(2,1),(2,2),(3,1),(3,2),(3,3)\} \text { and } \\
S & =\{(1,1),(2,1),(2,2),(2,3),(3,1),(3,3)\},
\end{aligned}
$$

then it can be easily seen that $R$ and $S$ are cotransitive relations on $X$. We have that

$$
\begin{aligned}
& S * R=\{(1,1),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)\} \\
& R * S=\{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2)\}
\end{aligned}
$$

and $S * R$ and $R * S$ are also cotransitive relations on $X$, but $\neg(S * R \subseteq R * S)$ and $\neg(R * S \subseteq S * R)$.

## 4. Characterizations of filed product OF QUASI-ANTIORDERS

Despite example above, as a partial case, we can still prove:

Theorem 3. If $R$ and $S$ are quasi-antiorders on $X$, then the following assertions are equivalent:
(1) $S * R \subseteq R * S$;
(2) $R * S$ is a quasi-antiorder;
(3) $R * S=c(R \cap S)$.

Proof: Since $R * S \subseteq \nabla * \nabla=\nabla$, by Theorem 2 it is clear that the implication $(1) \Longrightarrow(2)$ is true. Moreover, by the corresponding properties of the operation $c$, (see, for example, [17]) it is clear that $c(R \cap S) \subseteq c(R)=R$ and $c(R \cap S) \subseteq c(S)=S$, and hence $c(R \cap S)=c(R \cap S) * c(R \cap S) \subseteq R * S$.

On the other hand, by the consistency of the relations $R$ and $S$, it is clear that $R * S \subseteq \nabla * S=S$ and $R * S \subseteq R * \nabla=R$, and thus $R * S \subseteq R \cap S$. Since $c(R \cap S)$ is the biggest quasi-antiorder relation under $R \cap S$, we have to $R * S \subseteq c(R \cap S)$. Therefore, the implication $(2) \Longrightarrow(3)$ is also true.

Finally, from the inclusion $c(R \cap S) \subseteq R * S$ established above, it is clear that $S * R=c(S \cap R)=c(R \cap S) \subseteq R * S$. Therefore, the implication (3) $\Longrightarrow(1)$ is also true.

The following example shows that the equality cannot be stated in Theorem 3 .

Example If $X=\{1,2,3\}$, and moreover

$$
\begin{aligned}
R & =\{((1,3),(2,1),(2,3),(3,1),(3,2)\} \\
S & =\{(1,2),(1,3),(2,1),(2,3),(3,2)\}
\end{aligned}
$$

then it can be easily seen that $R$ and $S$ are quasi-antiorders on $X$ such that $S * R=$ $\{(1,3),(2,1),(2,3),(3,2)\}$ is a quasi-antiorder on $X$ and $R * S=\{(1,3),(2,1),(2,3)\}$ is not a quasi-antiorder $X$, but $R * S \subset S * R$.

Now, as an immediate consequence of Theorem 3, we can also state:
Colorallary 2. If $R$ is a quasi-antiorder on $X$, then the following assertions are equivalent :
(1) $R^{-1} * R \subseteq R * R^{-1}$;
(2) $R * R^{-1}$ is a quasi-antiorder;
(3) $R * R^{-1}=c\left(R \cap R^{-1}\right)$

In addition to Theorem 3, it is also worth proving the following:
Theorem 4. If $R$ is a consistent relation and $S$ is a quasi-antiorder on $X$, then the following assertions are equivalent:
(1) $S \subseteq R$;
(2) $S=R * S$;
(3) $S=S * R$.

Proof. Suppose that the assertion (1) holds. Then it is clear that $S \subseteq S * S \subseteq$ $R * S \subseteq \nabla * S=S$ and $S=S * S \subseteq S * R \subseteq S * \nabla=S$. Therefore, (2) and (3) also hold. Opposite, assume that condition (2) or (3) holds. Thus, we have $S=R * S \subseteq R * \nabla=R$, or $S=S * R \subseteq \nabla * R=R$. Therefore, the implications (2) $\Longrightarrow(1)$ and (3) $\Longrightarrow$ (1) are also true.

Now, as an immediate consequence of the above theorem, we can also state:
Colorallary 3. If $R$ is a consistent relation and $S$ is a cotransitive relation on $X$ such that $S \subseteq R$, then $R * S=S * R$.

Proof: Note that now $S \subseteq R \subseteq \nabla$ also holds. Therefore, by Theorem 4, we have $R * S=S=S * R$.

Aknowledgement: This paper is partially supported by the Ministry of science and technology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina.

## References

[1] E. Bishop, Foundations of constructive analysis; McGraw-Hill, New York 1967.
[2] D. S. Bridges and F. Richman, Varieties of constructive mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987
[3] D. S. Bridges and L.S.Vita, Techniques of constructive analysis, Springer, New York 2006
[4] T. Britz, M. Mainetti, and L. Pezzoli, Some operations on the family of equivalence relations, In: Algebraic Combinatorics and Computer Science, H. Crapo and D. Senato, Eds., Springer-Verlag, 2001, pp. 445-460.
[5] P.Dubriel and M.L.Dubriel-Jacotin: Theorie algebraique des relations d'equivalences; J.Math. Pures Appl. 18 (9)(1939), 63-95
[6] D. Finberg, M. Mainetti, and G.-C. Rota, The logic of commuting equivalence relations, In: Logic and Algebra, Lecture Notes in Pure and Applied mathematics, Vol. 180, A. Ursini and P. Agliano, Eds., Decker, 1996, pp. 69-96.
[7] T. Glavosits, Generated preorders and equivalences, Acta Acad. Paed. Agriensis, Sect. Math. 29 (2002), 95-103.
[8] T. Glavosits, Preorders and equivalences generated by commuting relations; Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 18 (2002), 53-56
[9] T. Glavosits and A. Szaz, Decompositions of commuting relations, Acta Math. Inform. Univ. Ostrava 11 (2003), 25-28.
[10] T.Glavosist and A.Szaz, Characterizations of commuting relations; Acta Mathematica Universitatis Ostraviensis, 12 (2004), 23-31
[11] M.Jovanović, A Note on union of equivalence relations; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 11(2000), 100-102
[12] Matteo Mainetti, Symmetric Operations on Equivalence Relations, Annals of Combinatorics, Vol. 7(3)(2003), 325-348
[13] R. Mines, F. Richman and W. Ruitenburg: A Course of constructive algebra; Springer-Verlag, New York 1988
[14] O. Ore, Theory of equivalence relations, Duke Math. J. 9 (1942), 573-627.
[15] G. Pataki and A. Szaz, A unified treatment of well-chainedness and connectedness properties; Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 19 (2003), 101-165
[16] D.A.Romano, On construction of maximal coequality relation and its applications; In : Proceedings of 8th international conference on Logic and Computers Sciences "LIRA '97", Novi Sad, September 1-4, 1997, (Editors: R.Tošić and Z.Budimac), Institute of Mathematics, Novi Sad 1997, 225-230
[17] D.A.Romano, Some relations and subsets of semigroup with apartness generated by the principal consistent subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13(2002), 7-25
[18] D.A.Romano, A note on quasi-antiorder in semigroup; Novi Sad J. Math., 37(1)(2007), 3-8
[19] D.A.Romano, An isomorphism theorem for anti-ordered sets; Filomat, 22(1)(2008), 145-160
[20] F. Sik, Uber Charakterisierung kommutativer, Zerlegungen Spisy vyd. pfirod. fak. Masarykovy univ. 1954/3, 97-102.
[21] A. Szaz, Relations refining and dividing each other, Pure Math. Appl. 6 (1995), 385-394
[22] Catherine Huafei Yan, Distributive laws for commuting equivalence relations, Discrete Mathematics, 181(1-3)(1998), 295-298
[23] Catherine Huafei Yan, Commuting quasi-order relations, Discrete Mathematics, 183(1-3)(1998), 285-292

Daniel Abraham Romano Faculty of Education Bijeljina, East Sarajevo University, 76300 Bijeljina, Semberskih Ratara Street, Bosnia and Herzegovina, e-mail: bato49@hotmail.com

