CONCERNING SOME ARITHMETIC FUNCTIONS WHICH USE EXPONENTIAL DIVISORS

Nicuşor Minculete

Abstract. Let $\sigma^{(e)}(n)$ denote the sum of the exponential divisors of $n, \tau^{(e)}(n)$ denote the number of the exponential divisors of $n, \sigma^{(e) *}(n)$ denote the sum of the e-unitary divisors of n and $\tau^{(e) *}(n)$ denote the number of the e-unitary divisors of n. The aim of this paper is to present several inequalities about the arithmetic functions which use exponential divisors. Among these inequalities, we have the following:
$\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \gamma(n)+\frac{\tau^{(e)}(n)-1}{2}$, for any $n \geq 1, \frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)} \geq \gamma(n)+\frac{\tau^{(e) *}(n)-1}{2}$, for any $n \geq 1$ and $\sigma(n)+1 \geq \sigma^{(e)}(n)+\tau(n)$, for any $n \geq 1$, where $\tau(n)$ is the number of the natural divisors of $n, \sigma(n)$ is the sum of the divisors of n and γ is the "core" of n.

2010 Mathematics Subject Classification: 11A25
Keywords: arithmetic function, exponential divisor

1. Introduction

Some properties of the arithmetic functions which use exponential divisors can be found in the papers $[1,2,5,6,8,10]$.

The notion of "exponential divisor" was introduced by M. V. Subbarao in [9], in the following way: if $n>1$ is an integer of canonical dorm $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}$, then the integer $d=\prod_{i=1}^{r} p_{i}^{b_{i}}$ is called an exponential divisor (or e-divisor) of $n=\prod_{i=1}^{r} p_{i}^{a_{i}}>1$, if $b_{i} \mid a_{i}$ for every $i=\overline{1, r}$. We note $\left.d\right|_{(e)} n$. Let $\sigma^{(e)}(n)$ denote the sum of the exponential divisors of n and $\tau^{(e)}(n)$ denote the number of the exponential divisors of n.

In [11] L. Tóth and N. Minculete presented several properties for the exponential unitary divisors of a positive integer . The integer $d=\prod_{i=1}^{r} p_{i}^{b_{i}}$ is called a e-unitary
divisor of $n=\prod_{i=1}^{r} p_{i}^{a_{i}}>1$ if b_{i} is a unitary divisor of a_{i}, so $\left(b_{i}, \frac{a_{i}}{b_{i}}\right)=1$, for every $i=\overline{1, r}$. Let $\sigma^{(e) *}(n)$ denote the sum of the e-unitary divisors of n, and $\tau^{(e) *}(n)$ denote the number of the e-unitary divisors of n. By convention, 1 is an exponential divisor of itself, so that $\sigma^{(e) *}(1)=\tau^{(e) *}(1)=1$.

We notice that 1 is not a e-unitary divisor of $n>1$, the smallest e-unitary divisor of $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}>1$ is $p_{1} p_{2} \ldots p_{r}=\gamma(n)$.

In [1], J. Fabrykowski and M. V. Subbarao study the maximal order and the average order of the multiplicative function $\sigma^{(e)}(n)$. E. G. Straus and M. V. Subbarao in [8] obtained also several results concerning e-perfect numbers (n is an e-perfect number if $\left.\sigma^{(e)}(n)=2 n\right)$.

In [5], J. Sándor showed that, if n is a perfect square, then

$$
\begin{equation*}
2^{\omega(n)} \leq \tau^{(e)}(n) \leq 2^{\Omega(n)} \tag{1.1}
\end{equation*}
$$

where $\omega(n)$ and $\Omega(n)$ denote the number of the distinct prime factors of n, and the total number of the prime factors of n, respectively. It is easy to see that, for $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}>1$, we have $\omega(n)=r$ and $\Omega(n)=a_{1}+a_{2}+\ldots+a_{r}$.

Let's consider $\tau^{*}(n)$ the number of the unitary divisors of n and $\sigma_{k}^{*}(n)$ the sum of k th powers of the unitary divisors of n. J. Sándor and L. Tóth proved in [7], the inequalities

$$
\begin{equation*}
\frac{n^{k}+1}{2} \geq \frac{\sigma_{k}^{*}(n)}{\tau^{*}(n)} \geq \sqrt{n^{k}} \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma_{k+m}^{*}(n)}{\sigma_{m}^{*}(n)} \geq \sqrt{n^{k}} \tag{1.3}
\end{equation*}
$$

for all $n \geq 1$ and $k, m \geq 0$, real numbers.
In [3] and [4], it is shown that

$$
\begin{equation*}
\sigma^{(e)}(n) \leq \psi(n) \leq \sigma(n) \tag{1.4}
\end{equation*}
$$

where ψ is the function of Dedekind,

$$
\begin{align*}
\tau(n) & \leq \frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \tag{1.5}\\
\tau(n)+1 & \geq \tau^{(e)}(n)+\tau^{*}(n) \tag{1.6}
\end{align*}
$$

and

$$
\begin{equation*}
\sigma(n)+n \geq \sigma^{(e)}(n)+\sigma^{*}(n) \tag{1.7}
\end{equation*}
$$

for all integers $n \geq 1$.

2. INEQUALITIES FOR SEVERAL ARITHMETIC FUNCTIONS

In this section we will present several theorems containing some properties of the above functions.

Theorem 2.1. There are the following inequalities:

$$
\begin{equation*}
\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \gamma(n)+\frac{\tau^{(e)}(n)-1}{2} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \gamma(n) \tag{2.2}
\end{equation*}
$$

for all $n \geq 1$.
Proof. For $n=1$, we obtain $\frac{\sigma^{(e)}(1)}{\tau^{(e)}(1)}=1=\gamma(1)+\frac{\tau^{(e)}(1)-1}{2}$ and $\frac{\sigma^{(e)}(1)}{\tau^{(e)}(1)}=1=\gamma(1)$. For $n>1$, we take the divisors in increasing order. The smallest exponential divisor of $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}>1$ is $p_{1} p_{2} \ldots p_{r}=\gamma(n)$. The second divisor is at least $2 p_{1} p_{2} \ldots p_{r}=2 \gamma(n) \geq \gamma(n)+1$.

Let $d_{1}, d_{2}, \ldots, d_{s}$ be the exponential divisors of n; it is easy to see that $d_{i} \geq$ $\gamma(n)+i-1$, for any $i=\overline{1, s}$. Hence
$\sigma^{(e)}(n)=\sum_{\left.d\right|_{(e)} n} d \geq \gamma(n)+\gamma(n)+1+\gamma(n)+2+\ldots+\gamma(n)+s-1=s \gamma(n)+\frac{s(s-1)}{2}$.

Since $s=\tau^{(e)}(n)$ is the number of the exponential divisor of n, we deduce the inequality

$$
\sigma^{(e)}(n) \geq \tau^{(e)}(n) \cdot \gamma(n)+\frac{\tau^{(e)}(n)\left(\tau^{(e)}(n)-1\right)}{2}
$$

Consequently, we have

$$
\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \gamma(n)+\frac{\tau^{(e)}(n)-1}{2}
$$

On the other hand, we have the inequality, $\tau^{(e)}(n) \geq 1$, which means that

$$
\frac{\sigma^{(e)}(n)}{\tau^{(e)}(n)} \geq \gamma(n)
$$

N. Minculete - Concerning some arithmetic functions which use exponential...

Remark 1. If n is a squarefree number, then $\sigma^{(e)}(n)=n=\gamma(n)$ and $\tau^{(e)}(n)=1$. Therefore, we obtain the equality in relations (2.1) and (2.2).

If n is not a squarefree number, then in the proof of Theorem 2.1 we use for the second divisor that he is at least $2 \gamma(n) \geq \gamma(n)+1$. But the equality holds for $\gamma(n)=1$, so $n=1$. In other words, the equality in relations (2.1) and (2.2) holds, when n is a squarefree number.

Corollary 2.2. There are the following inequalities:

$$
\begin{equation*}
\frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)} \geq \gamma(n)+\frac{\tau^{(e) *}(n)-1}{2} \tag{2.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\sigma^{(e) *}(n)}{\tau^{(e) *}(n)} \geq \gamma(n) \tag{2.4}
\end{equation*}
$$

for all $n \geq 1$.
Remark 2. As in remark of Theorem 2.1, the equality in relations (2.3) and (2.4) holds, when n is a squarefree number.

Theorem 2.3. For $n=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{r}^{a_{r}}>1$ there is the inequality

$$
\begin{equation*}
\tau(n) \geq \tau^{(e)}(n)+\frac{\tau(n)}{\omega(n)}\left(\frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\ldots+\frac{1}{a_{r}+1}\right) \tag{2.5}
\end{equation*}
$$

Equality holds for $n=p$ or for $n=p^{2}$, where p is a prime number.
Proof. To prove the above inequality, will have to study several cases, namely:
Case I. If $n=p_{1}^{2} p_{2}^{2} \ldots p_{r}^{2}$, then $\tau(n)=3^{r}$ and

$$
\tau^{(e)}(n)=\tau\left(a_{1}\right) \cdot \tau\left(a_{2}\right) \cdot \ldots \cdot \tau\left(a_{r}\right)=\tau^{r}(2)=2^{r}
$$

Inequality (2.5) becomes

$$
3^{r} \geq 2^{r}+\frac{3^{r}}{r} \cdot \frac{r}{3}=2^{r}+3^{r-1}
$$

so, $2 \cdot 3^{r-1} \geq 2^{r}$, what is true. Equality holds for $r=1$, so $n=p^{2}$, where p is a prime number.

Case II. If $a_{j} \neq 2$ for every $j \in\{1,2, \ldots, r\}$, and $a_{k}=\min \left\{a_{j} \mid a_{j} \neq 2\right\}$, then $\left(a_{k}-1\right) \nmid a_{k}$.
Therefore, we obtain that
$\frac{n}{p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdot \ldots \cdot p_{k-1}^{i_{k-1}} \cdot p_{k} \cdot p_{k+1}^{i_{k+1}} \cdots \ldots \cdot p_{r}^{i_{r}}}=p_{1}^{a_{1}-i_{1}} \cdot p_{2}^{a_{2}-i_{2}} \cdot \ldots \cdot p_{k-1}^{a_{k-1}-i_{k-1}} \cdot p_{k}^{a_{k}-1} \cdot p_{k+1}^{a_{k+1}-i_{k+1}} \cdot \ldots \cdot p_{r}^{a_{r}-i_{r}}$
is not exponential divisor of n, for every $i_{j}=\overline{0, a_{j}}$, and for every $j \in\{1, \ldots, r\} \backslash\{k\}$.
Thus, the number of divisors of this type, which are not exponential, is $\frac{\tau(n)}{a_{k}+1}$.
Therefore, we have

$$
\tau(n)=\sum_{\left.d\right|_{(e)^{n}}} 1+\sum_{d \nmid(e)^{n}} 1=\tau^{(e)}(n)+\sum_{d \nmid(e)^{n}} 1 \geq \tau^{(e)}(n)+\frac{\tau(n)}{a_{k}+1},
$$

so

$$
\tau(n) \geq \tau^{(e)}(n)+\frac{\tau(n)}{a_{k}+1}=\tau^{(e)}(n)+\frac{\tau(n)}{\omega(n)} \cdot \frac{\omega(n)}{a_{k}+1} .
$$

But $\frac{\omega(n)}{a_{k}+1} \geq \frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\ldots+\frac{1}{a_{r}+1}$, which means that the inequality of the statement is true.

Case III. If there is at least a number $a_{j} \neq 2$, and at least a number $a_{i}=2$, where $j, l \in\{1,2, \ldots, r\}$, then without decreasing the generality, we renumber the prime factors from the factorization of n and we obtain
$n=p_{1}^{2} p_{2}^{2} \ldots p_{s}^{2} p_{s+1}^{a_{s+1} \ldots p_{r}^{a_{r}} \text {, with } a_{s+1}, a_{s+2}, \ldots, a_{r} \neq 2 \text {, and } a_{k}=\min \left\{a_{j} \mid a_{j} \neq 2, j \in, ~\left(a_{k}\right)\right.}$ $\{s+1, \ldots, r\}\}$. If $a_{k} \neq 2$, then $\left(a_{k}-1\right) \nmid a_{k}$, so
$\frac{n}{p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \ldots . p_{k-1}^{i_{k}} \cdot p_{k} \cdot p_{k+1}^{i_{k+1}} \cdots \ldots \cdot p_{r}^{i_{r}}}=p_{1}^{a_{1}-i_{1}} \cdot p_{2}^{a_{2}-i_{2}} \cdot \ldots \cdot p_{k-1}^{a_{k-1}-i_{k-1}} \cdot p_{k}^{a_{k}-1} \cdot p_{k+1}^{a_{k+1}-i_{k+1}} \cdot \ldots \cdot p_{r}^{a_{r}-i_{r}}$ is not exponential divisor of n, for every $i_{j}=\overline{0, a_{j}}$ and for every $j \in\{1, \ldots, r\} \backslash\{k\}$. Thus, the number of divisors of this type is $\frac{\tau(n)}{a_{k}+1}$, and the number $\frac{n}{p_{1}^{2} p_{2}^{i_{2}} \cdot \ldots \cdot p_{r}^{i_{r}}}=$ $p_{2}^{2-i_{2}} \cdot \ldots \cdot p_{s}^{2-i_{s}} \cdot p_{s+1}^{a_{s+1}-i_{s+1}} \cdot \ldots \cdot p_{r}^{a_{r}-i_{r}}$ is not exponential divisor of n, for all $i_{2}, \ldots, i_{s} \in$ $\{0,1,2\}$ and $i_{j}=\overline{0, a_{j}}$, for every $j \in\{s+1, \ldots, r\}$. The second type of divisors are different from those of the above, and their number is $\frac{\tau(n)}{3}$.
Therefore

$$
\tau(n)=\sum_{\left.d\right|_{(e)^{n}}} 1+\sum_{d \nmid(e)^{n}} 1=\tau^{(e)}(n)+\sum_{d \nmid(e)^{n}} 1 \geq \tau^{(e)}(n)+\frac{\tau(n)}{a_{k}+1}+\frac{\tau(n)}{3},
$$

so

$$
\begin{gathered}
\tau(n) \geq \tau^{(e)}(n)+\frac{\tau(n)}{\omega(n)}\left(\frac{\omega(n)}{a_{k}+1}+\frac{\omega(n)}{3}\right) \geq \tau^{(e)}(n)+\frac{\tau(n)}{\omega(n)}\left(\frac{r-s}{a_{k}+1}+\frac{s}{3}\right) \geq \\
\geq \tau^{(e)}(n)+\frac{\tau(n)}{\omega(n)}\left(\frac{1}{a_{s+1}+1}+\frac{1}{a_{s+2}+1}+\ldots+\frac{1}{a_{r}+1}+\frac{1}{2+1}+\ldots+\frac{1}{2+1}\right)= \\
=\tau^{(e)}(n)+\frac{\tau(n)}{\omega(n)}\left(\frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\ldots+\frac{1}{a_{r}+1}\right)
\end{gathered}
$$

N. Minculete - Concerning some arithmetic functions which use exponential...
where $\omega(n)=r$, which means that the inequality of the statement is true. Thus, the proof is complete.

Corollary 2.4. For every $n>1$ there are the following inequalities:

$$
\begin{equation*}
\tau(n) \geq \tau^{(e)}(n)+\frac{\tau(n) \omega(n)}{\Omega(n)+\omega(n)} \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\tau(n) \geq \tau^{(e)}(n)+\sqrt[\omega(n)]{\tau^{\omega(n)-1}(n)} \tag{2.7}
\end{equation*}
$$

Proof. From Cauchy's inequality, we have

$$
\left(a_{1}+1+a_{2}+1+\ldots+a_{r}+1\right)\left(\frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\ldots+\frac{1}{a_{r}+1}\right) \geq r^{2}
$$

But $a_{1}+a_{2}+\ldots+a_{r}=\Omega(n)$, so, according to above inequality, we deduce

$$
\frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\ldots+\frac{1}{a_{r}+1} \geq \frac{\omega^{2}(n)}{\Omega(n)+\omega(n)}
$$

Therefore, by using theorem 2.3 , we obtain inequality (2.6).
Combining inequality (2.5) with the inequality

$$
\frac{1}{a_{1}+1}+\frac{1}{a_{2}+1}+\ldots+\frac{1}{a_{r}+1} \geq r \sqrt[r]{\frac{1}{\left(a_{1}+1\right)\left(a_{2}+1\right) \ldots\left(a_{r}+1\right)}}=\frac{r}{\sqrt[r]{\tau(n)}}
$$

it follows inequality (2.7).

Lemma 2.5. For any $x_{i}>0$ with $i \in\{1,2, \ldots, n\}$, there is the following inequality:

$$
\begin{equation*}
\prod_{i=1}^{n}\left(1+x_{i}+x_{i}^{2}\right)+\prod_{i=1}^{n} x_{i}^{2} \geq \prod_{i=1}^{n}\left(x_{i}+x_{i}^{2}\right)+\prod_{i=1}^{n}\left(1+x_{i}^{2}\right) \tag{2.8}
\end{equation*}
$$

Proof. We consider

$$
p(n): \prod_{i=1}^{n}\left(1+x_{i}+x_{i}^{2}\right)+\prod_{i=1}^{n} x_{i}^{2} \geq \prod_{i=1}^{n}\left(x_{i}+x_{i}^{2}\right)+\prod_{i=1}^{n}\left(1+x_{i}^{2}\right), \text { for any } n \geq 1
$$

We check that $p(1)$ is true, so

$$
1+x_{1}+x_{1}^{2}+x_{1}^{2} \geq x_{1}+x_{1}^{2}+1+x_{1}^{2}
$$

and we suppose that $p(k)$ is true, then we prove that $p(k+1)$ is true, so

$$
\prod_{i=1}^{k+1}\left(1+x_{i}+x_{i}^{2}\right)+\prod_{i=1}^{k+1} x_{i}^{2} \geq \prod_{i=1}^{k+1}\left(x_{i}+x_{i}^{2}\right)+\prod_{i=1}^{k+1}\left(1+x_{i}^{2}\right)
$$

which is equivalent to the inequality

$$
\begin{gathered}
x_{k+1}^{2}\left(\prod_{i=1}^{k}\left(1+x_{i}+x_{i}^{2}\right)+\prod_{i=1}^{k} x_{i}^{2}-\prod_{i=1}^{k}\left(x_{i}+x_{i}^{2}\right)-\prod_{i=1}^{k}\left(1+x_{i}^{2}\right)\right)+ \\
+x_{k+1}\left(\prod_{i=1}^{k}\left(1+x_{i}+x_{i}^{2}\right)-\prod_{i=1}^{k}\left(x_{i}+x_{i}^{2}\right)\right)+\prod_{i=1}^{k}\left(1+x_{i}+x_{i}^{2}\right)-\prod_{i=1}^{k}\left(1+x_{i}^{2}\right) \geq 0 .
\end{gathered}
$$

According to the principle of mathematical induction, $p(n)$ is true for any $n \geq 1$.

Theorem 2.6. For every $n \geq 1$, the inequality

$$
\begin{equation*}
\sigma(n)+1 \geq \sigma^{(e)}(n)+\tau(n) \tag{2.9}
\end{equation*}
$$

holds.
Proof. If $n=1$, then we obtain $\sigma(1)+1=2=\sigma^{(e)}(1)+\tau(1)$.
Let's consider $n>1$. To prove the above inequality will be a study on more cases namely:
Case I. If $n=p_{1}^{2} p_{2}^{2} \ldots p_{r}^{2}$, then $\sigma(n)=\prod_{i=1}^{r}\left(1+p_{i}+p_{i}^{2}\right), \sigma^{(e)}(n)=\prod_{i=1}^{r}\left(p_{i}+p_{i}^{2}\right)$ and $\tau(n)=3^{r}$, which means that inequality (2.9) is equivalent to the inequality

$$
\prod_{i=1}^{r}\left(1+p_{i}+p_{i}^{2}\right)+1 \geq \prod_{i=1}^{r}\left(p_{i}+p_{i}^{2}\right)+3^{r}
$$

Apply lemma 2.5 , for $n=r$ and $x_{i}=p_{i}$, thus, we obtain the inequality

$$
\prod_{i=1}^{r}\left(1+p_{i}+p_{i}^{2}\right)+\prod_{i=1}^{r} p_{i}^{2} \geq \prod_{i=1}^{r}\left(p_{i}+p_{i}^{2}\right)+\prod_{i=1}^{r}\left(1+p_{i}^{2}\right)
$$

Since $\prod_{i=1}^{r}\left(1+p_{i}^{2}\right) \geq 5^{r}-4^{r}+\sum_{i=1}^{r} p_{i}^{2}$, and $5^{r}-4^{r} \geq 3^{r}-1$, it follows that the inequality of statement is true.

Case II. If there is a number $a_{k} \geq 3$, then $\left(a_{k}-1\right) \nmid a_{k}$, so
$\frac{n}{p_{1}^{i_{1}} \cdot p_{2}^{i_{2}} \cdot \ldots \cdot p_{k-1}^{i_{k-1}} \cdot p_{k} \cdot p_{k+1}^{i_{k+1}} \cdot \ldots \cdot p_{r}^{i_{r}}}=p_{1}^{a_{1}-i_{1}} \cdot p_{2}^{a_{2}-i_{2}} \cdot \ldots \cdot p_{k-1}^{a_{k-1}-i_{k-1}} \cdot p_{k}^{a_{k}-1} \cdot p_{k+1}^{a_{k+1}-i_{k+1}} \cdot \ldots \cdot p_{r}^{a_{r}-i_{r}}$ is not exponential divisors of n, for all $i_{j}=\overline{0, a_{j}}$ and for all $j \in\{1, \ldots, r\} \backslash\{k\}$.

Thus, the number of divisors of this type is $\frac{\tau(n)}{a_{k}+1}$, and the sum of these divisors non-exponential is

$$
p_{k}^{a_{k}-1} \sigma\left(\frac{n}{p_{k}^{a_{k}}}\right) .
$$

Hence
$\sigma(n)=\sum_{\left.d\right|_{(e)}{ }^{n}} d+\sum_{d \psi_{(e)} n} d=\sigma^{(e)}(n)+\sum_{d \psi_{(e)} n} d \geq \sigma^{(e)}(n)+p_{k}^{a_{k}-1} \sigma\left(\frac{n}{p_{k}^{a_{k}}}\right) \geq$ $\sigma^{(e)}(n)+\frac{n}{p_{k}}+p_{k}^{a_{k}-1}$,
so, using Sierpinski's inequality, $2 \sqrt{n}>\tau(n)$, we have

$$
\begin{aligned}
\sigma(n) \geq \sigma^{(e)}(n)+\frac{n}{p_{k}}+p_{k}^{a_{k}-1} \geq \sigma^{(e)}(n)+\frac{n}{p_{k}}+p_{k}-1 \geq \sigma^{(e)}(n)+2 \sqrt{n}-1> \\
\sigma^{(e)}(n)+\tau(n)-1
\end{aligned}
$$

Case III. If there is at least a number $a_{i}=1$, at least a number $a_{j}=2$ and at least a number $a_{k} \geq 3$, where $i, j, k \in\{1,2, \ldots, r\}$, then without decreasing the generality, we renumber the prime factors from the factorization of n and we obtain

$$
n=p_{1} p_{2} \ldots p_{s} p_{s+1}^{2} p_{s+2}^{2} \ldots p_{t}^{2} p_{t}^{a_{t+1}} \ldots p_{r}^{a_{r}}, \text { with } a_{t+1}, a_{t+2}, \ldots, a_{r} \geq 3
$$

Therefore, we can write $n=n_{1} \cdot n_{2} \cdot n_{3}$, where $n_{1}=p_{1} p_{2} \ldots p_{s}, n_{2}=p_{1}^{2} p_{2}^{2} \ldots p_{s}^{2}$ and $n_{3}=p_{t+1}^{a_{t+1} \ldots} \ldots p_{r}^{r}$, which means that $\left(n_{1}, n_{2}, n_{3}\right)=1$, and it is easy to see, using the multiplicativity of these functions, that

$$
\begin{gathered}
\sigma(n)=\sigma\left(n_{1} \cdot n_{2} \cdot n_{3}\right)=\sigma\left(n_{1}\right) \cdot \sigma\left(n_{2}\right) \cdot \sigma\left(n_{3}\right) \geq \\
\left(\sigma^{(e)}\left(n_{1}\right)+\tau\left(n_{1}\right)-1\right)\left(\sigma^{(e)}\left(n_{2}\right)+\tau\left(n_{2}\right)-1\right)\left(\sigma^{(e)}\left(n_{3}\right)+\tau\left(n_{3}\right)-1\right)= \\
=\left(\sigma^{(e)}\left(n_{1} n_{2}\right)+\sigma^{(e)}\left(n_{1}\right)\left(\tau\left(n_{2}\right)-1\right)+\tau\left(n_{1}\right)\left(\sigma^{(e)}\left(n_{2}\right)-1\right)+\tau\left(n_{1} n_{2}\right)-\sigma^{(e)}\left(n_{2}\right)\right. \\
\left.-\tau\left(n_{2}\right)+1\right) \\
\left(\sigma^{(e)}\left(n_{3}\right)+\tau\left(n_{3}\right)-1\right) \geq \\
\left(\sigma^{(e)}\left(n_{1} n_{2}\right)+\tau\left(n_{1} n_{2}\right)-1\right)\left(\sigma^{(e)}\left(n_{3}\right)+\tau\left(n_{3}\right)-1\right)= \\
=\sigma^{(e)}\left(n_{1} n_{2} n_{3}\right)+\sigma^{(e)}\left(n_{1} n_{2}\right)\left(\tau\left(n_{3}\right)-1\right)+\tau\left(n_{1} n_{2}\right)\left(\sigma^{(e)}\left(n_{3}\right)-1\right)+ \\
\tau\left(n_{1} n_{2} n_{3}\right)-\sigma^{(e)}\left(n_{3}\right)-\tau\left(n_{3}\right)+1 \geq \sigma^{(e)}(n)+\tau(n)-1,
\end{gathered}
$$

because

$$
\sigma^{(e)}\left(n_{1}\right), \tau\left(n_{1}\right), \sigma^{(e)}\left(n_{1} n_{2}\right), \tau\left(n_{1} n_{2}\right) \geq 1
$$

Thus, the demonstration is complete.

References

[1] J. Fabrykowski and M. V. Subbarao, The maximal order and the average order of multiplicative function $\sigma^{(e)}(n)$, Théorie des Nombres (Quebec, PQ, 1987), 201-206, de Gruyter, Berlin-New York, 1989.
[2] N. Minculete, Several inequalities about arithmetic functions which use the edivisors, Proceedings of " The Fifth International Symposium on Mathematical Inequalities-MATINEQ 2008", Sibiu.
[3] N. Minculete, On certain inequalities about certain arithmetic functions which use the exponential divisors (submitted for publication).
[4] N. Minculete, Some inequalities about arithmetic functions (submitted for publication).
[5] J. Sándor, On exponentially harmonic numbers, Scientia Magna, Vol. 2 (2006), No. 3, 44-47.
[6] J. Sándor, A Note on Exponential Divisors and Related Arithmetic Functions, Scientia Magna, Vol. 1 (2006), No. 1.
[7] J. Sándor and L. Tóth, On certain number-theoretic inequalities, Fib. Quart. 28 (1990), 255-258.
[8] E. G. Straus and M. V. Subbarao, On exponential divisors, Duke Math. J. 41 (1974), 465-471.
[9] M. V. Subbarao, On some arithmetic convolutions in The Theory of Arithmetic Functions, Lecture Notes in Mathematics, New York, Springer-Verlag, 1972.
[10] L. Tóth, On Certain Arithmetic Functions Involving Exponential Divisors, Ann. Univ. Sci. Budapest. Sect. Comput., 24 (2004), 285-294.
[11] L. Tóth and N. Minculete, Exponential unitary divisors, Ann. Univ. Sci. Budapest. Sect. Comput. 35 (2011).

Nicuşor Minculete
Department of REI
Dimitrie Cantemir University of Braşov
Str. Bisericii Române nr. 107, Braşov, Romania
email: minculeten@yahoo.com

