## SUBORDINATION RESULTS FOR A NEW CLASS OF ANALYTIC FUNCTIONS DEFINED BY HURWITZ-LERCH ZETA FUNCTION

M. K. Aouf, A. Shamandy, A. O. Mostafa and E. A. Adwan

Abstract. In this paper, we drive several interesting subordination results for a new class of analytic function defined by the integral operator $J_{s, b}$ defined in terms of the Hurwitz-Lerch Zeta function.

2000 Mathematics Subject Classification: 30C45.

## 1. Introduction

Let $A$ denote the class of functions $f$ of the form:

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k} \tag{1.1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z:|z|<1\}$. A function $f \in A$ is said to be in the class $S^{*}(\alpha)$ of starlike functions of order $\alpha$, if satisfies the following inequality

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\alpha \quad(0 \leq \alpha<1 ; z \in U) \tag{1.2}
\end{equation*}
$$

Also denote by $K$ the class of functions $f \in A$ which are convex in $U$. Given two functions $f$ and $g$ in the class $A$, where $f$ is given by (1.1) and $g$ is given by $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$. The Hadamard product ( or convolution ) $(f * g)(z)$ is defined by

$$
\begin{equation*}
(f * g)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}=(g * f)(z) \quad(z \in U) \tag{1.3}
\end{equation*}
$$

If $f$ and $g$ are analytic functions in $U$, we say that $f$ is subordinate to $g$, written $f \prec g$ if there exists a Schwarz function $w$, which (by definition) is analytic in $U$
with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z)), z \in$ $U$. Furthermore, if the function $g$ is univalent in $U$, then we have the following equivalence (cf., e.g., [3] and [14]):

$$
f(z) \prec g(z) \quad(z \in U) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

We begin our investigation by recalling that the general Hurwitz-Lerch Zeta function $\Phi(z, s, a)$ defined by ( see [4])

$$
\begin{gather*}
\Phi(z, s, b)=\sum_{k=0}^{\infty} \frac{z^{k}}{(k+b)^{s}},  \tag{1.4}\\
\left(b \in C \backslash Z_{0}^{-}=\{0,-1,-2, \ldots\} ; \mathbb{Z}_{o}^{-}=\mathbb{Z} \backslash \mathbb{N},\left(\mathbb{Z}=\left\{0,{ }_{-}^{+} 1,{ }_{-}^{+} 2, \ldots\right\} ;\right.\right. \\
\mathbb{N}=\{1,2,3, \ldots\}) ; s \in C \text { when }|z|<1 ; R\{s\}>1 \text { when }|z|=1) .
\end{gather*}
$$

Some interesting properties and characteristics of the Hurwitz-Lerch Zeta function $\Phi(z, s, b)$ can be found in [5], [10], [11], [13] and [19].

Recently, Srivastava and Attiya [18] introduced the linear operator $J_{s, b}: A \rightarrow A$, defined in terms of the Hadamard product, by

$$
\begin{equation*}
J_{s, b}(f)(z)=G_{s, b}(z) * f(z) \quad\left(z \in U ; b \in C \backslash Z_{0}^{-} ; s \in C\right),=z+\sum_{k=2}^{\infty}\left(\frac{1+b}{k+b}\right)^{s} a_{k} z^{k} \tag{1.5}
\end{equation*}
$$

where, for convenience,

$$
\begin{equation*}
G_{s, b}(z)=(1+b)^{s}\left[\Phi(z, s, b)-b^{-s}\right](z \in U) . \tag{1.6}
\end{equation*}
$$

We note that:
(i) $J_{1,0}(f)(z)=J[f](z)$ ( see Alexander [1]);
(ii) $J_{1, v}(f)(z)=J_{v} f(z) \quad(v>-1 ; z \in U)$ (see [2], [9], [12]);
(iii) $J_{\gamma, \beta}(f)(z)=P_{\beta}^{\gamma} f(z)(\gamma \geq 0 ; \beta>1 ; z \in U)$ (see Patel and Sahoo [15] );
(iv) $J_{\gamma, 1}(f)(z)=I^{\gamma} f(z)(\gamma>0 ; z \in U)$ (see Jung et al. [8]);
(v) $J_{n, 0}(f)(z)=I^{n} f(z)\left(n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right)$ (see Salagean [16]).

For some $\alpha(0 \leq \alpha<1), b\left(b \in \mathbb{C} \backslash \mathbb{Z}_{o}^{-}\right), s \in \mathbb{C}$ and for all $z \in U$, let $S_{s, b}^{*}(\alpha)$ denote the subclass of $A$ consisting of functions $f(z)$ of the form (1.1) and satisfying the condition:

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z\left(J_{s, b} f(z)\right)^{\prime}}{J_{s, b} f(z)}\right)>\alpha \tag{1.7}
\end{equation*}
$$

The class $S_{s, b}^{*}(\alpha)$ was intreduce and studied by Răducanu and Srivastava [7].
Definition 1 (Subordinating Factor Sequence) [20]. A sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ of complex numbers is said to be a subordinating factor sequence if, whenever $f$ of the form (1.1) is analytic, univalent and convex in $U$, we have the subordination given by

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{k} a_{k} z^{k} \prec f(z) \quad\left(z \in U ; a_{1}=1\right) . \tag{1.8}
\end{equation*}
$$

## 2. Main result

Unless otherwise mentioned, we shall assume in the reminder of this paper that, $0 \leq \alpha<1, b \in \mathbb{C} \backslash \mathbb{Z}_{o}^{-}, s \in \mathbb{C}$ and $z \in U$.
To prove our main results we need the following lemmas.
Lemma $1[20]$. The sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\operatorname{Re}\left\{1+2 \sum_{k=1}^{\infty} b_{k} z^{k}\right\}>0 \tag{2.1}
\end{equation*}
$$

Lemma 2 [7]. If $f(z) \in A$ satisfy the following inequality:

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha)\left|\left(\frac{1+b}{k+b}\right)^{s}\right|\left|a_{k}\right| \leq 1-\alpha \tag{2.2}
\end{equation*}
$$

then $f(z) \in S_{s, b}^{*}(\alpha)$.
Let $S_{s, b}^{* *}(\alpha)$ denote the class of functions $f(z) \in A$ whose coefficients satisfy the condition (2.2). We note that $S_{s, b}^{* *}(\alpha) \subseteq S_{s, b}^{*}(\alpha)$.

Theorem 1. Let $f \in S_{s, b}^{* *}(\alpha)$. Then

$$
\begin{equation*}
\frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]}(f * g)(z) \prec g(z) \tag{2.3}
\end{equation*}
$$

for every function $g \in K$, and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]}{(2-\alpha)|1+b|^{s}} \tag{2.4}
\end{equation*}
$$

The constant $\frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]}$ is the best estimate.

Proof. Let $f \in S_{s, b}^{* *}(\alpha)$ and let $g(z)=z+\sum_{k=2}^{\infty} c_{k} z^{k} \in K$. Then we have

$$
\begin{equation*}
\frac{(2-\alpha)|1+b|^{s}}{2\left[2+\left.b\right|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]}(f * g)(z)=\frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|{ }^{s}(1-\alpha)+\left.(2-\alpha)|1+b|\right|^{s}\right]}\left(z+\sum_{k=2}^{\infty} a_{k} c_{k} z^{k}\right) . \tag{2.5}
\end{equation*}
$$

Thus, by Definition 1, the subordination result (2.3) will hold true if the sequence

$$
\begin{equation*}
\left\{\frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} a_{k}\right\}_{k=1}^{\infty}, \tag{2.6}
\end{equation*}
$$

is a subordinating factor sequence, with $a_{1}=1$. In view of Lemma 1 , this is equivalent to the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{1+\sum_{k=1}^{\infty} \frac{(2-\alpha)|1+b|^{s}}{\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} a_{k} z^{k}\right\}>0 . \tag{2.7}
\end{equation*}
$$

Now, since

$$
(k-\alpha)\left|\left(\frac{1+b}{k+b}\right)^{s}\right|
$$

is an increasing function of $k(k \geq 2)$, we have

$$
\begin{gathered}
\operatorname{Re}\left\{1+\sum_{k=1}^{\infty} \frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} a_{k} z^{k}\right\} \\
=\operatorname{Re}\left\{1+\frac{(2-\alpha)|1+b|^{s}}{\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} z+\frac{1}{\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} \sum_{k=2}^{\infty}(2-\alpha)|1+b|^{s} a_{k} z^{k}\right\} \\
\geq 1-\frac{(2-\alpha)|1+b|^{s}}{\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} r-\frac{1}{|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}} \sum_{k=2}^{\infty}(k-\alpha)|1+b|^{s}|a| a_{k} \\
>1-\frac{(2-\alpha)|1+b|^{s}}{\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} r-\frac{(1-\alpha)|2+b|^{s}}{\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} r=1-r>0(|z|=r<1),
\end{gathered}
$$

where we have also made use of assertion (2.2) of Lemma 2. Thus (2.7) holds true in $U$. This proves the inequality (2.3). The inequality (2.4) follows from (2.3) by taking the convex function $g(z)=\frac{z}{1-z}=z+\sum_{k=2}^{\infty} z^{k} \in K$.
To prove the sharpness of the constant $\frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]}$, we consider the function $f_{0}(z) \in S_{s, b}^{* *}(\alpha)$ given by

$$
\begin{equation*}
f_{0}(z)=z-\frac{(1-\alpha)\left|(2+b)^{s}\right|}{(2-\alpha)\left|(1+b)^{s}\right|} z^{2} . \tag{2.8}
\end{equation*}
$$

Thus from (2.3), we have

$$
\begin{equation*}
\frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} f_{0}(z) \prec \frac{z}{1-z} . \tag{2.9}
\end{equation*}
$$

Moreover, it can easily be verified for the function $f_{0}(z)$ given by (2.8) that

$$
\begin{equation*}
\min _{|z| \leq r}\left\{\operatorname{Re} \frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]} f_{0}(z)\right\}=-\frac{1}{2} . \tag{2.10}
\end{equation*}
$$

This show that the constant $\frac{(2-\alpha)|1+b|^{s}}{2\left[|2+b|^{s}(1-\alpha)+(2-\alpha)|1+b|^{s}\right]}$ is the best possible. This completes the proof of Theorem 1.

Putting $s=1$ and $b=0$ in Theorem 1, we obtain the following corollary:
Corollary 1. Let $f$ defined by (1.1) be in the class $S_{1,0}^{* *}(\alpha), g \in K$, and satisfy the condition

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{-1}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha . \tag{2.11}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{2-\alpha}{8-6 \alpha}(f * g)(z) \prec g(z), \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{4-3 \alpha}{2-\alpha} \tag{2.13}
\end{equation*}
$$

The constant $\frac{2-\alpha}{8-6 \alpha}$ is the best estimate.
Putting $s=1$ and $b=v(v>-1)$ in Theorem 1, we obtain the following corollary: Corollary 2. Let $f$ defined by (1.1) be in the class $S_{1, v}^{* *}(\alpha), g \in K$, and satisfy the condition

$$
\sum_{k=2}^{\infty}(k-\alpha)\left(\frac{1+v}{k+v}\right)\left|a_{k}\right| \leq 1-\alpha,
$$

then

$$
\begin{equation*}
\frac{(2-\alpha)(1+v)}{2[(2+v)(1-\alpha)+(2-\alpha)(1+v)]}(f * g)(z) \prec g(z) \tag{2.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{[(2+v)(1-\alpha)+(2-\alpha)(1+v)]}{(2-\alpha)(1+v)} \tag{2.15}
\end{equation*}
$$

The constant $\frac{(2-\alpha)(1+v)}{2[(2+v)(1-\alpha)+(2-\alpha)(1+v)]}$ is the best estimate.
Putting $s=\gamma$ and $b=\beta(\gamma \geq 0, \beta>1)$ in Theorem 1, we obtain the following corollary:
Corollary 3. Let $f$ defined by (1.1) be in the class $S_{\gamma, \beta}^{* *}(\alpha), g \in K$, and satisfy the condition

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha)\left(\frac{1+\beta}{k+\beta}\right)^{\gamma}\left|a_{k}\right| \leq 1-\alpha, \tag{2.16}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{(2-\alpha)(1+\beta)^{\gamma}}{2\left[(2+\beta)^{\gamma}(1-\alpha)+(2-\alpha)(1+\beta)^{\gamma}\right]}(f * g)(z) \prec g(z), \tag{2.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{(2+\beta)^{\gamma}(1-\alpha)+(2-\alpha)(1+\beta)^{\gamma}}{(2-\alpha)(1+\beta)^{\gamma}} . \tag{2.18}
\end{equation*}
$$

The constant $\frac{(2-\alpha)(1+\beta)^{\gamma}}{2\left[(2+\beta)^{\gamma}(1-\alpha)+(2-\alpha)(1+\beta)^{\gamma}\right]}$ is the best estimate.
Putting $s=\gamma(\gamma>0)$ and $b=1$ in Theorem 1, we obtain the following corollary: Corollary 4. Let $f$ defined by (1.1) be in the class $S_{\gamma, 1}^{* *}(\alpha), g \in K$, and satisfy the condition

$$
\begin{equation*}
\sum_{k=2}^{\infty}(k-\alpha)\left(\frac{2}{k+1}\right)^{\gamma}\left|a_{k}\right| \leq 1-\alpha, \tag{2.19}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{(2-\alpha) 2^{\gamma}}{2\left[3^{\gamma}(1-\alpha)+(2-\alpha) 2^{\gamma}\right]}(f * g)(z) \prec g(z) \tag{2.20}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{3^{\gamma}(1-\alpha)+(2-\alpha) 2^{\gamma}}{(2-\alpha) 2^{\gamma}} \tag{2.21}
\end{equation*}
$$

The constant $\frac{(2-\alpha) 2^{\gamma}}{2\left[3^{\gamma}(1-\alpha)+(2-\alpha) 2^{\gamma}\right]}$ is the best estimate.
Putting $s=n\left(n \in \mathbb{N}_{0}\right)$ and $b=0$ in Theorem 1, we obtain the following corollary: Corollary 5. Let $f$ defined by (1.1) be in the class $S_{n, 0}^{* *}(\alpha), g \in K$, and satisfy the condition

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{-n}(k-\alpha)\left|a_{k}\right| \leq 1-\alpha, \tag{2.22}
\end{equation*}
$$

then

$$
\begin{equation*}
\frac{(2-\alpha)}{2\left[2^{n}(1-\alpha)+(2-\alpha)\right]}(f * g)(z) \prec g(z) \tag{2.23}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Re}\{f(z)\}>-\frac{\left[2^{n}(1-\alpha)+(2-\alpha)\right]}{(2-\alpha)} \tag{2.24}
\end{equation*}
$$

The constant $\frac{(2-\alpha)}{2\left[2^{n}(1-\alpha)+(2-\alpha)\right]}$ is the best estimate.

## Remarks.

(i) Putting $s=0$ in Theorem 1, we obtain the result obtained by Frasin [6, Corollary 2.3 ];
(ii) Putting $s=\alpha=0$ in Theorem 1, we obtain the result obtained by Singh [17, Corollary 2.2 ].

## References

[1] J.W. Alexander, Functions which map the interior of the unite circle upon simple regions, Annals of Math. (Series 2), 17 (1915),12-22.
[2] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135 (1969), 429-449.
[3] T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, 2005.
[4] J. Choi and H. M. Srivastava, Certain families of series associated with the Hurwitz-Lerch Zeta function, Appl. Math. Comput., 170 (2005), 399-409.
[5] C. Ferreira and J. L. Lopez, Asymptotic expansions of the Hurwitz-Lerch Zeta function, J. Math. Anal. Appl., 298 (2004), 210-224.
[6] B.A. Frasin, Subordination results for a class of analytic functions defined by a linear operator, J. Inequal. Pure Appl. Math., 7, no. 4 (2006), Art. 134, 1-7.
[7] D. Răducanu and H.M. Srivastava, A new class of analytic function defined by means of convolution operator involving the Hurwitz-Lerch Zeta function, Integral Transforms Spec. Funct., 18 (2007), 933-943.
[8] I. B. Jung, Y. C. Kim and H. M. Srivastava, The Hardy space of analytic functions associated with certain one-parameter families of integral operators, J. Math. Anal. Appl., 176 (1993), 138-147.
[9] R. J. Libera, Some classes of regular univalent functions, Proc. Amer. Math. Soc., 16 (1969), 755-758.
[10] S.-D. Lin and H. M. Srivastava, Some families of the Hurwitz-Lerch Zeta functions and associated fractional dervative and other integral representations, Appl. Math. Comput., 154 (2004), 725-733.
[11] S.-D.Lin, H. M. Srivastava and P.-Y. Wang, Some expansion formulas for a class of generalized Hurwitz-Lerch Zeta functions, Integral Transforms Spec. Funct., 17 (2006), 817-827.
[12] A. E. Livingston, On the radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 17 (1966), 352-357.
[13] Q.-M. Luo and H. M. Srivastava, Some generalizations of the ApostolBernoulli and Apostol-Euler polynomials, J. Math. Anal. Appl., 308 (2005), 290-302.
[14] S.S. Miller and P.T. Mocanu, Differential Subordinations: Theory and Applications, in: Series on Monographs and Textbooks in Pure and Appl. Math., Vol. 255, Marcel Dekker, Inc, New York, 2000.
[15] J. Patel and P. Sahoo, Som applications of differential subordination to certain one-parameter families of integral operators, Indian J. Pure Appl. Math., 35 , no. 10 (2004), 1167-1177.
[16] G.S. Salagean, Subclasses of univalent functions, In Lecture Notes in Math. ( Springer-Verlag ), 1013 (1983), 362-372.
[17] S. Singh, A subordination theorems for spirallike function, Internat. J. Math. Math. Sci., 24, no. 7 (2000), 433-435.
[18] H.M. Srivastava and A.A. Attiya, An integral operator associated with the Hurwitz-Lerch Zeta function and differential subordination, Integral Transforms Spec. Funct., 18 (2007), 207-216.
[19] H. M. Srivastava and J. Choi, Series associated with the Zeta and related functions, Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.
[20] H.S. Wilf, Subordinating factor sequence for convex maps of the unit circle, Proc. Amer. Math. Soc., 12 (1961), 689-693.
M.K. Aouf, A. Shamandy, A.O. Mostafa, E.A. Adwan - Subordination results...
M.K. Aouf, A. Shamandy, A. O. Mostafa and E.A. Adwan

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt.
emails: mkaouf127@yahoo.com, shamandy16@hotmail.com
adelaeg254@yahoo.com, eman.a2009@yahoo.com

