MULTIPLE SOLUTIONS FOR A FOURTH ORDER ELLIPTIC EQUATION WITH HARDY TYPE POTENTIAL

Nguyen Thanh Chung

Abstract. Consider the fourth order elliptic equation with Hardy type potential

$$
\left\{\begin{aligned}
\Delta^{2} u & =\frac{\mu}{|x|^{4}} a(x) u+\lambda b(x) f(u) & & \text { in } \Omega, \\
u & =0, \quad \frac{\partial u}{\partial \nu}=0 & & \text { on } \partial \Omega,
\end{aligned}\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 5)$, is a bounded domain with smooth boundary $\partial \Omega, 0 \in \Omega$, ν is the outward unit normal to $\partial \Omega$, the weighted function $a: \Omega \rightarrow \mathbb{R}$ may change sign, λ, μ are two parameters. Under suitable conditions on the nonlinearities, a multiplicity result is given using a variant of the three critical point theorem by G. Bonanno [3].

2000 Mathematics Subject Classification: 35J65, 35J20.

1. Introduction and Preliminaries

In this article, we are concerned with a class of fourth order elliptic equations with Hardy type potential

$$
\left\{\begin{align*}
\Delta^{2} u & =\frac{\mu}{|x|^{4}} a(x) u+g(\lambda, x, u) & & \text { in } \Omega, \tag{1.1}\\
u & =0, \quad \frac{\partial u}{\partial \nu}=0 & & \text { on } \partial \Omega,
\end{align*}\right.
$$

where $\Omega \subset \mathbb{R}^{N}(N \geq 5)$ is a bounded domain with smooth boundary $\partial \Omega, 0 \in \Omega$, ν is the outward unit normal to $\partial \Omega, \lambda, \mu$ are two parameters, $0 \leq \mu<\mu^{\star}$, where $\mu^{\star}=\left(\frac{N(N-4)}{4}\right)^{2}$ is the best constant in the Hardy inequality i.e.

$$
\begin{equation*}
\int_{\Omega} \frac{|\varphi|^{2}}{|x|^{4}} d x \leq \frac{1}{\mu^{\star}} \int_{\Omega}|\Delta \varphi|^{2} d x \tag{1.2}
\end{equation*}
$$

for all $\varphi \in C_{0}^{\infty}(\Omega)$, see [12].
We point out the fact that if $\mu=0$, problem (1.1) has been intensively studied in the last decades. In the papers $[4,5,7,9,11]$, the authors studied the problems of p-biharmonic type, in which p is a constant. The topic involving $p(x)$-biharmonic type operators has been studied in recent years, see $[1,2]$.

In the case $\mu>0$, problem (1.1) has been studied in some papers, we refer to $[10,12,13]$. In [12], Y. Yao et al. studied problem (1.1) in the special case $a(x) \equiv 1$, and $g(\lambda, x, u)=\lambda f(x) u$. They showed that if $f \in \hat{f}$, with

$$
\hat{f}=\left\{f: \Omega \rightarrow \mathbb{R}^{+}: \lim _{|x| \rightarrow 0}|x|^{4} f(x)=0, f \in L_{l o c}^{\infty}(\Omega \backslash\{0\})\right\}
$$

then for any $0 \leq \mu<\mu^{\star}$, the problem admits a non-trivial solution in $W_{0}^{2,2}(\Omega)$. In [13], the authors studied the existence of a non-trivial solution of the problem in the critical case:

$$
\left\{\begin{align*}
\Delta^{2} u & =\mu \frac{|u|^{q-2} u}{|x|^{s}} u+|u|^{2 \star-2} u & & \text { in } \Omega \tag{1.3}\\
u & =0, \quad \frac{\partial u}{\partial \nu}=0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

where $2 \leq q \leq 2_{\star}(s)=\frac{2(N-s)}{N-4} \leq 2_{\star}=\frac{2 N}{N-4}, N \geq 5,0<s<4$. Very recently, Y. Wang et al. [10] studied the problem

$$
\left\{\begin{align*}
\Delta^{2} u & =\mu \frac{|u|^{2} \star(s)-2}{|x|^{s}} u+\lambda b(x)|u|^{r-2} u & & \text { in } \mathbb{R}, \tag{1.4}\\
u & \in W_{0}^{2,2}\left(\mathbb{R}^{N}\right), & & N \geq 5,
\end{align*}\right.
$$

where $1<r<2_{\star}=\frac{2 N}{N-4}, N \geq 5$, and $0 \leq b(x) \in L^{q}\left(\mathbb{R}^{N}\right)$ with $q=\frac{2_{\star}}{2_{\star}-r}$, $\operatorname{meas}(\{b(x)>0\})>0$. Using variational techniques, the authors showed the existence of infinitely many solutions of (1.4) under suitable conditions on the parameters μ and λ.

In this paper, we consider the fourth order elliptic problem (1.1) in the case when $g(\lambda, x, u)=\lambda b(x) f(u)$, i.e.,

$$
\left\{\begin{align*}
\Delta^{2} u & =\frac{\mu}{|x|^{4}} a(x) u+\lambda b(x) f(u) & & \text { in } \Omega \tag{1.5}\\
u & =0, \quad \frac{\partial u}{\partial \nu}=0 & & \text { on } \partial \Omega
\end{align*}\right.
$$

in which the function $f: \mathbb{R} \rightarrow \mathbb{R}$ is superlinear at zero and sublinear at infinity, the weighted function $a: \Omega \rightarrow \mathbb{R}$ may change sign, i.e., there exists a positive constant $A_{0}>0$ such that

$$
\begin{equation*}
-A_{0} \leq a(x) \leq A_{0} \text { for all } x \in \bar{\Omega} \tag{1.6}
\end{equation*}
$$

the function $b \in L^{\infty}(\Omega), b(x) \geq 0$ for all $x \in \bar{\Omega}$, there exists $R_{0}>0$ such that

$$
\begin{equation*}
R_{0}<\operatorname{dist}(0, \partial \Omega) \text { and } b_{R_{0}}=\inf _{|x| \leq R_{0}} b(x)>0 \tag{1.7}
\end{equation*}
$$

In order to state the main result of this paper, we assume $f: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function satisfying the following conditions:
$(f 1) f$ is sublinear at infinity, i.e.,

$$
\lim _{|t| \rightarrow \infty} \frac{f(t)}{t}=0
$$

$(f 2) f$ is superlinear at zero, i.e.,

$$
\lim _{t \rightarrow 0} \frac{f(t)}{t}=0
$$

(f3) There exists $t_{0} \in \mathbb{R}$, such that $F\left(t_{0}\right)>0$, where $F(t)=\int_{0}^{t} f(s) d s$.
It should be noticed that the term $|u|^{r-2} u$ is not superlinear at zero if $1<r<2$ and it is not sublinear at infinity if $2<r<2_{\star}(s)=\frac{2(N-s)}{N-4}$, so the situation introduced here is different from [10]. Moreover, by the presence of the functions a and b, especially a may change sign in Ω, the obtained result in this work is better than that of [6], eventually with the Laplace operator $-\Delta$.

Let $W_{0}^{2,2}(\Omega)$ be the usual Sobolev space with respect to the norm $\|u\|_{2,2}=$ $\left(\int_{\Omega}|\Delta u|^{2} d x\right)^{\frac{1}{2}}$. We denote by S_{q} the best constant in the embedding $W_{0}^{2,2}(\Omega) \hookrightarrow$ $L^{q}(\Omega)$.

Definition 1.1. A function $u \in W_{0}^{2,2}(\Omega)$ is said to be a weak solution of problem (1.5) if and only if

$$
\int_{\Omega} \Delta u \Delta v d x-\mu \int_{\Omega} \frac{a(x)}{|x|^{4}} u v d x-\lambda \int_{\Omega} b(x) f(u) v d x=0
$$

for any $v \in W_{0}^{2,2}(\Omega)$.
Theorem 1.2. Assume the hypotheses (1.6)-(1.7) and $(f 1)-(f 3)$ are fulfilled, then there exists $\bar{\mu}>0$, such that for any $0 \leq \mu<\bar{\mu}$ there exist an open interval $\Lambda \subset$ $[0, \infty)$ and a constant $\delta_{\bar{\mu}}$, such that for every $\lambda \in \Lambda$, problem (1.5) has at least two non-trivial weak solutions in $W_{0}^{2,2}(\Omega)$, whose $W_{0}^{2,2}(\Omega)$-norms are less than $\delta_{\bar{\mu}}$.

Theorem 1.2 will be proved by using a recent result on the existence of at least three critical points by G. Bonanno [3]. For the reader's convenience, we describe it as follows.

Lemma 1.3. Let $(X,\|\|$.$) be a separable and reflexive real Banach space, \mathcal{A}, \mathcal{F}$: $X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_{0} \in X$ such that $\mathcal{A}\left(x_{0}\right)=\mathcal{F}\left(x_{0}\right)=0, \mathcal{A}(x) \geq 0$ for all $x \in X$ and there exist $x_{1} \in X, \rho>0$ such that
(i) $\rho<\mathcal{A}\left(x_{1}\right)$,
(ii) $\sup _{\{\mathcal{A}(x)<\rho\}} \mathcal{F}(x)<\rho \frac{\mathcal{F}\left(x_{1}\right)}{\mathcal{A}\left(x_{1}\right)}$.

Further, put

$$
\bar{a}=\frac{\xi \rho}{\rho \frac{\mathcal{F}\left(x_{1}\right)}{\mathcal{A}\left(x_{1}\right)}-\sup _{\{\mathcal{A}(x)<\rho\}} \mathcal{F}(x)}, \text { with } \xi>1
$$

and assume that the functional $\mathcal{A}-\lambda \mathcal{F}$ is sequentially weakly lower semicontinuous, satisfies the Palais-Smale condition and
(iii) $\lim _{\|x\| \rightarrow \infty}[\mathcal{A}(x)-\lambda \mathcal{F}(x)]=+\infty$ for every $\lambda \in[0, \bar{a}]$.

Then, there exist an open interval $\Lambda \subset[0, \bar{a}]$ and a positive real number δ such that each $\lambda \in \Lambda$, the equation

$$
D \mathcal{A}(u)-\lambda D \mathcal{F}(u)=0
$$

has at least three solutions in X whose $\|$.$\| -norms are less than \delta$.

2. Proof of the main result

For each $\mu \in\left[0, \mu^{\star}\right)$, and $\lambda \in \mathbb{R}$, let us define the functional $J_{\mu, \lambda}: W_{0}^{2,2}(\Omega) \rightarrow \mathbb{R}$ by

$$
\begin{align*}
J_{\mu, \lambda}(u) & =\frac{1}{2} \int_{\Omega}|\Delta u|^{2} d x-\frac{\mu}{2} \int_{\Omega} \frac{a(x)}{|x|^{4}}|u|^{2} d x-\lambda \int_{\Omega} b(x) F(u) d x \tag{2.1}\\
& =\mathcal{A}(u)-\lambda \mathcal{F}(u)
\end{align*}
$$

where

$$
\begin{align*}
& \mathcal{A}(u)=\frac{1}{2} \int_{\Omega}|\Delta u|^{2} d x-\frac{\mu}{2} \int_{\Omega} \frac{a(x)}{|x|^{4}}|u|^{2} d x \tag{2.2}\\
& \mathcal{F}(u)=\int_{\Omega} b(x) F(u) d x
\end{align*}
$$

for all $u \in W_{0}^{2,2}(\Omega)$. Then, by the Hardy inequality (1.2) and the hypothesis (f1), we can show that $J_{\mu, \lambda}$ is well-defined and of C^{1} class in $W_{0}^{2,2}(\Omega)$. Moreover, we have

$$
D J_{\mu, \lambda}(u)(v)=\int_{\Omega} \Delta u \Delta v d x-\mu \int_{\Omega} \frac{a(x)}{|x|^{4}} u v d x-\lambda \int_{\Omega} b(x) f(u) v d x
$$

for all $v \in W_{0}^{2,2}(\Omega)$. Thus, weak solutions of problem (1.5) are exactly the critical points of the functional $J_{\mu, \lambda}$.

Lemma 2.1 There exists $\bar{\mu}>0$, such that for each $\mu \in[0, \bar{\mu})$, and $\lambda \in \mathbb{R}$, the functional $J_{\mu, \lambda}$ is sequentially weakly lower semi-continuous in $W_{0}^{2,2}(\Omega)$.

Proof. Let $\left\{u_{m}\right\}$ be a sequence that converges weakly to u in $W_{0}^{2,2}(\Omega)$. Since $-A_{0} \leq$ $a(x) \leqq A_{0}$ for all $x \in \bar{\Omega}$, taking $\bar{\mu}=\frac{\mu^{\star}}{A_{0}}$, then for each $0 \leq \mu<\bar{\mu}$, using the same arguments as in the proof of $[8$, Theorem 3.2], we can obtain

$$
\begin{equation*}
\liminf _{m \rightarrow \infty} \int_{\Omega}\left(\left|\Delta u_{m}\right|^{2} d x-\mu \frac{a(x)}{|x|^{4}}\left|u_{m}\right|^{2}\right) d x \geq \int_{\Omega}\left(|\Delta u|^{2} d x-\mu \frac{a(x)}{|x|^{4}}|u|^{2}\right) d x \tag{2.3}
\end{equation*}
$$

On the other hand, by $(f 1)$, there exists a constant $C>0$, such that

$$
|f(t)| \leq C(1+|t|), \text { for all } t \in \mathbb{R}
$$

Hence, using the the Hölder inequality, we have

$$
\begin{aligned}
& \left|\int_{\Omega} b(x) F\left(u_{m}\right) d x-\int_{\Omega} b(x) F(u) d x\right| \\
& \leq \int_{\Omega}|b(x)|\left|F\left(u_{m}\right)-F(u)\right| d x \\
& \leq\|b\|_{L^{\infty}(\Omega)} \int_{\Omega}\left|f\left(u+\theta_{m}\left(u_{m}-u\right)\right) \| u_{m}-u\right| d x \\
& \leq C\|b\|_{L^{\infty}(\Omega)} \int_{\Omega}\left(1+\left|u+\theta_{m}\left(u_{m}-u\right)\right|\right)\left|u_{m}-u\right| d x \\
& \leq C\|b\|_{L^{\infty}(\Omega)}\left[(\operatorname{meas}(\Omega))^{\frac{1}{2}}+\left\|u+\theta_{m}\left(u_{m}-u\right)\right\|_{L^{2}(\Omega)}\right]\left\|u_{m}-u\right\|_{L^{2}(\Omega)}, \quad \theta_{m} \in(0,1),
\end{aligned}
$$

which shows that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} \int_{\Omega} b(x) F\left(u_{m}\right) d x=\int_{\Omega} b(x) F(u) d x \tag{2.4}
\end{equation*}
$$

From relations (2.3) and (2.4), we conclude that

$$
\liminf _{m \rightarrow \infty} J_{\mu, \lambda}\left(u_{m}\right) \geq J_{\mu, \lambda}(u)
$$

and thus, $J_{\mu, \lambda}$ is sequentially weakly lower semi-continuous in $W_{0}^{2,2}(\Omega)$.

Lemma 2.2. For each $\mu \in[0, \bar{\mu})$, where $\bar{\mu}$ is given by Lemma 2.1 and $\lambda \in \mathbb{R}$, the functional $J_{\mu, \lambda}$ is coercive and satisfies the Palais-Smale condition.

Proof. Let us fix $\lambda \in \mathbb{R}$, arbitrary. By (f1), there exists $\delta=\delta(\lambda)>0$, such that

$$
|f(t)| \leq\left(1-\frac{\mu A_{0}}{\mu^{\star}}\right) \frac{S_{2}^{2}}{1+\|b\|_{L^{\infty}(\Omega)}}(1+|\lambda|)^{-1}|t| \text { for all }|t|>\delta
$$

Integrating the above inequality we have

$$
|F(t)| \leq\left(1-\frac{\mu A_{0}}{\mu^{\star}}\right) \frac{S_{2}^{2}}{2\left(1+\|b\|_{L^{\infty}(\Omega)}\right)}(1+|\lambda|)^{-1}|t|^{2}+\max _{|s| \leq \delta}|f(s) \| t| \text { for all } t \in \mathbb{R}
$$

Hence, since $-A_{0} \leq a(x) \leq A_{0}$ for all $x \in \bar{\Omega}$ and (1.2), it follows from the continuous embeddings and the Hölder inequality that

$$
\begin{aligned}
J_{\mu, \lambda}(u)= & \frac{1}{2} \int_{\Omega}|\Delta u|^{2} d x-\frac{\mu}{2} \int_{\Omega} \frac{a(x)}{|x|^{4}}|u|^{2} d x-\lambda \int_{\Omega} b(x) F(u) d x \\
\geq & \frac{1}{2} \int_{\Omega}|\Delta u|^{2} d x-\frac{\mu A_{0}}{2} \int_{\Omega} \frac{|u|^{2}}{|x|^{4}} d x-|\lambda|\|b\|_{L^{\infty}(\Omega)} \int_{\Omega}|F(u)| d x \\
\geq & \frac{1}{2}\left(1-\frac{\mu A_{0}}{\mu^{\star}}\right) \int_{\Omega}|\Delta u|^{2} d x-\frac{|\lambda|}{2(1+|\lambda|)}\left(1-\frac{\mu A_{0}}{\mu^{\star}}\right) S_{2}^{2} \int_{\Omega}|u|^{2} d x \\
& \quad-|\lambda|\|b\|_{L^{\infty}(\Omega)} \int_{\Omega}|u| d x \\
\geq & \frac{1}{2(1+|\lambda|)}\left(1-\frac{\mu A_{0}}{\mu^{\star}}\right)\|u\|_{2,2}^{2}-\frac{|\lambda|\|b\|_{L^{\infty}(\Omega)}^{S_{1}}(\operatorname{meas}(\Omega))^{\frac{1}{2}}\|u\|_{2,2}}{}
\end{aligned}
$$

Since $\bar{\mu}=\frac{\mu}{A_{0}}>0$, we deduce that for each $\mu \in[0, \bar{\mu})$ and $\lambda \in \mathbb{R}$, the functional $J_{\mu, \lambda}$ is coercive.

Next, let $\left\{u_{m}\right\}$ be a sequence in $W_{0}^{2,2}(\Omega)$, such that

$$
\begin{equation*}
J_{\mu, \lambda}\left(u_{m}\right) \rightarrow c<\infty \text { and } D J_{\mu, \lambda}\left(u_{m}\right) \rightarrow 0 \text { in } W^{-2,2}(\Omega) \text { as } m \rightarrow \infty \tag{2.5}
\end{equation*}
$$

where $W^{-2,2}(\Omega)$ is the dual space of $W_{0}^{2,2}(\Omega)$.
Since $J_{\mu, \lambda}$ is coercive, the sequence $\left\{u_{m}\right\}$ is bounded in $W_{0}^{2,2}(\Omega)$. Then, there exist a subsequence of $\left\{u_{m}\right\}$, still denoted by $\left\{u_{m}\right\}$, that converges weakly to some $u \in W_{0}^{2,2}(\Omega)$ and $\left\{u_{m}\right\}$ converges strongly to u in $L^{2}(\Omega)$. We find that

$$
\begin{align*}
\left(1-\frac{\mu}{\bar{\mu}}\right)\left\|u_{m}-u\right\|_{2,2}^{2} \leq & \left\|u_{m}-u\right\|_{2,2}^{2}-\mu \int_{\Omega} a(x) \frac{\left|u_{m}-u\right|^{2}}{|x|^{4}} d x \\
& =D J_{\mu, \lambda}\left(u_{m}\right)\left(u_{m}-u\right)+D J_{\mu, \lambda}(u)\left(u-u_{m}\right) \tag{2.6}\\
& +\lambda \int_{\Omega} b(x)\left(f\left(u_{m}\right)-f(u)\right)\left(u_{m}-u\right) d x
\end{align*}
$$

Since $\left\{u_{m}\right\}$ converges weakly to u in $W_{0}^{2,2}(\Omega),\left\|u_{m}-u\right\|_{2,2}$ is bounded. By (2.5), it implies that

$$
\begin{equation*}
\lim _{m \rightarrow \infty} D J_{\mu, \lambda}\left(u_{m}\right)\left(u_{m}-u\right)=0, \quad \lim _{m \rightarrow \infty} D J_{\mu, \lambda}(u)\left(u-u_{m}\right)=0 \tag{2.7}
\end{equation*}
$$

On the other hand, by the Hölder inequality,

$$
\begin{align*}
& \left|\int_{\Omega} b(x)\left(f\left(u_{m}\right)-f(u)\right)\left(u_{m}-u\right) d x\right| \\
& \quad \leq C\|b\|_{L^{\infty}(\Omega)} \int_{\Omega}\left(2+\left|u_{m}\right|+|u|\right)\left|u_{m}-u\right| d x \tag{2.8}\\
& \quad \leq C\|b\|_{L^{\infty}(\Omega)}\left[2(\operatorname{meas}(\Omega))^{\frac{1}{2}}+\left\|u_{m}\right\|_{L^{2}(\Omega)}+\|u\|_{L^{2}(\Omega)}\right]\left\|u_{m}-u\right\|_{L^{2}(\Omega)}
\end{align*}
$$

which approaches 0 as $m \rightarrow \infty$.
By (2.6), (2.7) and (2.8), the sequence $\left\{u_{m}\right\}$ converges strongly to u in $W_{0}^{2,2}(\Omega)$ and the functional $J_{\mu, \lambda}$ satisfies the Palais-Smale condition.

Lemma 2.3. For each $\mu \in[0, \bar{\mu})$ we have

$$
\lim _{\rho \rightarrow 0^{+}} \frac{\sup \{\mathcal{F}(u): \mathcal{A}(u)<\rho\}}{\rho}=0
$$

where the functionals \mathcal{A} and \mathcal{F} are given by (2.2).

Proof. By (f2), for an arbitrary small $\epsilon>0$, there exists $\delta>0$, such that

$$
|f(t)| \leq \frac{\epsilon}{2}\left(1-\frac{\mu}{\bar{\mu}}\right) \frac{S_{2}^{2}}{1+\|b\|_{L^{\infty}(\Omega)}}|t| \text { for all }|t|<\delta
$$

where $\bar{\mu}$ is defined by Lemma 2.1. Combining the above inequality with the fact that

$$
|f(t)| \leq C(1+|t|) \text { for all } t \in \mathbb{R}
$$

we get

$$
\begin{equation*}
|F(t)| \leq \frac{\epsilon}{4}\left(1-\frac{\mu}{\bar{\mu}}\right) \frac{S_{2}^{2}}{1+\|b\|_{L^{\infty}(\Omega)}}|t|^{2}+C_{\delta}|t|^{q} \tag{2.9}
\end{equation*}
$$

for all $t \in \mathbb{R}$, where $q \in\left(2, \frac{2 N}{N-4}\right)$, and $C_{\delta}>0$ is a constant that does not depend on t.

Next, for each $\rho>0$, we define the sets

$$
B_{\rho}^{1}=\left\{u \in W_{0}^{2,2}(\Omega): \quad \mathcal{A}(u)<\rho\right\}
$$

and

$$
B_{\rho}^{2}=\left\{u \in W_{0}^{2,2}(\Omega): \quad\left(1-\frac{\mu}{\bar{\mu}}\right)\|u\|_{2,2}^{2}<2 \rho\right\} .
$$

By (1.2), we have $B_{\rho}^{1} \subset B_{\rho}^{2}$. Moreover, using (2.9), it follows that for any $u \in B_{\rho}^{2}$,

$$
\begin{equation*}
\mathcal{F}(u) \leq \frac{\epsilon}{4}\left(1-\frac{\mu}{\bar{\mu}}\right)\|u\|_{2,2}^{2}+C_{\delta} S_{q}^{-q}\|u\|_{2,2}^{q} \tag{2.10}
\end{equation*}
$$

Since $0 \in B_{\rho}^{1}$ and $I(0)=0$, we have $0 \leq \sup _{u \in B_{\rho}^{1}} I(u)$. On the other hand, if $u \in B_{\rho}^{2}$, then

$$
\|u\|_{2,2} \leq\left(1-\frac{\mu}{\bar{\mu}}\right)^{\frac{-1}{2}}(2 \rho)^{\frac{1}{2}}
$$

Now, using (2.10), we deduce that

$$
\begin{align*}
0 \leq \frac{\sup _{u \in B_{\rho}^{1}} \mathcal{F}(u)}{\rho} & \leq \frac{\sup _{u \in B_{\rho}^{2}} \mathcal{F}(u)}{\rho} \tag{2.11}\\
& \leq \frac{\epsilon}{2}+C_{\delta} S_{q}^{-q}\left(1-\frac{\mu}{\bar{\mu}}\right)^{\frac{-q}{2}}(2 \rho)^{\frac{q}{2}-1}
\end{align*}
$$

Since $q>2$, letting $\rho \rightarrow 0^{+}$, because $\epsilon>0$ is arbitrary, we get the conclusion.

Proof of Theorem 1.2. In order to prove Theorem 1.2, we shall apply Lemma 1.3 by choosing $X=W_{0}^{2,2}(\Omega)$ as well as \mathcal{A} and \mathcal{F} as in (2.2). Now, we shall check all assumptions of Lemma 1.3. Indeed, we have $\mathcal{A}(0)=\mathcal{F}(0)=0$ and since $-A_{0} \leq a(x) \leq A_{0}$ for all $x \in \bar{\Omega}$, we deduce from (1.2) that for any $\mu<\bar{\mu}, \mathcal{A}(u) \geq 0$ for any $u \in W_{0}^{2,2}(\Omega)$.

Let $t_{0} \in \mathbb{R}$ as in $(f 3)$, i.e. $F\left(t_{0}\right)>0$. For $\sigma \in(0,1)$, we define the function u_{σ} by

$$
u_{\sigma}(x)= \begin{cases}0, & \text { for } x \in \mathbb{R}^{N} \backslash B_{R_{0}}(0) \\ t_{0}, & \text { for } x \in B_{\sigma R_{0}}(0) \\ \frac{t_{0}}{2} \sin \left[\frac{\pi}{(1-\sigma) R_{0}}\left(\frac{1+\sigma}{2} R_{0}-|x|\right)\right]+\frac{t_{0}}{2} & \text { for } x \in B_{R_{0}}(0) \backslash B_{\sigma R_{0}}(0)\end{cases}
$$

where $B_{r}(0)$ denotes the N-dimensional open ball with center 0 and radius $r>0$, R_{0} is given by (1.7), and |.| denotes the usual Euclidean norm in \mathbb{R}^{N}. Since $u_{\sigma} \in$ $C^{1}(\Omega) \cap C^{2}\left(\Omega \backslash\left\{x \in B_{R_{0}}(0):|x|=\sigma R_{0}\right.\right.$ and $\left.\left.|x|=R_{0}\right\}\right)$ and $u_{\sigma}=\left|\nabla u_{\sigma}\right|=0$ for all $|x| \geq R_{0}$ we have $u_{\sigma} \in W_{0}^{2,2}(\Omega)$ and $\left|u_{\sigma}(x)\right| \leq\left|t_{0}\right|$ for all $x \in \mathbb{R}^{N}$. From the definition of u_{σ}, a simple computation shows that

$$
\begin{aligned}
\mathcal{F}\left(u_{\sigma}\right) & =\int_{B_{\sigma R_{0}}(0)} b(x) F\left(u_{\sigma}\right) d x+\int_{B_{R_{0}} \backslash B_{\sigma R_{0}}(0)} b(x) F\left(u_{\sigma}\right) d x \\
& \geq\left[b_{R_{0}} F\left(t_{0}\right) \sigma^{N}-\max _{|t| \leq R_{0}}|F(t)|(1-\sigma)^{N}\|b\|_{L^{\infty}(\Omega)}\right] R_{0}^{N} \omega_{N}
\end{aligned}
$$

where ω_{N} is the volume of the unit ball $B_{1}(0)$. If we choose $\sigma \in(0,1)$ close enough to 1 , says σ_{0}, then the right-hand side of the last inequality becomes strictly positive. By Lemma 2.3, we can choose $\rho_{0} \in(0,1)$ such that $\rho_{0}<\mathcal{A}\left(u_{\sigma_{0}}\right)$ and

$$
\begin{aligned}
\frac{\sup _{\mathcal{A}(u)<\rho_{\sigma_{0}}} \mathcal{F}(u)}{\rho_{0}} & <\frac{\left[b_{R_{0}} F\left(t_{0}\right) \sigma_{0}^{N}-\max _{|t| \leq R_{0}}|F(t)|\left(1-\sigma_{0}\right)^{N}\|b\|_{L^{\infty}(\Omega)}\right] R_{0}^{N} \omega_{N}}{2 \mathcal{A}\left(u_{\sigma_{0}}\right)} \\
& <\frac{\mathcal{F}\left(u_{\sigma_{0}}\right)}{\mathcal{A}\left(u_{\sigma_{0}}\right)}
\end{aligned}
$$

Now, in Lemma 1.3, we choose $x_{0}=0, x_{1}=u_{\sigma_{0}}, \xi=1+\rho_{0}$ and

$$
\bar{a}=a_{\mu}=\frac{1+\rho_{0}}{\frac{\mathcal{F}\left(u_{\delta_{0}}\right)}{\mathcal{A}\left(u_{\delta_{0}}\right)}-\frac{\sup _{\mathcal{A}(u)<\rho \sigma_{0}} \mathcal{F}(u)}{\rho_{0}}}>0 .
$$

For any $\mu \in[0, \bar{\mu})$, taking into account the above lemmas, all assumptions of Lemma 1.3 are verified. Then there exist an open interval $\Lambda_{\bar{\mu}} \subset[0, \bar{a}]$ and a number $\delta_{\bar{\mu}}$, such that for each $\lambda \in \Lambda_{\bar{\mu}}$, the equation $D \mathcal{A}(u)-\lambda D \mathcal{F}(u)=0$ has at least three solutions in $W_{0}^{2,2}(\Omega)$ whose $W_{0}^{2,2}(\Omega)$-norms are less than $\delta_{\bar{\mu}}$. By $(f 2), f(0)=0$, one of them may be the trivial one, so problem (1.5) has at least two non-trivial weak solutions with the required properties.

Acknowledgments

This work was supported by Vietnam National Foundation for Science and Technology Development (NAFOSTED).

References

[1] A. E. Amrouss, F. Moradi and M. Moussaoui, Existence of solutions for fourthorder PDEs with variable exponents, Electronic J. Diff. Equ., Vol. 2009(153) (2009), 1-13.
[2] A. Ayoujil and A.R. El Amrouss, On the spectrum of a fourth order elliptic equation with variable, Nonlinear Anal., 71 (2009), 4916-4926.
[3] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal., 54 (2003), 651-665.
[4] Y. Deng and H. Pi, Multiple solutions for p-harmonic type equations, Nonlinear Anal., 71 (2009), 4952-4959.
[5] P. Drábek and M. Ôtani, Global Bifurcation Results for the p-Biharmonic Operator, Electronic J. Diff. Equ., Vol. 2001(48) (2001), 1-19.
[6] A. Kristály and C. Varga, Multiple solutions for elliptic problems with singular and sublinear potentials, Proc. Amer. Math. Soc., 135(7) (2007), 2121-2126.
[7] L. Li and C.L. Tang, Three solutions for a Navier boundary value problem involving the p-biharmonic, Nonlinear Anal., 72 (2010), 1339-1347.
[8] E. Montefusco, Lower semicontinuity of functionals via concentrationcompactness principle, J. Math. Anal. Appl., 263 (2001), 264-276.
[9] M. Talbi and N. Tsouli, On the spectrum of the weighted p-biharmonic operator with weight, Mediterr. J. Math., 4 (2007), 73-86.
[10] Y. Wang and Y. Shen, Multiple and sign-changing solutions for a class of semilinear biharmonic equation, J. Diff. Equ., 246 (2009), 3109-3125.
[11] W. Wang and P. Zhao, Non-uniformly nonlinear elliptic equations of p biharmonic type, J. Math. Anal. Appl., 348 (2008), 730-738.
[12] Y. Yao, Y. Shen and Z. Chen, Biharmonic Equation and an Improved Hardy Inequality, Acta Mathematicae Applicatae Sinica, 20(3) (2004), 433-440.
[13] Y. Yao, R. Wang and Y. Shen, Nontrivial solution for a class of semilinear biharmonic equation involving critical exponents, Acta Mathematica Scientia, 27B(3) (2007), 509-514.

Nguyen Thanh Chung
Department of Mathematics and Informatics
Quang Binh University
312 Ly Thuong Kiet, Dong Hoi, Quang Binh, Vietnam
email: ntchung82@yahoo.com

