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Abstract. In this paper, we drive several interesting subordination results for
a new class of analytic function defined by the integral operator Js,b defined in terms
of the Hurwitz–Lerch Zeta function.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let A denote the class of functions f of the form:

f(z) = z +
∞∑

k=2

akz
k, (1.1)

which are analytic in the open unit disc U = {z : |z| < 1}. A function f ∈ A is
said to be in the class S∗(α) of starlike functions of order α, if satisfies the following
inequality

Re
(

zf ′(z)
f(z)

)
> α (0 ≤ α < 1; z ∈ U). (1.2)

Also denote by K the class of functions f ∈ A which are convex in U. Given
two functions f and g in the class A, where f is given by (1.1) and g is given by

g (z) = z +
∞∑

k=2

bkz
k. The Hadamard product ( or convolution ) (f ∗ g)(z) is defined

by

(f ∗ g)(z) = z +
∞∑

k=2

akbkz
k = (g ∗ f)(z) (z ∈ U). (1.3)

If f and g are analytic functions in U , we say that f is subordinate to g, written
f ≺ g if there exists a Schwarz function w, which (by definition) is analytic in U
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with w(0) = 0 and |w(z)| < 1 for all z ∈ U, such that f(z) = g(w(z)), z ∈
U. Furthermore, if the function g is univalent in U, then we have the following
equivalence (cf., e.g., [3] and [14]):

f(z) ≺ g(z) (z ∈ U) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

We begin our investigation by recalling that the general Hurwitz-Lerch Zeta
function Φ(z, s, a) defined by ( see [4])

Φ(z, s, b) =
∞∑

k=0

zk

(k + b)s
, (1.4)

(b ∈ C\Z−
0 = {0,−1,−2, ...}; Z−

o = Z\N, (Z =
{
0,+− 1,+− 2, ...

}
;

N = {1, 2, 3, ...}); s ∈ C when |z| < 1;R{s} > 1 when |z| = 1).

Some interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, b) can be found in [5], [10], [11], [13] and [19].

Recently, Srivastava and Attiya [18] introduced the linear operator
Js,b : A → A, defined in terms of the Hadamard product, by

Js,b(f)(z) = Gs,b(z) ∗ f(z) (z ∈ U ; b ∈ C\Z−
0 ; s ∈ C),= z +

∞∑
k=2

(
1 + b

k + b

)s

akz
k,

(1.5)
where, for convenience,

Gs,b(z) = (1 + b)s[Φ(z, s, b)− b−s] (z ∈ U). (1.6)

We note that:
(i) J1,0(f)(z) = J [f ](z) ( see Alexander [1]);
(ii) J1,v(f)(z) = Jvf(z) (v > −1; z ∈ U) (see [2], [9], [12]);
(iii) Jγ,β(f)(z) = P γ

β f(z) (γ ≥ 0;β > 1; z ∈ U) (see Patel and Sahoo [15] );
(iv) Jγ,1(f)(z) = Iγf(z) (γ > 0; z ∈ U) (see Jung et al. [8]);
(v) Jn,0(f)(z) = Inf(z) (n ∈ N0 = N ∪ {0}) (see Salagean [16]).

For some α (0 ≤ α < 1), b (b ∈ C\Z−
o ), s ∈ C and for all z ∈ U, let S∗

s,b(α)
denote the subclass of A consisting of functions f(z) of the form (1.1) and satisfying
the condition:

Re
(

z(Js,bf(z))′

Js,bf(z)

)
> α. (1.7)
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The class S∗
s,b(α) was intreduce and studied by Răducanu and Srivastava [7].

Definition 1 ( Subordinating Factor Sequence ) [20]. A sequence {bk}∞k=1 of complex
numbers is said to be a subordinating factor sequence if, whenever f of the form (1.1)
is analytic, univalent and convex in U, we have the subordination given by

∞∑
k=1

bkakz
k ≺ f(z) ( z ∈ U ; a1 = 1 ). (1.8 )

2. Main result

Unless otherwise mentioned, we shall assume in the reminder of this paper that,
0 ≤ α < 1, b ∈ C\Z−

o , s ∈ C and z ∈ U.
To prove our main results we need the following lemmas.
Lemma 1 [20]. The sequence {bk}∞k=1 is a subordinating factor sequence if and only
if

Re

{
1 + 2

∞∑
k=1

bkz
k

}
> 0. (2.1)

Lemma 2 [7]. If f(z) ∈ A satisfy the following inequality:

∞∑
k=2

(k − α)
∣∣∣∣(1 + b

k + b

)s∣∣∣∣ |ak| ≤ 1− α, (2.2)

then f(z) ∈ S∗
s,b(α).

Let S∗∗
s,b(α) denote the class of functions f(z) ∈ A whose coefficients satisfy the

condition (2.2). We note that S∗∗
s,b(α) ⊆ S∗

s,b(α).

Theorem 1. Let f ∈ S∗∗
s,b(α). Then

(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
(f ∗ g)(z) ≺ g(z) (2.3)

for every function g ∈ K, and

Re{f(z)} > − [|2 + b|s (1− α) + (2− α) |1 + b|s]
(2− α) |1 + b|s

. (2.4)

The constant
(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
is the best estimate.
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Proof. Let f ∈ S∗∗
s,b(α) and let g(z) = z +

∞∑
k=2

ckz
k ∈ K. Then we have

(2−α)|1+b|s
2[|2+b|s(1−α)+(2−α)|1+b|s](f ∗ g)(z) = (2−α)|1+b|s

2[|2+b|s(1−α)+(2−α)|1+b|s]

(
z +

∞∑
k=2

akckz
k

)
.

(2.5)
Thus, by Definition 1, the subordination result (2.3) will hold true if the sequence{

(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
ak

}∞
k=1

, (2.6)

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this is equiva-
lent to the following inequality:

Re

{
1 +

∞∑
k=1

(2− α) |1 + b|s

[|2 + b|s (1− α) + (2− α) |1 + b|s]
akz

k

}
> 0. (2.7)

Now, since

(k − α)
∣∣∣∣(1 + b

k + b

)s∣∣∣∣ ,
is an increasing function of k (k ≥ 2), we have

Re

{
1 +

∞∑
k=1

(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
akz

k

}

= Re

{
1 + (2−α)|1+b|s

[|2+b|s(1−α)+(2−α)|1+b|s]z + 1
[|2+b|s(1−α)+(2−α)|1+b|s]

∞∑
k=2

(2− α) |1 + b|s akz
k

}

≥ 1− (2−α)|1+b|s
[|2+b|s(1−α)+(2−α)|1+b|s]r−

1
|2+b|s(1−α)+(2−α)|1+b|s

∞∑
k=2

(k−α) |1 + b|s |ak| rk

> 1− (2−α)|1+b|s
[|2+b|s(1−α)+(2−α)|1+b|s]r −

(1−α)|2+b|s
[|2+b|s(1−α)+(2−α)|1+b|s]r = 1− r > 0 (|z| = r < 1),

where we have also made use of assertion (2.2) of Lemma 2. Thus (2.7) holds true in
U. This proves the inequality (2.3). The inequality (2.4) follows from (2.3) by taking

the convex function g(z) = z
1−z = z +

∞∑
k=2

zk ∈ K.

To prove the sharpness of the constant
(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
, we con-

sider the function f0(z) ∈ S∗∗
s,b(α) given by
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f0(z) = z − (1− α) |(2 + b)s|
(2− α) |(1 + b)s|

z2. (2.8)

Thus from (2.3), we have

(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
f0(z) ≺ z

1− z
. (2.9)

Moreover, it can easily be verified for the function f0(z) given by (2.8) that

min
|z|≤r

{
Re

(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
f0(z)

}
= −1

2
. (2.10)

.

This show that the constant
(2− α) |1 + b|s

2[|2 + b|s (1− α) + (2− α) |1 + b|s]
is the best possible.

This completes the proof of Theorem 1.

Putting s = 1 and b = 0 in Theorem 1, we obtain the following corollary:
Corollary 1. Let f defined by (1.1) be in the class S∗∗

1,0(α), g ∈ K, and satisfy the
condition

∞∑
k=2

k−1 (k − α) |ak| ≤ 1− α. (2.11)

Then

2− α

8− 6α
(f ∗ g)(z) ≺ g(z), (2.12)

and

Re{f(z)} > −4− 3α

2− α
. (2.13)

The constant
2− α

8− 6α
is the best estimate.

Putting s = 1 and b = v (v > −1) in Theorem 1, we obtain the following corollary:
Corollary 2. Let f defined by (1.1) be in the class S∗∗

1,v(α), g ∈ K, and satisfy the
condition

∞∑
k=2

(k − α)
(

1 + v

k + v

)
|ak| ≤ 1− α,

then
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(2− α) (1 + v)
2[(2 + v) (1− α) + (2− α) (1 + v)]

(f ∗ g)(z) ≺ g(z) (2.14)

and

Re{f(z)} > − [(2 + v) (1− α) + (2− α) (1 + v)]
(2− α) (1 + v)

. (2.15)

The constant
(2− α) (1 + v)

2[(2 + v) (1− α) + (2− α) (1 + v)]
is the best estimate.

Putting s = γ and b = β (γ ≥ 0, β > 1) in Theorem 1, we obtain the following
corollary:
Corollary 3. Let f defined by (1.1) be in the class S∗∗

γ,β(α), g ∈ K, and satisfy the
condition

∞∑
k=2

(k − α)
(

1 + β

k + β

)γ

|ak| ≤ 1− α, (2.16)

then

(2− α) (1 + β)γ

2[(2 + β)γ (1− α) + (2− α) (1 + β)γ ]
(f ∗ g)(z) ≺ g(z), (2.17)

and

Re{f(z)} > −(2 + β)γ (1− α) + (2− α) (1 + β)γ

(2− α) (1 + β)γ . (2.18)

The constant
(2− α) (1 + β)γ

2[(2 + β)γ (1− α) + (2− α) (1 + β)γ ]
is the best estimate.

Putting s = γ (γ > 0) and b = 1 in Theorem 1, we obtain the following corollary:
Corollary 4. Let f defined by (1.1) be in the class S∗∗

γ,1(α), g ∈ K, and satisfy the
condition

∞∑
k=2

(k − α)
(

2
k + 1

)γ

|ak| ≤ 1− α, (2.19)

then

(2− α)2γ

2[3γ(1− α) + (2− α)2γ ]
(f ∗ g)(z) ≺ g(z) (2.20)

and
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Re{f(z)} > −3γ(1− α) + (2− α)2γ

(2− α)2γ
. (2.21)

The constant
(2− α)2γ

2[3γ(1− α) + (2− α)2γ ]
is the best estimate.

Putting s = n (n ∈ N0) and b = 0 in Theorem 1, we obtain the following corollary:
Corollary 5. Let f defined by (1.1) be in the class S∗∗

n,0(α), g ∈ K, and satisfy the
condition

∞∑
k=2

k−n(k − α) |ak| ≤ 1− α, (2.22)

then

(2− α)
2[2n(1− α) + (2− α)]

(f ∗ g)(z) ≺ g(z) (2.23)

and

Re{f(z)} > − [2n(1− α) + (2− α)]
(2− α)

. (2.24)

The constant
(2− α)

2[2n(1− α) + (2− α)]
is the best estimate.

Remarks.
(i) Putting s = 0 in Theorem 1, we obtain the result obtained by Frasin [6,

Corollary 2.3 ];
(ii) Putting s = α = 0 in Theorem 1, we obtain the result obtained by Singh [17,

Corollary 2.2 ].
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