SOME CHARACTERIZATIONS OF FILED PRODUCT OF QUASI-ANTIORDERS

DANIEL A. ROMANO

ABSTRACT It is known that the filed product of two quasi-antiorders need not to be a quasi-antiorder. After some preparations, we give some sufficient conditions in order that the filed product of two quasi-antiorder relations on the same set is a quasi-antiorder again.

2000 Mathematics Subject Classification: Primary 03F65, Secondary 04A05, 08A02

Keywords and phrases: Constructive mathematics, set with apartness, quasiantiorder, commutativity properties of filled product

1. INTRODUCTION

Issues of commuting relations on sets draw attention for more years. Many authors are investigated commuting properties of equivalences, orders and quasi-orders ([4]-[12], [14], [15], [20]-[23]).

Setting of this article is the Constructive Mathematics, mathematics based on the Intuitionistic Logic, in the sense of books [1]-[3] and [13]. One of important relations in Constructive Mathematics is quasi-antiorder relation. For relation Rin set $(X, =, \neq)$ with apartness we say that it is a quasi-antiorder relation on X if satisfies the following conditions:

 $R \subseteq \neq$ (consistency) and $R \subseteq R * R$ (cotransitivity),

where the operation "*", the filled operation between relations R and S on set X, is defined by

$$S * R = \{(x, y) \in X \times X : (\forall t \in X) ((x, t) \in R \lor (t, y) \in S)\}.$$

This author investigated characteristics of this relation in several of his papers, for example in [16]-[19].

In this article we investigate one of commuting problems of these relations. If R and S are quasi-antiorders, then their filed products need not to be quasi-antiorders again, in general case. After some preparations, we give some sufficient conditions in order that the filed product of two quasi-antiorder relations on the same set is a quasi-antiorder again.

2. A Few basic facts on relations

As usual, a subset R of a product set $X^2 = X \times X$ is called a relation on X. In particular, the relation $\Delta = \{(x, x) : x \in X\}$ is called the identity relation on X, and $\nabla = \{(x, y) \in X^2 : x \neq y\}$ is the diversity relation on X. If R is a relation on X, and moreover $x \in X$, then the sets $xR = \{y \in X : (x, y) \in R\}$ and $Rx = \{z \in X : (z, x) \in R\}$ are called left and right classes of R generated by the element x. The relation $R = \{(y, x) \in X^2 : (x, y) \in R\}$ is the inverse of R and denoted by R^{-1} . Moreover, if R and S are relations on X, then the filled product of R and S are defined by the usual way as the relation

$$S * R = \{ (x, y) \in X2 : (\forall t \in X) ((x, t) \in R \lor (t, y) \in S) \}.$$

Since the filled product is associative, in particular, for all natural number $n \ge 2$, we put ${}^{n}R = R * {}^{(n-1)}R = {}^{(n-1)}R * R$ and ${}^{1}R = R$ and ${}^{0}R = \nabla$. A relation R on X is called:

- (1) consistent if $R \subseteq \nabla$,
- (2) cotransitive if $R \subseteq R * R$ and
- (3) linear if $\nabla \subseteq R \cup R^{-1}$.

Moreover, a consistent and cotransitive relation is called a *quasi-antiorder* relation, and a linear quasi-antiorder relation is called an *anti-order relation* on set X. A consistent, symmetric and cotransitive relation is called a *coequivality* relation on X. For any relation R on X, we define $c(R) = \bigcap\{{}^{n}R : n \in \mathbb{N} \cup \{0\}\}$. Thus, c(R)is the biggest quasi-antiorder relation on X contained in R (see, for example [16] or [19]).

For undefined notions and notations we refer on articles [16]-[19].

3. CHARACTERIZATIONS OF FILED PRODUCTS

Theorem 1. If R and S are relations on X, then the following assertions are equivalent:

(1) $S * R \subseteq R * S$; (2) $xR \cup Sy = X$ implies $xS \cup Ry = X$ for all $x, y \in X$. Proof: To check this, note that for any $x, y \in X$ we have $(x, y) \in S * R \iff (\forall t \in X)((x, t) \in R \lor (t, y) \in S)$ $\iff (\forall t \in X)(t \in xR \cup Sy)$ $\iff xR \cup Sy = X,$

and similarly $(x, y) \in R * S \iff xS \cup Ry = X$. \Box

Now, as some immediate consequences of Theorem 1, we can also state:

Colorallary 1. If R is a relation on X, then the following assertions are equivalent: (1) $R^{-1} * R \subseteq R * R^{-1}$;

(2) $xR \cup yR = X$ implies $Rx \cup Ry = X$ for all $x, y \in X$.

Concerning cotransitive relations we can prove:

Theorem 2. If R and S are cotransitive relations on X such that $S * R \subseteq R * S$, then R * S is also a cotransitive relation on X.

Proof: We evidently have

$$R * S \subseteq (R * R) * (S * S) = R * (R * S) * S \subseteq R * (S * R) * S = (R * S) * (R * S).$$

The following example shows that commuting property for cotransitive relations need not be satisfies.

Example: If $X = \{1, 2, 3\}$, and moreover

$$R = \{(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)\} \text{ and } S = \{(1,1), (2,1), (2,2), (2,3), (3,1), (3,3)\},\$$

then it can be easily seen that R and S are cotransitive relations on X. We have that

$$\begin{split} S*R &= \{(1,1),(1,3),(2,1),(2,3),(3,1),(3,2),(3,3)\},\\ R*S &= \{(1,1),(1,2),(2,1),(2,2),(2,3),(3,1),(3,2)\}, \end{split}$$

and S * R and R * S are also cotransitive relations on X, but $\neg(S * R \subseteq R * S)$ and $\neg(R * S \subseteq S * R)$.

4. Characterizations of filed product of quasi-antiorders

Despite example above, as a partial case, we can still prove:

Theorem 3. If R and S are quasi-antiorders on X, then the following assertions are equivalent:

(1) $S * R \subseteq R * S$;

(2) R * S is a quasi-antiorder;

 $(3) R * S = c(R \cap S).$

Proof: Since $R * S \subseteq \nabla * \nabla = \nabla$, by Theorem 2 it is clear that the implication $(1) \Longrightarrow (2)$ is true. Moreover, by the corresponding properties of the operation c, (see, for example, [17]) it is clear that $c(R \cap S) \subseteq c(R) = R$ and $c(R \cap S) \subseteq c(S) = S$, and hence $c(R \cap S) = c(R \cap S) * c(R \cap S) \subseteq R * S$.

On the other hand, by the consistency of the relations R and S, it is clear that $R * S \subseteq \nabla * S = S$ and $R * S \subseteq R * \nabla = R$, and thus $R * S \subseteq R \cap S$. Since $c(R \cap S)$ is the biggest quasi-antiorder relation under $R \cap S$, we have to $R * S \subseteq c(R \cap S)$. Therefore, the implication (2) \Longrightarrow (3) is also true.

Finally, from the inclusion $c(R \cap S) \subseteq R * S$ established above, it is clear that $S * R = c(S \cap R) = c(R \cap S) \subseteq R * S$. Therefore, the implication (3) \Longrightarrow (1) is also true. \Box

The following example shows that the equality cannot be stated in Theorem 3.

Example If $X = \{1, 2, 3\}$, and moreover

 $R = \{((1,3), (2,1), (2,3), (3,1), (3,2)\}$ $S = \{(1,2), (1,3), (2,1), (2,3), (3,2)\},\$

then it can be easily seen that R and S are quasi-antiorders on X such that $S * R = \{(1,3), (2,1), (2,3), (3,2)\}$ is a quasi-antiorder on X and $R * S = \{(1,3), (2,1), (2,3)\}$ is not a quasi-antiorder X, but $R * S \subset S * R$.

Now, as an immediate consequence of Theorem 3, we can also state:

Colorallary 2. If R is a quasi-antiorder on X, then the following assertions are equivalent :

(1) $R^{-1} * R \subseteq R * R^{-1};$ (2) $R * R^{-1}$ is a quasi-antiorder; (3) $R * R^{-1} = c(R \cap R^{-1})$

In addition to Theorem 3, it is also worth proving the following:

Theorem 4. If R is a consistent relation and S is a quasi-antiorder on X, then the following assertions are equivalent:

(1) $S \subseteq R;$ (2) S = R * S;(3) S = S * R. Proof. Suppose that the assertion (1) holds. Then it is clear that $S \subseteq S * S \subseteq R * S \subseteq \nabla * S = S$ and $S = S * S \subseteq S * R \subseteq S * \nabla = S$. Therefore, (2) and (3) also hold. Opposite, assume that condition (2) or (3) holds. Thus, we have $S = R * S \subseteq R * \nabla = R$, or $S = S * R \subseteq \nabla * R = R$. Therefore, the implications (2) \implies (1) and (3) \implies (1) are also true. \square

Now, as an immediate consequence of the above theorem, we can also state:

Colorallary 3. If R is a consistent relation and S is a cotransitive relation on X such that $S \subseteq R$, then R * S = S * R.

Proof: Note that now $S \subseteq R \subseteq \nabla$ also holds. Therefore, by Theorem 4, we have R * S = S = S * R. \Box

Aknowledgement: This paper is partially supported by the Ministry of science and technology of the Republic of Srpska, Banja Luka, Bosnia and Herzegovina.

References

[1] E. Bishop, *Foundations of constructive analysis*; McGraw-Hill, New York 1967.

[2] D. S. Bridges and F. Richman, Varieties of constructive mathematics, London Mathematical Society Lecture Notes 97, Cambridge University Press, Cambridge, 1987

[3] D. S. Bridges and L.S.Vita, *Techniques of constructive analysis*, Springer, New York 2006

[4] T. Britz, M. Mainetti, and L. Pezzoli, Some operations on the family of equivalence relations, In: Algebraic Combinatorics and Computer Science, H. Crapo and D. Senato, Eds., Springer-Verlag, 2001, pp. 445-460.

[5] P.Dubriel and M.L.Dubriel-Jacotin: *Theorie algebraique des relations d'equivalences*; J.Math. Pures Appl. 18 (9)(1939), 63-95

[6] D. Finberg, M. Mainetti, and G.-C. Rota, *The logic of commuting equivalence relations*, In: Logic and Algebra, Lecture Notes in Pure and Applied mathematics, Vol. 180, A. Ursini and P. Agliano, Eds., Decker, 1996, pp. 69-96.

[7] T. Glavosits, *Generated preorders and equivalences*, Acta Acad. Paed. Agriensis, Sect. Math. 29 (2002), 95-103.

[8] T. Glavosits, Preorders and equivalences generated by commuting relations; Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 18 (2002), 53-56

[9] T. Glavosits and A. Szaz, *Decompositions of commuting relations*, Acta Math. Inform. Univ. Ostrava 11 (2003), 25-28. [10] T.Glavosist and A.Szaz, *Characterizations of commuting relations*; Acta Mathematica Universitatis Ostraviensis, 12 (2004), 23-31

[11] M.Jovanović, A Note on union of equivalence relations; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 11(2000), 100-102

[12] Matteo Mainetti, Symmetric Operations on Equivalence Relations, Annals of Combinatorics, Vol. 7(3)(2003), 325-348

[13] R. Mines, F. Richman and W. Ruitenburg: A Course of constructive algebra; Springer-Verlag, New York 1988

[14] O. Ore, Theory of equivalence relations, Duke Math. J. 9 (1942), 573-627.

[15] G. Pataki and A. Szaz, A unified treatment of well-chainedness and connectedness properties; Acta Math. Acad. Paedagog. Nyhazi. (N.S.) 19 (2003), 101-165

[16] D.A.Romano, On construction of maximal coequality relation and its applications; In : Proceedings of 8th international conference on Logic and Computers Sciences "LIRA '97", Novi Sad, September 1-4, 1997, (Editors: R.Tošić and Z.Budimac), Institute of Mathematics, Novi Sad 1997, 225-230

[17] D.A.Romano, Some relations and subsets of semigroup with apartness generated by the principal consistent subset; Univ. Beograd, Publ. Elektroteh. Fak. Ser. Math, 13(2002), 7-25

[18] D.A.Romano, A note on quasi-antiorder in semigroup; Novi Sad J. Math., 37(1)(2007), 3-8

[19] D.A.Romano, An isomorphism theorem for anti-ordered sets; Filomat, 22(1)(2008), 145-160

[20] F. Sik, *Uber Charakterisierung kommutativer*, Zerlegungen Spisy vyd. pfirod. fak. Masarykovy univ. 1954/3, 97-102.

[21] A. Szaz, *Relations refining and dividing each other*, Pure Math. Appl. 6 (1995), 385-394

[22] Catherine Huafei Yan, Distributive laws for commuting equivalence relations, Discrete Mathematics, 181(1-3)(1998), 295 - 298

[23] Catherine Huafei Yan, *Commuting quasi-order relations*, Discrete Mathematics, 183(1-3)(1998), 285 - 292

Daniel Abraham Romano Faculty of Education Bijeljina, East Sarajevo University, 76300 Bijeljina, Semberskih Ratara Street, Bosnia and Herzegovina, e-mail: bato49@hotmail.com