ON QUASI-HADAMARD PRODUCTS OF P-VALENT FUNCTIONS WITH NEGATIVE COEFFICIENTS DEFINED BY USING A DIFFERENTIAL OPERATOR

R. M. El-Ashwah, M. K. Aouf and Nicoleta Breaz

Abstract. In this paper we establish certain results concerning the quasiHadamard products of certain p-valent starlike and p-valent convex functions with negative coefficients defined by using a differential operator.

2000 Mathematics Subject Classification: 30C45.
Key words: Analytic, p-valent, Hadamard product, negative coefficients.

1. Introduction

Let $T(p)$ denote the class of functions of the form :

$$
\begin{equation*}
f(z)=z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad\left(a_{p+n} \geq 0 ; p \in N=\{1,2, \ldots\}\right), \tag{1.1}
\end{equation*}
$$

which are analytic and p-valent in the open unit disc $U=\{z: z \in C$ and $|z|<1\}$. In [3], Chen et al. investigated various interesting properties and characteristics of functions belonging to two subclasses $S(p, q, \alpha)$ and $C(p, q, \alpha)$ of the class $T(p)$, where $S(p, q, \alpha)$ and $C(p, q, \alpha)$ are defined as follows:

$$
\begin{gather*}
S(p, q, \alpha)=\left\{f(z) \in T(p): \operatorname{Re}\left\{\frac{z f^{(1+q)}(z)}{f^{(q)}(z)}\right\}>\alpha,\right. \\
\left.\left(z \in U ; 0 \leq \alpha<p-q ; p \in N ; p>q ; q \in N_{0}=N \cup\{0\}\right)\right\} \tag{1.2}
\end{gather*}
$$

and

$$
C(p, q, \alpha)=\left\{f(z) \in T(p): \operatorname{Re}\left\{1+\frac{z f^{(2+q)}(z)}{f^{(1+q)}(z)}\right\}>\alpha\right.
$$

$$
\begin{equation*}
\left.\left(z \in U ; 0 \leq \alpha<p-q ; p \in N ; p>q ; q \in N_{0}\right)\right\} \tag{1.3}
\end{equation*}
$$

where, for each $f(z) \in T(p)$, we have (see [3])

$$
\begin{equation*}
f^{(j)}(z)=\frac{p!}{(p-j)!} z^{p-j}-\sum_{n=1}^{\infty} \frac{(n+p)!}{(n+p-j)!} a_{n+p} z^{n+p-j} \quad\left(j \in N_{0} ; p>j\right) \tag{1.4}
\end{equation*}
$$

We note that :
(i) $S(p, 0, \alpha)=T^{*}(p, \alpha)$, is the class of p -valently starlike functions of order $\alpha, 0 \leq \alpha<p ;$
(ii) $\mathrm{C}(\mathrm{p}, 0, \alpha)=C(p, \alpha)$, is the class of p -valently convex functions of order $\alpha, 0 \leq$ $\alpha<p$.
The classes $T^{*}(p, \alpha)$ and $C(p, \alpha)$ are studied by Owa [13] and Salagean et al. [14].
In [3], Chen et al. obtained the following results.
Lemma 1 [3]. A function $f(z) \in T(p)$ is in the class $S(p, q, \alpha)$ if and only if

$$
\begin{gather*}
\sum_{n=1}^{\infty}(n+p-q-\alpha) \delta(n+p, q) a_{p+n} \leq(p-q-\alpha) \delta(p, q) \tag{1.5}\\
\left(0 \leq \alpha<p-q ; p \in N ; p>q ; q \in N_{0}\right)
\end{gather*}
$$

where

$$
\delta(p, q)=\frac{p!}{(p-q)!}= \begin{cases}p(p-1) \ldots(p-q+1) & (q \neq 0) \tag{1.6}\\ 1 & (q=0)\end{cases}
$$

Lemma 2 [3]. A function $f(z) \in T(p)$ is in the class $C(p, q, \alpha)$ if and only if

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p-q}{p-q}\right)(n+p-q-\alpha) \delta(n+p, q) a_{p+n} \leq(p-q-\alpha) \delta(p, q) \tag{1.7}
\end{equation*}
$$

Let $T_{0}(p)$ denote the class of functions of the form :

$$
\begin{equation*}
f(z)=a_{p} z^{p}-\sum_{n=1}^{\infty} a_{p+n} z^{p+n} \quad\left(a_{p}>0 ; a_{p+n} \geq 0 ; p \in N\right) \tag{1.8}
\end{equation*}
$$

which are analytic and p-valent in U. Furthermore, let $T_{0}^{*}(p, q, \alpha)$ and $C_{0}(p, q, \alpha)$ be the subclasses of $T_{0}(p)$ defined as follows:

$$
T_{0}^{*}(p, q, \alpha)=\left\{f(z) \in T_{0}(p): \operatorname{Re}\left\{\frac{z f^{(1+q)}(z)}{f^{(q)}(z)}\right\}>\alpha\right.
$$

$$
\left.\left(z \in U ; 0 \leq \alpha<p-q ; p \in N ; p>q ; q \in N_{0}\right)\right\}
$$

and

$$
\begin{gathered}
C_{0}(p, q, \alpha)=\left\{f(z) \in T_{0}(p): \operatorname{Re}\left\{1+\frac{z f^{(2+q)}(z)}{f^{(1+q)}(z)}\right\}>\alpha,\right. \\
\left.\left(z \in U ; 0 \leq \alpha<p-q ; p \in N ; p>q ; q \in N_{0}\right)\right\} .
\end{gathered}
$$

For these classes, by using Lemma 1 and Lemma 2, we easily obtain the following theorems :
Theorem 1. A function $f(z) \in T_{0}(p)$ is in the class $T_{0}^{*}(p, q, \alpha)$ if and only if

$$
\sum_{n=1}^{\infty}\left[(n+p-q-\alpha) \delta(n+p, q) a_{p+n}\right] \leq(p-q-\alpha) \delta(p, q) a_{p}
$$

Theorem 2. A function $f(z) \in T_{0}(p)$ is in the class $C_{0}(p, q, \alpha)$ if and only if

$$
\sum_{n=1}^{\infty}\left[\left(\frac{n+p-q}{p-q}\right)(n+p-q-\alpha) \delta(n+p, q) a_{p+n}\right] \leq(p-q-\alpha) \delta(p, q) a_{p}
$$

We now introduce a subclass $S_{0}(k, p, q, \alpha)$ of the class $T_{0}(p)$. We say that a function $f(z)$ belongs to the class $S_{0}(k, p, q, \alpha)$ if and only if

$$
\begin{gather*}
\sum_{n=1}^{\infty}\left[\left(\frac{n+p-q}{p-q}\right)^{k}(n+p-q-\alpha) \delta(n+p, q) a_{p+n}\right] \leq \\
(p-q-\alpha) \delta(p, q) a_{p} \quad(0 \leq \alpha<p-q) \tag{1.9}
\end{gather*}
$$

where k is any fixed non-negative real number.
We note that for every nonnegative real number k, the class $S_{0}(k, p, q, \alpha)$ is nonempty as the functions of the form

$$
f(z)=a_{p} z^{p}-\sum_{n=1}^{\infty} \frac{(p-q-\alpha) \delta(p, q) a_{p}}{\left(\frac{n+p-q}{p-q}\right)^{k}(n+p-q-\alpha) \delta(n+p, q)} \lambda_{p+n} z^{p+n},
$$

where $a_{p}>0, \lambda_{p+n}>0$ and $\sum_{n=1}^{\infty} \lambda_{p+n} \leq 1$, satisfy the inequality (1.9). Evidently, $S_{0}(0, p, q, \alpha) \equiv T_{0}^{*}(p, q, \alpha)$ and $S_{0}(1, p, q, \alpha) \equiv C_{0}(p, q, \alpha)$. Further, $S_{0}(k, p, q, \alpha) \subset$ $S_{0}(c, p, q, \alpha)$ if $k>c \geq 0$, the containment being proper. Hence, for any positive integer k, we have the inclusion relation

$$
S_{0}(k, p, q, \alpha) \subset S_{0}(k-1, p, q, \alpha) \ldots \subset S_{0}(2, p, q, \alpha) \subset C_{0}(p, q, \alpha) \subset T_{0}^{*}(p, q, \alpha) .
$$

Finally, let the functions of the class $T_{0}(p)$ be of the forms :

$$
f_{i}(z)=a_{p, i} z^{p}-\sum_{n=1}^{\infty} a_{p+n, i} z^{p+n} \quad\left(a_{p, i}>0 ; a_{p+n, i} \geq 0\right)
$$

and

$$
g_{j}(z)=b_{p, j} z^{p}-\sum_{n=1}^{\infty} b_{p+n, j} z^{p+n} \quad\left(b_{p, j}>0 ; b_{p+n, j} \geq 0\right)
$$

and define the quasi-Hadamard product $f_{i} * g_{j}(z)$ of the functions $f_{i}(z)$ and $g_{j}(z)$ by

$$
f_{i} * g_{j}(z)=a_{p, i} b_{p, j} z^{p}-\sum_{n=1}^{\infty} a_{p+n, i} b_{p+n, j} z^{p+n} \quad(i, j=1,2,3, \ldots) .
$$

Similarly, we can define the quasi-Hadamard product of more than two functions.
The quasi-Hadamard product of two or more functions has recently been defined and used by Owa ([10], [11] and [12]), Kumar ([7], [8] and [9]), Sekine [15], Aouf [1], Aouf et al. [2], Frasin and Aouf [5], Hossen [6] and Darwish [4].

In this paper we establish certain results concerning the quasi-Hadamard product of functions in the classes $S_{0}(k, p, q, \alpha), T_{0}(p, q, \alpha)$ and $C_{0}(p, q, \alpha)$ analgous to the results due to Kumar ([8] and [9]) and Sekine [15].

2. Results involving quasi-Hadamard products

Theorem 3. Let the functions $f_{i}(z)$ belong to the classes $T_{0}^{*}\left(p, q, \alpha_{i}\right)(i=1,2,3, \ldots, m)$ and let the functions $g_{j}(z)$ belong to the classes $C_{0}\left(p, q, \beta_{j}\right)(j=1,2,3, \ldots, d)$. Then the quasi-Hadamard product $f_{1} * f_{2} * f_{3} * \ldots * f_{m} * g_{1} * g_{2} * g_{3} * \ldots * g_{d}(z)$ belongs to the class $S_{0}(m+2 d-1, p, q, \gamma)$, where

$$
\gamma=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}, \beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{d}\right\}
$$

Proof. Since $f_{i}(z) \in T_{0}^{*}\left(p, q, \alpha_{i}\right)(i=1,2, \ldots, m)$, by Theorem 1 , we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(n+p-q-\alpha_{i}\right) \delta(n+p, q) a_{p+n, i} \leq\left(p-q-\alpha_{i}\right) \delta(p, q) a_{p, i} \tag{2.1}
\end{equation*}
$$

which yields

$$
\begin{equation*}
a_{p+n, i} \leq\left(\frac{p-q}{n+p-q}\right) a_{p, i} \quad(1 \leq i \leq m) \tag{2.2}
\end{equation*}
$$

Also, since $g_{j}(z) \in C_{0}\left(p, q, \beta_{j}\right)(j=1,2,3, \ldots, d)$, by Theorem 2 , we have

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\frac{n+p-q}{p-q}\right)\left(n+p-q-\beta_{j}\right) \delta(n+p, q) b_{p+n, j} \leq\left(p-q-\beta_{j}\right) \delta(p, q) b_{p, j} \tag{2.3}
\end{equation*}
$$

which yields

$$
\begin{equation*}
b_{p+n, j} \leq\left(\frac{p-q}{n+p-q}\right)^{2} b_{p, j} \quad(1 \leq j \leq d) \tag{2.4}
\end{equation*}
$$

It is sufficient to show that

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\{\left(\frac{n+p-q}{p-q}\right)^{m+2 d-1}(n+p-q-\gamma) \delta(n+p, q) \prod_{i=1}^{m} a_{p+n, i} \cdot \prod_{j=1}^{d} b_{p+n, j}\right\} \\
\leq & (p-q-\gamma) \delta(p, q) \prod_{i=1}^{m} a_{p, i} \prod_{j=1}^{d} b_{p, j} .
\end{aligned}
$$

The following two cases will arise :
(i) When $\gamma=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}\right\}$, we may assume that $\gamma=\alpha_{m}$. Then, by using (2.2) for $i=1,2, \ldots, m-1$ and (2.4) for $j=1,2, \ldots, d$, we have

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left\{\left(\frac{n+p-q}{p-q}\right)^{m+2 d-1}(n+p-q-\gamma) \delta(n+p, q) \prod_{i=1}^{m} a_{p+n, i} \cdot \prod_{j=1}^{d} b_{p+n, j}\right\} \\
\leq \sum_{n=1}^{\infty}\left\{\left(\frac{n+p-q}{p-q}\right)^{m+2 d-1}\left(n+p-q-\alpha_{m}\right) \delta(n+p, q) \cdot\right. \\
\left.\cdot\left[\left(\frac{p-q}{n+p-q}\right)^{m-1} \prod_{i=1}^{m-1} a_{p, i}\right]\left[\left(\frac{p-q}{n+p-q}\right)^{2 d} \prod_{j=1}^{d} b_{p, j}\right] a_{p+n, m}\right\} \\
\quad=\left[\prod_{i=1}^{m-1} a_{p, i}\right]\left[\prod_{j=1}^{d} b_{p, j}\right] \sum_{n=1}^{\infty}\left(n+p-q-\alpha_{m}\right) \delta(n+p, q) a_{p+n, m} \\
\leq\left(p-q-\alpha_{m}\right) \delta(p, q)\left[\prod_{i=1}^{m} a_{p, i}\right]\left[\prod_{j=1}^{d} b_{p, j}\right] \\
\\
=(p-q-\gamma) \delta(p, q)\left[\prod_{i=1}^{m} a_{p, i}\right]\left[\prod_{j=1}^{d} b_{p, j}\right] .
\end{gathered}
$$

(ii) When $\gamma=\max \left\{\beta_{1}, \beta_{2}, \beta_{3}, \ldots, \beta_{d}\right\}$, we may assume that $\gamma=\beta_{d}$. Then, by using
(2.2) for $i=1,2, \ldots, m$ and (2.4) for $j=1,2, \ldots, d-1$, we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\{\left(\frac{n+p-q}{p-q}\right)^{m+2 d-1}(n+p-q-\gamma) \delta(n+p, q) \prod_{i=1}^{m} a_{p+n, i} \cdot \prod_{j=1}^{d} b_{p+n, j}\right\} \\
\leq & \sum_{n=1}^{\infty}\left\{\left(\frac{n+p-q}{p-q}\right)^{m+2 d-1}\left(n+p-q-\beta_{d}\right) \delta(n+p, q) \cdot\right. \\
& \left.\cdot\left[\left(\frac{p-q}{n+p-q}\right)^{m} \prod_{i=1}^{m} a_{p, i}\right]\left[\left(\frac{p-q}{n+p-q}\right)^{2(d-1)} \prod_{j=1}^{d-1} b_{p, j}\right] b_{p+n, d}\right\} \\
= & {\left[\prod_{i=1}^{m} a_{p, i}\right]\left[\prod_{j=1}^{d-1} b_{p, j}\right] \sum_{n=1}^{\infty}\left(\frac{n+p-q}{p-q}\right)\left(n+p-q-\beta_{d}\right) \delta(n+p, q) b_{p+n, d} } \\
\leq & \left(p-q-\beta_{d}\right) \delta(p, q)\left[\prod_{i=1}^{m} a_{p, i}\right]\left[\prod_{j=1}^{d} b_{p, j}\right] \\
= & (p-q-\gamma) \delta(p, q)\left[\prod_{i=1}^{m} a_{p, i}\right]\left[\prod_{j=1}^{d} b_{p, j}\right] .
\end{aligned}
$$

In both cases we conclude that

$$
f_{1} * f_{2} * f_{3} * \ldots * f_{m} * g_{1} * g_{2} * g_{3} * \ldots * g_{d}(z) \in S_{0}(m+2 d-1, p, q, \gamma)
$$

This completes the proof of Theorem 3.
Now we discuss the applications of Theorem 3. Taking into account the quasiHadamard product of functions $f_{1}(z), f_{2}(z), \ldots, f_{m}(z)$ only, in the proof of Theorem 3 , and using (2.2) for $i=1,2, \ldots, m-1$, and (2.1) for $i=m$, we are led to
Corollary 1. Let the functions $f_{i}(z)$ belong to the classes $T_{0}^{*}\left(p, q, \alpha_{i}\right)(i=1,2, \ldots, m)$. Then the quasi-Hadamard product $f_{1} * f_{2} * f_{3} * \ldots * f_{m}(z)$ belongs to the class $S_{0}(m-1, p, q, \beta)$, where $\beta=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{m}\right\}$.

Next, taking into account the quasi-Hadamard product of the functions $g_{1}(z), g_{2}(z), \ldots, g_{d}(z)$ only, in the proof of Theorem 3 , and using (2.4) for $j=$ $1,2, \ldots, d-1$, and (2.3) for $j=d$, we are led to
Corollary 2. Let the functions $g_{j}(z)$ belong to the classes $C_{0}\left(p, q, \alpha_{j}\right)(j=1,2, \ldots, d)$. Then the quasi-Hadamard product $g_{1} * g_{1} * g_{3} * \ldots * g_{d}(z)$ belongs to the class $S_{0}(2 d-$ $1, p, q, \beta)$, where $\beta=\max \left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots, \alpha_{d}\right\}$.

Theorem 4. Let the functions $f_{i}(z)$ belong to the class $C_{0}(p, q, \alpha)(i=1,2,3, \ldots, m)$, and let $0 \leq \alpha \leq r_{0}$, where r_{0} is a root of the equation

$$
(p-q+1)^{m}(p-q-m r)-(p-q)(p-q-r)^{m}=0
$$

in the open interval $\left(0, \frac{p-q}{m}\right)$. Then the quasi-Hadamard product $f_{1} * f_{2} * f_{3} * \ldots * f_{m}(z)$ belongs to the class $S_{0}(m-1, p, q, m \alpha)$.

Proof. Since $f_{i}(z) \in C_{0}(p, q, \alpha)(i=1,2,3, \ldots, m)$, by Theorem 2 , we have

$$
\begin{gathered}
\sum_{n=1}^{\infty}\left(\frac{n+p-q}{p-q}\right)(n+p-q-\alpha) \delta(n+p, q) a_{p+n, i} \leq \\
(p-q-\alpha) \delta(p, q) a_{p, i} \quad(1 \leq i \leq m)
\end{gathered}
$$

Therefore

$$
\begin{gather*}
\sum_{n=1}^{\infty}(n+p-q-\alpha) \delta(n+p, q) a_{n+p, i} \leq \\
\left(\frac{p-q}{1+p-q}\right)(p-q-\alpha) \delta(p, q) a_{p, i} \quad(1 \leq i \leq m), \tag{2.5}
\end{gather*}
$$

which evidently yields

$$
\begin{align*}
&(n+p-q-\alpha) \delta(n+p, q) a_{p+n, i} \leq \\
&\left(\frac{p-q}{1+p-q}\right)(p-q-\alpha) \delta(p, q) a_{p, i} \quad(1 \leq i \leq m) . \tag{2.6}
\end{align*}
$$

By mathematical induction on m, we can get the inequality

$$
\begin{equation*}
(n+p-q)^{m-1}(n+p-q-m \alpha) \leq(n+p-q-\alpha)^{m} \tag{2.7}
\end{equation*}
$$

where $0 \leq \alpha<p-q, m \geq 1$, and $m \alpha<p-q$. Using (2.7), (2.6) for $i=1,2,3, \ldots, m-$ 1 , and using (2.5) for $i=m$, we also get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left\{\left(\frac{n+p-q}{p-q}\right)^{m-1}(n+p-q-m \alpha) \delta(n+p, q) \cdot \prod_{i=1}^{m} a_{p+n, i}\right\} \\
\leq & \sum_{n=1}^{\infty}\left\{\left(\frac{1}{p-q}\right)^{m-1}(n+p-q-\alpha)^{m} \delta(n+p, q) \prod_{i=1}^{m} a_{p+n, i}\right\} \\
\leq & \left\{\left(\frac{p-q-\alpha}{1+p-q}\right)^{m-1} \prod_{i=1}^{m-1} a_{p, i}\right\} \sum_{n=1}^{\infty}(n+p-q-\alpha) \delta(n+p, q) a_{p+n, m} \\
\leq & (p-q)\left(\frac{p-q-\alpha}{1+p-q}\right)^{m} \delta(p, q) \prod_{i=1}^{m} a_{p, i} \\
\leq & (p-q-m \alpha) \delta(p, q) \prod_{i=1}^{m} a_{p, i} .
\end{aligned}
$$

This proves that

$$
f_{1} * f_{2} * \ldots * f_{m}(z) \in S_{0}(m-1, p, q, m \alpha)
$$

as asserted by Theorem 4.
Remark. Putting $q=0$ in the above results we obtain the results obtained by Sekine [15].

References

[1] M. K. Aouf, The quasi-Hadamard product of certain analytic functions, Appl. Math. Letters 21(2008), 1184-1187.
[2] M. K. Aouf, A. Shamandy and M. F. Yassen, Quasi-Hadamard product of pvalent functions, Commun. Fac. Sci. Univ. Ank. Series A_{1} 44(1995), 35-40.
[3] M. -P. Chen, H. Irmark and H. M. Srivastava, Some multivalent functions with negative coefficients defined by using differential operator, PanAmer. Math. J. 6(1996), no. 2, 55-64.
[4] H. E. Darwish, The quasi-Hadamard product of certain starlike and convex functions, Applied Math. Letters 20(2007), 692-695.
[5] B. A. Frasin and M. K. Aouf, Quasi-Hadamard product of a generalized class of analytic and univalent functions, Appl. Math. Letters 23(2010), no. 4, 347-350.
[6] H. M. Hossen, Quasi-Hadamard product of certain p-valent functions, Demonstratio Math. 33(2000), no. 2, 277-281.
[7] V. Kumar, Hadamard product of certain starlike functions, J. Math. Anal. Appl. 110(1985), 425-428.
[8] V. Kumar, Hadamard product of certain starlike functions II, J. Math. Anal. Appl. 113(1986), 230-234.
[9] V. Kumar, Quasi-Hadamard product of certain univalent functions, J. Math. Anal. Appl. 126(1987), 70-77.
[10] S. Owa, On the classes of univalent functions with negative coefficients, Math. Japon. 27(1982), no. 4, 409-416.
[11] S. Owa, On the starlike functions of order α and type β, Math. Japon. 27(1982), no. 6, 723-735.
[12] S. Owa, On the Hadamard products of univalent functions, Tamkang J. Math. 14(1983), 15-21.
[13] S. Owa, On certain classes of p-valent functions with negative coefficients, Simon Stevin 59(1985), 385-402.
[14] G. S. Salagean, H. M. Hossen and M. K. Aouf, On certain classes of p-valent functions with negative coefficients. II, Studia Univ. Babes-Bolyai 69(2004), no. 1, 77-85.
[15] T. Sekine, On quasi-Hadamard products of p-valent functions with negative coefficients in: H. M. Srivastava and Owa (Editors), Univalent Functions, Fractional Calculus, and Their Applications, Holsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane and Toronto, 1989, 317-328.
R. M. El-Ashwah

Department of Mathematics
Faculty of Science (Damietta Branch)
Mansoura University
New Damietta 34517, Egypt
E-mail: r_elashwah@yahoo.com
M. K. Aouf

Department of Mathematics

Faculty of Science
Mansoura University
Mansoura 35516, Egypt
E-mail: mkaouf127@yahoo.com

Nicoleta Breaz
"1 Decembrie 1918" University of Alba Iulia
Faculty of Science
Department of Mathematics-Informatics
510009 Alba Iulia, Romania
E-mail: nbreaz@uab.ro

