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CONCERNING SOME ARITHMETIC FUNCTIONS WHICH USE
EXPONENTIAL DIVISORS

Nicuşor Minculete

Abstract. Let σ(e)(n) denote the sum of the exponential divisors of n, τ (e)(n)
denote the number of the exponential divisors of n, σ(e)∗(n) denote the sum of the
e-unitary divisors of n and τ (e)∗(n) denote the number of the e-unitary divisors of
n. The aim of this paper is to present several inequalities about the arithmetic
functions which use exponential divisors. Among these inequalities, we have the
following:
σ(e)(n)
τ (e)(n)

≥ γ(n)+
τ (e)(n)− 1

2
, for any n ≥ 1,

σ(e)∗(n)
τ (e)∗(n)

≥ γ(n)+
τ (e)∗(n)− 1

2
, for any

n ≥ 1 and σ(n)+1 ≥ σ(e)(n)+ τ(n), for any n ≥ 1, where τ(n) is the number of the
natural divisors of n, σ(n) is the sum of the divisors of n and γ is the ”core” of n.
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1. Introduction

Some properties of the arithmetic functions which use exponential divisors can
be found in the papers [1, 2, 5, 6, 8, 10].

The notion of ”exponential divisor” was introduced by M. V. Subbarao in [9], in
the following way: if n > 1 is an integer of canonical dorm n = pa1

1 p
a2
2 ...p

ar
r , then the

integer d =
r∏

i=1

pbi
i is called an exponential divisor (or e-divisor) of n =

r∏
i=1

pai
i > 1, if

bi|ai for every i = 1, r. We note d|(e)n. Let σ(e)(n) denote the sum of the exponential
divisors of n and τ (e)(n) denote the number of the exponential divisors of n.

In [11] L. Tóth and N. Minculete presented several properties for the exponential

unitary divisors of a positive integer . The integer d =
r∏

i=1

pbi
i is called a e-unitary
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divisor of n =
∏r

i=1 p
ai
i > 1 if bi is a unitary divisor of ai, so

(
bi,
ai

bi

)
= 1, for every

i = 1, r. Let σ(e)∗(n) denote the sum of the e-unitary divisors of n, and τ (e)∗(n)
denote the number of the e-unitary divisors of n. By convention, 1 is an exponential
divisor of itself, so that σ(e)∗(1) = τ (e)∗(1) = 1.

We notice that 1 is not a e-unitary divisor of n > 1, the smallest e-unitary divisor
of n = pa1

1 p
a2
2 ...p

ar
r > 1 is p1p2...pr = γ(n).

In [1], J. Fabrykowski and M. V. Subbarao study the maximal order and the av-
erage order of the multiplicative function σ(e)(n). E. G. Straus and M. V. Subbarao
in [8] obtained also several results concerning e-perfect numbers (n is an e-perfect
number if σ(e)(n) = 2n).

In [5], J. Sándor showed that, if n is a perfect square, then

2ω(n) ≤ τ (e)(n) ≤ 2Ω(n), (1.1)

where ω(n) and Ω(n) denote the number of the distinct prime factors of n, and
the total number of the prime factors of n, respectively. It is easy to see that, for
n = pa1

1 p
a2
2 ...p

ar
r > 1, we have ω(n) = r and Ω(n) = a1 + a2 + ...+ ar.

Let’s consider τ∗(n) the number of the unitary divisors of n and σ∗
k(n) the sum

of kth powers of the unitary divisors of n. J. Sándor and L. Tóth proved in [7], the
inequalities

nk + 1
2

≥
σ∗

k(n)
τ∗(n)

≥
√
nk, (1.2)

and
σ∗

k+m(n)
σ∗

m(n)
≥
√
nk, (1.3)

for all n ≥ 1 and k,m ≥ 0, real numbers.
In [3] and [4], it is shown that

σ(e)(n) ≤ ψ(n) ≤ σ(n), (1.4)

where ψ is the function of Dedekind,

τ(n) ≤ σ(e)(n)
τ (e)(n)

, (1.5)

τ(n) + 1 ≥ τ (e)(n) + τ∗(n) (1.6)

and
σ(n) + n ≥ σ(e)(n) + σ∗(n) (1.7)

for all integers n ≥ 1.
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2. Inequalities for several arithmetic functions

In this section we will present several theorems containing some properties of the
above functions.

Theorem 2.1. There are the following inequalities:

σ(e)(n)
τ (e)(n)

≥ γ(n) +
τ (e)(n)− 1

2
(2.1)

and
σ(e)(n)
τ (e)(n)

≥ γ(n), (2.2)

for all n ≥ 1.

Proof. For n = 1, we obtain
σ(e)(1)
τ (e)(1)

= 1 = γ(1)+
τ (e)(1)− 1

2
and

σ(e)(1)
τ (e)(1)

= 1 = γ(1).

For n > 1, we take the divisors in increasing order. The smallest exponential
divisor of n = pa1

1 p
a2
2 ...p

ar
r > 1 is p1p2...pr = γ(n). The second divisor is at least

2p1p2...pr = 2γ(n) ≥ γ(n) + 1.
Let d1, d2, ..., ds be the exponential divisors of n; it is easy to see that di ≥

γ(n) + i− 1, for any i = 1, s. Hence

σ(e)(n) =
∑

d|(e)n

d ≥ γ(n)+γ(n)+1+γ(n)+2+ ...+γ(n)+ s− 1 = sγ(n)+
s(s− 1)

2
.

Since s = τ (e)(n) is the number of the exponential divisor of n, we deduce the
inequality

σ(e)(n) ≥ τ (e)(n) · γ(n) +
τ (e)(n)(τ (e)(n)− 1)

2
.

Consequently, we have

σ(e)(n)
τ (e)(n)

≥ γ(n) +
τ (e)(n)− 1

2
.

On the other hand, we have the inequality, τ (e)(n) ≥ 1, which means that

σ(e)(n)
τ (e)(n)

≥ γ(n).

�
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Remark 1. If n is a squarefree number, then σ(e)(n) = n = γ(n) and τ (e)(n) = 1.
Therefore, we obtain the equality in relations (2.1) and (2.2).

If n is not a squarefree number, then in the proof of Theorem 2.1 we use for
the second divisor that he is at least 2γ(n) ≥ γ(n) + 1. But the equality holds for
γ(n) = 1, so n = 1. In other words, the equality in relations (2.1) and (2.2) holds,
when n is a squarefree number.

Corollary 2.2. There are the following inequalities:

σ(e)∗(n)
τ (e)∗(n)

≥ γ(n) +
τ (e)∗(n)− 1

2
(2.3)

and
σ(e)∗(n)
τ (e)∗(n)

≥ γ(n), (2.4)

for all n ≥ 1.

Remark 2. As in remark of Theorem 2.1, the equality in relations (2.3) and (2.4)
holds, when n is a squarefree number.

Theorem 2.3. For n = pa1
1 p

a2
2 ...p

ar
r > 1 there is the inequality

τ(n) ≥ τ (e)(n) +
τ(n)
ω(n)

(
1

a1 + 1
+

1
a2 + 1

+ ...+
1

ar + 1

)
. (2.5)

Equality holds for n = p or for n = p2, where p is a prime number.

Proof. To prove the above inequality, will have to study several cases, namely:
Case I. If n = p2

1p
2
2...p

2
r , then τ(n) = 3r and

τ (e)(n) = τ(a1) · τ(a2) · ... · τ(ar) = τ r(2) = 2r.

Inequality (2.5) becomes

3r ≥ 2r +
3r

r
· r
3

= 2r + 3r−1,

so, 2 · 3r−1 ≥ 2r, what is true. Equality holds for r = 1, so n = p2, where p is a
prime number.

Case II. If aj 6= 2 for every j ∈ {1, 2, ..., r}, and ak = min{aj |aj 6= 2}, then
(ak − 1) - ak.
Therefore, we obtain that

n

p
i1
1 ·pi2

2 ·...·p
ik−1
k−1 ·pk·p

ik+1
k+1 ·...·pir

r

= pa1−i1
1 ·pa2−i2

2 · ... ·pak−1−ik−1

k−1 ·pak−1
k ·pak+1−ik+1

k+1 · ... ·par−ir
r
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is not exponential divisor of n, for every ij = 0, aj , and for every j ∈ {1, ..., r} \ {k}.

Thus, the number of divisors of this type, which are not exponential, is
τ(n)
ak + 1

.

Therefore, we have

τ(n) =
∑

d|(e)n

1 +
∑

d-(e)n

1 = τ (e)(n) +
∑

d-(e)n

1 ≥ τ (e)(n) +
τ(n)
ak + 1

,

so
τ(n) ≥ τ (e)(n) +

τ(n)
ak + 1

= τ (e)(n) +
τ(n)
ω(n)

· ω(n)
ak + 1

.

But ω(n)
ak+1 ≥

1
a1+1 + 1

a2+1 +...+ 1
ar+1 , which means that the inequality of the statement

is true.
Case III. If there is at least a number aj 6= 2, and at least a number ai = 2,

where j, l ∈ {1, 2, ..., r}, then without decreasing the generality, we renumber the
prime factors from the factorization of n and we obtain
n = p2

1p
2
2...p

2
sp

as+1

s+1 ...p
ar
r , with as+1, as+2, ..., ar 6= 2, and ak = min{aj |aj 6= 2, j ∈

{s+ 1, ..., r}}. If ak 6= 2, then (ak − 1) - ak, so
n

p
i1
1 ·pi2

2 ·...·p
ik−1
k−1 ·pk·p

ik+1
k+1 ·...·pir

r

= pa1−i1
1 ·pa2−i2

2 · ... ·pak−1−ik−1

k−1 ·pak−1
k ·pak+1−ik+1

k+1 · ... ·par−ir
r

is not exponential divisor of n, for every ij = 0, aj and for every j ∈ {1, ..., r} \ {k}.

Thus, the number of divisors of this type is
τ(n)
ak + 1

, and the number
n

p2
1p

i2
2 · ... · pir

r

=

p2−i2
2 · ... ·p2−is

s ·pas+1−is+1

s+1 · ... ·par−ir
r is not exponential divisor of n, for all i2, ..., is ∈

{0, 1, 2} and ij = 0, aj , for every j ∈ {s + 1, ..., r}. The second type of divisors are

different from those of the above, and their number is
τ(n)

3
.

Therefore

τ(n) =
∑

d|(e)n

1 +
∑

d-(e)n

1 = τ (e)(n) +
∑

d-(e)n

1 ≥ τ (e)(n) +
τ(n)
ak + 1

+
τ(n)

3
,

so

τ(n) ≥ τ (e)(n) +
τ(n)
ω(n)

(
ω(n)
ak + 1

+
ω(n)

3

)
≥ τ (e)(n) +

τ(n)
ω(n)

(
r − s

ak + 1
+
s

3

)
≥

≥ τ (e)(n) +
τ(n)
ω(n)

(
1

as+1 + 1
+

1
as+2 + 1

+ ...+
1

ar + 1
+

1
2 + 1

+ ...+
1

2 + 1

)
=

= τ (e)(n) +
τ(n)
ω(n)

(
1

a1 + 1
+

1
a2 + 1

+ ...+
1

ar + 1

)
,
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where ω(n) = r, which means that the inequality of the statement is true. Thus,
the proof is complete.

�

Corollary 2.4. For every n > 1 there are the following inequalities:

τ(n) ≥ τ (e)(n) +
τ(n)ω(n)

Ω(n) + ω(n)
(2.6)

and
τ(n) ≥ τ (e)(n) + ω(n)

√
τω(n)−1(n). (2.7)

Proof. From Cauchy’s inequality, we have

(a1 + 1 + a2 + 1 + ...+ ar + 1)
(

1
a1 + 1

+
1

a2 + 1
+ ...+

1
ar + 1

)
≥ r2.

But a1 + a2 + ...+ ar = Ω(n), so, according to above inequality, we deduce

1
a1 + 1

+
1

a2 + 1
+ ...+

1
ar + 1

≥ ω2(n)
Ω(n) + ω(n)

.

Therefore, by using theorem 2.3, we obtain inequality (2.6).
Combining inequality (2.5) with the inequality

1
a1 + 1

+
1

a2 + 1
+ ...+

1
ar + 1

≥ r r

√
1

(a1 + 1)(a2 + 1)...(ar + 1)
=

r
r
√
τ(n)

,

it follows inequality (2.7).
�

Lemma 2.5. For any xi > 0 with i ∈ {1, 2, ..., n}, there is the following inequality:

n∏
i=1

(1 + xi + x2
i ) +

n∏
i=1

x2
i ≥

n∏
i=1

(xi + x2
i ) +

n∏
i=1

(1 + x2
i ). (2.8)

Proof. We consider

p(n) :
n∏

i=1

(1 + xi + x2
i ) +

n∏
i=1

x2
i ≥

n∏
i=1

(xi + x2
i ) +

n∏
i=1

(1 + x2
i ), for any n ≥ 1.

We check that p(1) is true, so

1 + x1 + x2
1 + x2

1 ≥ x1 + x2
1 + 1 + x2

1,
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and we suppose that p(k) is true, then we prove that p(k + 1) is true, so

k+1∏
i=1

(1 + xi + x2
i ) +

k+1∏
i=1

x2
i ≥

k+1∏
i=1

(xi + x2
i ) +

k+1∏
i=1

(1 + x2
i ),

which is equivalent to the inequality

x2
k+1

(
k∏

i=1

(1 + xi + x2
i ) +

k∏
i=1

x2
i −

k∏
i=1

(xi + x2
i )−

k∏
i=1

(1 + x2
i )

)
+

+xk+1

(
k∏

i=1

(1 + xi + x2
i )−

k∏
i=1

(xi + x2
i )

)
+

k∏
i=1

(1 + xi + x2
i )−

k∏
i=1

(1 + x2
i ) ≥ 0.

According to the principle of mathematical induction, p(n) is true for any n ≥ 1.
�

Theorem 2.6. For every n ≥ 1, the inequality

σ(n) + 1 ≥ σ(e)(n) + τ(n), (2.9)

holds.

Proof. If n = 1, then we obtain σ(1) + 1 = 2 = σ(e)(1) + τ(1).
Let’s consider n > 1. To prove the above inequality will be a study on more cases
namely:
Case I. If n = p2

1p
2
2...p

2
r , then σ(n) =

∏r
i=1(1+ pi + p2

i ), σ
(e)(n) =

∏r
i=1(pi + p2

i ) and
τ(n) = 3r, which means that inequality (2.9) is equivalent to the inequality

r∏
i=1

(1 + pi + p2
i ) + 1 ≥

r∏
i=1

(pi + p2
i ) + 3r.

Apply lemma 2.5, for n = r and xi = pi, thus, we obtain the inequality
r∏

i=1

(1 + pi + p2
i ) +

r∏
i=1

p2
i ≥

r∏
i=1

(pi + p2
i ) +

r∏
i=1

(1 + p2
i ).

Since
∏r

i=1(1 + p2
i ) ≥ 5r − 4r +

∑r
i=1 p

2
i , and 5r − 4r ≥ 3r − 1, it follows that the

inequality of statement is true.

Case II. If there is a number ak ≥ 3, then (ak − 1) - ak, so
n

p
i1
1 ·pi2

2 ·...·p
ik−1
k−1 ·pk·p

ik+1
k+1 ·...·pir

r

= pa1−i1
1 ·pa2−i2

2 · ... ·pak−1−ik−1

k−1 ·pak−1
k ·pak+1−ik+1

k+1 · ... ·par−ir
r

is not exponential divisors of n, for all ij = 0, aj and for all j ∈ {1, ..., r} \ {k}.
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Thus, the number of divisors of this type is
τ(n)
ak + 1

, and the sum of these divisors

non-exponential is

pak−1
k σ

(
n

pak
k

)
.

Hence

σ(n) =
∑

d|(e)n d +
∑

d-(e)n d = σ(e)(n) +
∑

d-(e)n d ≥ σ(e)(n) + pak−1
k σ

(
n

p
ak
k

)
≥

σ(e)(n) + n
pk

+ pak−1
k ,

so, using Sierpinski’s inequality, 2
√
n > τ(n), we have

σ(n) ≥ σ(e)(n) +
n

pk
+ pak−1

k ≥ σ(e)(n) +
n

pk
+ pk − 1 ≥ σ(e)(n) + 2

√
n− 1 >

σ(e)(n) + τ(n)− 1.

Case III. If there is at least a number ai = 1, at least a number aj = 2 and at least
a number ak ≥ 3, where i, j, k ∈ {1, 2, ..., r}, then without decreasing the generality,
we renumber the prime factors from the factorization of n and we obtain

n = p1p2...psp
2
s+1p

2
s+2...p

2
t p

at+1

t ...par
r , with at+1, at+2, ..., ar ≥ 3.

Therefore, we can write n = n1 · n2 · n3, where n1 = p1p2...ps, n2 = p2
1p

2
2...p

2
s and

n3 = p
at+1

t+1 ...p
r
r, which means that (n1, n2, n3) = 1, and it is easy to see, using the

multiplicativity of these functions, that

σ(n) = σ(n1 · n2 · n3) = σ(n1) · σ(n2) · σ(n3) ≥
(σ(e)(n1) + τ(n1)− 1)(σ(e)(n2) + τ(n2)− 1)(σ(e)(n3) + τ(n3)− 1) =

= (σ(e)(n1n2) + σ(e)(n1)(τ(n2)− 1) + τ(n1)(σ(e)(n2)− 1) + τ(n1n2)− σ(e)(n2)
−τ(n2) + 1)

(σ(e)(n3) + τ(n3)− 1) ≥
(σ(e)(n1n2) + τ(n1n2)− 1)(σ(e)(n3) + τ(n3)− 1) =

= σ(e)(n1n2n3) + σ(e)(n1n2)(τ(n3)− 1) + τ(n1n2)(σ(e)(n3)− 1)+
τ(n1n2n3)− σ(e)(n3)− τ(n3) + 1 ≥ σ(e)(n) + τ(n)− 1,

because
σ(e)(n1), τ(n1), σ(e)(n1n2), τ(n1n2) ≥ 1.

Thus, the demonstration is complete.
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email: minculeten@yahoo.com

133


