INVERSE AND SATURATION THEOREMS FOR LINEAR COMBINATIONS OF A NEW CLASS OF LINEAR POSITIVE OPERATORS

B. Kunwar and Brahma Dutta Pandey

Abstract.The inverse and saturation theorems for the linear combinations of a new class of linear positive operators have been studied. A number of well known operators are special cases of this class of operators. The results make use of one of the Peetre's K- functionals. The analogues of inverse and saturation theorems in simultaneous approximation have also been proved.

2000 Mathematics Subject Classification:41A27, 41A40, 41A35, 41A60.
Key words: Positive Linear Operators, Linear Combinations, Inverse and Saturation Theorems, K-Functionals.

1. Introduction

During the past few decades a number of authors, Becker and Nessel [1], Berens and Lorentz [2], De Vore [4], Ditzian and May [5], May [8], Shapiro [12], and Timan [13] etc. have made an extensive study of the problems related to the inverse and saturation for different classes and sequences of the linear positive operators.In the present paper we study the inverse and saturation problems for the linear combinations of a new class of linear positive operators, T_{λ}. This class includes several wellknown sequences of linear positive operators as special cases [6], in particular, the Gamma operators of Muller, the Modified Post-Widder and Post-Widder operators. Let $M\left(I R^{+}\right)$be the class of complex valued functions, measurable on $I R^{+}, M_{b}\left(I R^{+}\right)$ the subset of $M\left(I R^{+}\right)$consisting of the functions essentially bounded on $I R^{+}$. Let $G \in M\left(I R^{+}\right)$be a non-negative function satisfying :
(i) $G(u)$ is continuous at $u=1$,
(ii) for each $\delta>0,\left\|\chi_{\delta, 1} G\right\|_{\infty}<G(1)$, and
(iii) there exist $\theta_{1}, \theta_{2}>0$ such that $\left(u^{\theta_{1}}+u^{-\theta_{2}}\right) G(u) \in M_{b}\left(I R^{+}\right)$, where $\chi_{\delta, x}$ is the characteristic function of $I R^{+}-(x-\delta, x+\delta)$.

Let the class of all such functions G be denoted by $T\left(I R^{+}\right)$. For $G \in T\left(I R^{+}\right), \alpha \in$ $I R, \lambda, x \in I R^{+}$and $f \in M\left(I R^{+}\right)$, we define
$T_{\lambda}(f ; x)=\frac{x^{\alpha-1}}{a(\lambda)} \int_{0}^{\infty} u^{-\alpha} f(u) G^{\lambda}\left(x u^{-1}\right) d u$,
where $a(\lambda)=\int_{0}^{\infty} u^{\alpha-2} G^{\lambda}(u) d u$, whenever the above integral exists. It can be easily seen that the integral (1.1) defines a class of linear positive operators.

2. Basic Definitions and Preliminary Results

Definition 1 Let $\Omega(>1)$ be a continuous function defined on $I R^{+}$. We call Ω a bounding function [11] for G if for each compact $K \subseteq I R^{+}$there exist positive numbers λ_{K} and M_{K} such that
$T_{\lambda_{K}}(\Omega ; x)<M_{K}, x \in K$. It is clear that if $G \in T\left(I R^{+}\right)$, then $\Omega(u)=u^{p}+u^{-q}$ for $p, q>0$ is a bounding function for G. The notion of a bounding function enables us to obtain results in a uniform set-up, which, at the same time, are applicable for a general $G \in T\left(I R^{+}\right)$.

For a bounding function Ω, we define the set
$D_{\Omega}=\left\{f: f\right.$ is locally integrable on $I R^{+}$and is such that $\limsup _{u \rightarrow 0} \frac{f(u)}{\Omega(u)}$ and $\lim \sup _{u \rightarrow \infty} \frac{f(u)}{\Omega(u)}$ exist $\}$

Definition 2 :Let f be a continuous function on the interval $[a, b] \subseteq I R^{+}$and $\delta>0$. The p-modulus of continuity of f is defined by

$$
\omega_{p}(f ; \delta)=\sup _{\substack{|h|<\delta \\ x, x+p h \in[a, b]}}\left|\sum_{j=0}^{p}(-1)^{p-j}\binom{p}{j} f(x+j h)\right|
$$

For $p=1, \omega_{p}(f ; \delta)$ is simply written as $\omega(f ; \delta)$. If $\omega(f ; \delta) \leq M \delta^{\beta},(0<\beta \leq 1)$, where M is a constant, we say that $f \in \operatorname{Lip}_{M} \beta$. We define

$$
\operatorname{Lip}(\beta ; a, b)=\cup_{M>0} \operatorname{Lip}_{M} \beta
$$

$L_{\infty}[a, b]=\{f: f$ is essentially bounded on $[a, b]\}$,
$A C[a, b]=\{f: f$ is absolutely continuous on $[a, b]\}$,
$\operatorname{Lip}(p, \beta ; a, b)=\left\{f: f^{(k)} \in A C[a, b], k=0,1,2, \ldots, p-1\right.$ and $\left.f^{(p)} \in \operatorname{Lip}(\beta ; a, b)\right\}$.

For $0<\beta \leq 2$ and some constant M,
$\operatorname{Liz}(p, \beta ; a, b)=\left\{f: \omega_{2 p}(f ; \delta) \leq M \delta^{\beta k}, k=1,2, \ldots, p-1\right\}$.
For $p=1, \operatorname{Liz}(p, \beta ; a, b)$ reduces to $\operatorname{Lip}^{*}(1 ; a, b)$.
We introduce some more classes of the functions:
$T_{\infty}\left(I R^{+}\right)=\left\{G \in T\left(I R^{+}\right): G\right.$ is infinitely differentiable at $u=1$ and
$\left.G^{\prime \prime}(1) \neq 0\right\}$
$C_{0}\left(I R^{+}\right)=\left\{f: f\right.$ is continuous on $I R^{+}$and has a compact support
in $\left.I R^{+}\right\}$

$$
\begin{aligned}
& C^{k}\left(I R^{+}\right)=\left\{f: f \text { is } k \text { - times continuously differentiable on } I R^{+}\right\} \\
& C_{0}^{k}\left(I R^{+}\right)=\left\{f: f \in C^{k}\left(I R^{+}\right) \text {and } \mathrm{f} \text { is compactly supported on } I R^{+}\right\} \\
& C_{b}^{(m)}\left(I R^{+}\right)=\{f: f \text { is } m \text {-times continuously differentiable and is such }
\end{aligned}
$$ that $f^{k}, k=0,1,2, \ldots, m$, are bounded on $\left.I R^{+}\right\}$.

For a $G \in T_{\infty}\left(I R^{+}\right)$and any fixed set of positive constants $\alpha_{i}, i=0,1,2, \ldots, k$, following [11] the linear combination $T_{\lambda, k}$ of the operators $T_{\alpha_{i} \lambda}, i=0,1,2, \ldots, k$ is defined by

$$
T_{\lambda, k}(f ; x)=\frac{1}{\Delta}\left|\begin{array}{ccccc}
T_{\alpha_{0} \lambda}(f ; x) & \alpha_{0}^{-1} & \alpha_{0}^{-2} & \ldots . & \alpha_{0}^{-k} \tag{2.1}\\
T_{\alpha_{1} \lambda}(f ; x) & \alpha_{1}^{-1} & \alpha_{1}^{-2} & \ldots . & \alpha_{1}^{-k} \\
\ldots . & \ldots . & \ldots . & \ldots & \ldots . \\
\ldots . . & \ldots . & \ldots & \ldots . & \ldots . \\
T_{\alpha_{k} \lambda}(f ; x) & \alpha_{k}^{-1} & \alpha_{k}^{-2} & \ldots & \alpha_{k}^{-k}
\end{array}\right|
$$

where Δ is the determinant obtained by replacing the operator column by the entries " 1 ". Clearly there exist constants $C(j, k), j=0,1,2, \ldots$, such that $\sum_{j=1}^{k} C(j, k)=1$ and $T_{\lambda, k}=\sum_{j=0}^{k} C(j, k) T_{\alpha_{j} \lambda}$.

Let $\left[a^{\prime}, b^{\prime}\right] \subset(a, b)$. With $\zeta=\left\{g: g \in C_{0}^{2 k+2}, \operatorname{supp} g \subset\left[a^{\prime}, b^{\prime}\right]\right\}$, for $f \in C_{0}\left(I R^{+}\right)$ with supp $f \subset\left[a^{\prime}, b^{\prime}\right]$, we define

$$
K(\xi ; f)=\inf _{g \in \zeta}\left\{\|f-g\|+\xi\left(\|g\|+\left\|g^{(2 k+2)}\right\|\right)\right\}
$$

where $0<\xi<1$ and the norms are the max-norms on $\left[a^{\prime}, b^{\prime}\right]$.
A function $f \in C_{0}\left(I R^{+}\right)$with supp $f \subset\left[a^{\prime}, b^{\prime}\right]$ is said to belong to the intermediate space $C_{0}\left(\beta, p+1 ; a^{\prime}, b^{\prime}\right),(0<\beta \leq 2)$ if

$$
\|f\|_{\beta}=\sup _{0<\xi<1}\left\{\xi^{-\frac{\beta}{2}} K(\xi ; f)\right\}<\infty
$$

For a detailed account of Peetre's K-functionals and the intermediate spaces, we refer [3]

We state the following results ([3] and [8] are referred for the details) on the spaces $C_{0}\left(\beta, p+1 ; a^{\prime}, b^{\prime}\right), \operatorname{Liz}\left(\beta, k+1 ; a^{\prime}, b^{\prime}\right)$ and the functionals $K(\xi ; f)$ which will be used frequently in the proofs of the inverse and saturation theorems.

Lemma 1 -Let $0<a<a^{\prime}<a^{\prime \prime}<b^{\prime \prime}<b^{\prime}<b<\infty$. If $f \in C_{0}\left(I R^{+}\right)$with supp $f \subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$, then $f \in C_{0}\left(\beta, p+1 ; a^{\prime}, b^{\prime}\right)$ iff $f \in \operatorname{Liz}(\beta, p+1 ; a, b)$.

Lemma 2 -Let $0<\beta<2$ and $0<a<b<\infty$. Then, the following statements are equivalent:
(i) $f \in \operatorname{Liz}(\beta, p+1 ; a, b)$,
(ii) (a) if $m<\beta(p+1)<m+1,(m=0,1,2, \ldots, 2 p+1), f^{(m)}$ exists and belongs to $\operatorname{Lip}(\beta,(p+1)-m ; a, b)$, and
(b) if $m+1=\beta(p+1),(m=0,1,2, \ldots, 2 p), f^{(m)}$ exists and belongs to $\operatorname{Lip}^{*}(1 ; a, b)$.

Lemma 3 - If for $\xi, \eta \in(0,1)$ and a constant M, there holds

$$
K(\xi ; f) \leq M\left|\eta^{\frac{\beta}{2}}+\frac{\xi}{\eta} K(\eta ; f)\right|
$$

where $0<\beta<2$, then, there exists a constant M^{\prime} such that

$$
K(\xi ; f) \leq M^{\prime} \xi^{\frac{\beta}{2}}
$$

Throughout this paper, $\left\{\lambda_{n}: n \in I N\right\}$ denotes an increasing sequence of positive numbers such that
(i) $\lambda_{n} \rightarrow \infty$ as $n \rightarrow \infty$, and
(ii) for some constant $C>0, \frac{\lambda_{n+1}}{\lambda_{n}} \leq C, n \in I N$..

3. Inverse Theorems(Ordinary Approximation)

Let $K(\xi ; f)$ denote the Peetre's K-functionals. We first prove :
Lemma 4 - Let $0<a<a^{\prime}<a^{\prime \prime}<b^{\prime \prime}<b^{\prime}<b<\infty$. If $G \in T_{\infty}\left(I R^{+}\right), f \in$ $M_{b}\left(I R^{+}\right)$, supp $f \subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$ and

$$
\begin{equation*}
\sup _{x \in[a, b]}\left|T_{\lambda_{n} k}(f ; x)-f(x)\right|=o\left(\lambda_{n}^{\frac{-\beta(k+1)}{2}}\right), \quad(n \rightarrow \infty) \tag{3.1}
\end{equation*}
$$

where $0<\beta<2$ and k is a non-negative integer, then $f \in C_{0}\left(I R^{+}\right)$and for $\lambda \geq 1$ there holds

$$
\begin{equation*}
K(\xi ; f) \leq M\left|\lambda^{\frac{-\beta(k+1)}{2}}+\lambda^{k+1} \xi K\left(\lambda^{-(k+1)} ; f\right)\right| \tag{3.2}
\end{equation*}
$$

where M is a constant.
Proof: - Due to the condition $\frac{\lambda_{n+1}}{\lambda_{n}} \leq C$ it is sufficient to prove (3.2) with λ replaced by λ_{n} where n is sufficiently large. Since $G \in T_{\infty}\left(I R^{+}\right)$, for some $\delta>$ $0, G(u)$ is $(2 k+2)$ - times continuously differentiable on $(1-2 \delta, 1+2 \delta)$. Here δ can be chosen so small that $0<2 \delta<\min \left\{1-\frac{a^{\prime}}{a^{\prime \prime}}, \frac{b^{\prime}}{b^{\prime \prime}}-1\right\}$. It is obvious that we can find a function $G^{*} \in C_{0}^{2 k+2}\left(I R^{+}\right)$such that

$$
G^{*}(u)=\left\{\begin{array}{lll}
G(u), & & |u-1| \leq \delta \\
0, & u \leq \frac{a^{\prime}}{a^{\prime \prime}} & \text { or } u \geq \frac{b^{\prime}}{b^{\prime \prime}}
\end{array}\right\}
$$

Then, if T_{λ}^{*} denotes the operator in (1.1) obtained by replacing G by G^{*}, in view of (3.1) we also have

$$
\begin{equation*}
\sup _{x \in[a, b]}\left|T_{\lambda_{n}, k}^{*}(f ; x)-f(x)\right| \leq M^{\prime} \lambda_{n}^{-\beta \frac{(k+1)}{2}}, \quad(n \rightarrow \infty) \tag{3.3}
\end{equation*}
$$

where M^{\prime} is some positive constant and $T_{\lambda_{n}, k}^{*}$ are the linear combinations corresponding to the operators $\mathbf{T}_{\lambda_{n}}^{*}$. Here, we notice that $T_{\lambda}^{*}(f ; x) \in C_{0}^{2 k+2}\left(I R^{+}\right)$ with $\operatorname{supp} T_{\lambda}^{*}(f ; x) \subset\left[a^{\prime}, b^{\prime}\right]$ for all $\lambda \in I R^{+}$. In view of (3.3) it is now clear that $f \in C_{0}\left(I R^{+}\right)$and
$K(\xi, f) \leq M \lambda_{n}^{-\frac{\beta(k+1)}{2}}+\xi\left\{\left\|T_{\lambda_{n}, k}^{*}(f ; x)\right\|_{C\left[a^{\prime}, b^{\prime}\right]}+\left\|T_{\lambda_{n}, k}^{*(2 k+2)}(f ; x)\right\|_{C\left[a^{\prime}, b^{\prime}\right]}\right\}$
Next, we assert that for each $g \in \zeta=\left\{g: g \in C_{0}^{2 k+2}\left(I R^{+}\right)\right.$, supp $\left.g \subset\left[a^{\prime}, b^{\prime}\right]\right\}$ there holds the inequality

$$
\begin{equation*}
\left\|T_{\lambda}^{*^{(2 k+2)}}(g ; x)\right\|_{C\left[a^{\prime}, b^{\prime}\right]} \leq A_{1} \lambda^{k+1}\|g\|_{C\left[a^{\prime}, b^{\prime}\right]} \tag{3.5}
\end{equation*}
$$

$$
\begin{align*}
& \text { where } A_{1} \text { is a constant. We have } \\
& \left|T_{\lambda}^{*(2 k+2)}(g ; x)\right| \leq C_{1}\|g\|_{\infty} \sum_{j=0}^{2 k+2} \sum_{v=0}^{k+1-j} \lambda^{v+j} \frac{a^{* *}(\lambda)}{a^{*}(\lambda)} T_{\lambda}^{* *}\left(|u-1|^{j} ; 1\right) \tag{3.6}
\end{align*}
$$

where C_{1} is a constant, $T_{\lambda}^{* *}$ is the operator defined by (1.1) with G replaced by G^{*} and α by $\alpha+j$ and $a^{* *}(\lambda)[7]$ is the corresponding $a(\lambda)$.

Now, in view of (3.6) and the fact that supp $g \subset\left[a^{\prime}, b^{\prime}\right],(3.5)$ is clear. Also, for every $g \in \zeta$, it is clear that

$$
\begin{equation*}
\left\|T_{\lambda}^{*(2 k+2)}(g ; x)\right\|_{C\left[a^{\prime}, b^{\prime}\right]} \leq A_{2}\left\|g^{(2 k+2)}\right\|_{C\left[a^{\prime}, b^{\prime}\right]} \tag{3.7}
\end{equation*}
$$

where A_{2} is a constant.
Using (3.5) and (3.7), for every $g \in \zeta$ we have

$$
\begin{align*}
& \left\|T_{\lambda_{n}, k}^{*}(f ; x)\right\|_{C\left[a^{\prime}, b^{\prime}\right]}+\left\|T_{\lambda_{n}, k}^{*(2 k+2)}(f ; x)\right\|_{C\left[a^{\prime}, b^{\prime}\right]} \tag{3.8}\\
& \quad \leq \lambda_{n}^{k+1} M^{\prime \prime}\left|\|f-g\|_{C\left[a^{\prime}, b^{\prime}\right]}+\lambda_{n}^{-(k+1)}\left\{\|g\|_{C\left[a^{\prime}, b^{\prime}\right]}+\left\|g^{(2 k+2)}\right\|_{C\left[a^{\prime}, b^{\prime}\right]}\right\}\right|
\end{align*}
$$

where $M^{\prime \prime}$ is a constant. Hence, by (3.4) and (3.8) with $M=\max \left\{M^{\prime}, M^{\prime \prime}\right\}$ and for every $g \in \zeta$, we have
$K(\xi, f) \leq M\left|\lambda_{n}^{-\beta(k+1)}+\lambda_{n}^{(k+1)} \xi\|f-g\|_{C\left[a^{\prime}, b^{\prime}\right]}+\lambda_{n}^{-(k+1)}\left\{\|g\|_{C\left[a^{\prime}, b^{\prime}\right]}+\left\|g^{(2 k+2)}\right\|_{C\left[a^{\prime}, b^{\prime}\right]}\right\}\right|$ (3.9)

Taking the infimum on the right hand side of (3.9), we get (3.2). This completes the proof of the lemma.

Now, we are in position to prove the main result of this section :
Theorem 1 Let $G \in T_{\infty}\left(I R^{+}\right), \Omega$ be a bounding function for G and $f \in D_{\Omega}$. If $0<p<2 k+2, k \in I N^{0}$ (set of non-negative integers) and $0<a_{1}<a_{2}<a_{3}<b_{3}<$ $b_{2}<b_{1}<\infty$, then in the following statements, the implication $(i) \Rightarrow($ ii $) \Rightarrow($ iii $)$ hold :
(i) $\sup _{x \in\left[a_{1}, b_{1}\right]}\left|T_{\lambda_{n}, k}(f ; x)-f(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right),(n \rightarrow \infty)$,
(ii) If $p \neq[p], f^{([p])}$ exists and belongs to $\operatorname{Lip}\left(p-[p] ; a_{2}, b_{2}\right)$ and if $p=[p], f^{(p-1)}$ exists and belongs to Lip* $\left(1 ; a_{2}, b_{2}\right)$;
(iii)

$$
\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda, k}(f ; x)-f(x)\right|=O\left(\lambda^{-\frac{p}{2}}\right),(\lambda \rightarrow \infty) .
$$

Proof: - Since $0<p<2 k+2$, we write $p=\beta(k+1)$ for some $\beta \in(0,2)$. We first prove that $($ ii $) \Rightarrow\left(\right.$ iii). Assuming (ii) and Lemma $2 a_{2}<a_{2}^{*}=a^{\prime}<$ $a_{2}^{\prime}<a_{2}^{\prime \prime}<a_{3}<b_{3}<b_{2}^{\prime \prime}<b_{2}^{\prime}<b^{\prime}=b_{2}^{*}<b_{2}$ and $g_{0} \in C_{0}^{\infty}\left(I R^{+}\right)$be such that $g_{0}(u)=1$ for $\mathrm{u} \in\left[a_{2}^{\prime \prime}, b_{2}^{\prime \prime}\right]$ and supp $g_{0} \subset\left[a_{2}^{\prime}, b_{2}^{\prime}\right]$. Then since $f \in \operatorname{Liz}\left(\beta, k+1 ; a_{2}, b_{2}\right)$ also $f^{*}=f g_{0} \in \operatorname{Liz}\left(\beta, k+1 ; a_{2}, b_{2}\right)$ and supp $f^{*} \subset\left[a_{2}^{\prime}, b_{2}^{\prime}\right]$. Hence by Lemma1, $f^{*} \in C_{0}\left(\beta, k+1 ; a_{2}^{*}, b_{2}^{*}\right)$. Then for $x \in\left[a_{3}, b_{3}\right]$,

$$
\begin{align*}
\left|T_{\lambda, k}(f ; x)-f(x)\right| \leq \mid T_{\lambda, k}\left(f-f^{*} ;\right. & x)\left|+\left|T_{\lambda, k}\left(f^{*} ; x\right)-f^{*}(x)\right|\right. \tag{3.10}\\
& \leq\left|T_{\lambda, k}\left(f^{*} ; x\right)-f^{*}(x)\right|+B_{1} \lambda^{-\frac{p}{2}}
\end{align*}
$$

where B_{1} is a constant independent of λ and x.
Now, for any $g \in \zeta$ and $x \in\left[a_{2}^{*}, b_{2}^{*}\right]$, we have

$$
\begin{aligned}
&\left|T_{\lambda, k}\left(f^{*} ; x\right)-f(x)\right| \leq \mid T_{\lambda, k}\left(f^{*}-g ; x\right)\left|+\left|T_{\lambda, k}(g ; x)-g(x)\right|\right. \\
&+\left|g(x)-f^{*}(x)\right| \\
& \leq B_{2}\left\|f^{*}-g\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}+\left|T_{\lambda, k}(g ; x)-g(x)\right|,
\end{aligned}
$$

where B_{2} is a constant. By a mean value theorem,

$$
g(u)-g(x)=\sum_{j=1}^{2 k+1} \frac{g^{(j)}(x)}{j!}(u-x)^{j}+\frac{(u-x)^{2 k+2}}{(2 k+2)!} g^{(2 k+2)}\left(\xi_{u}\right)
$$

for all $u \in I R^{+}$, where $\xi_{u} \in(u, x)$. Hence

$$
\begin{gathered}
T_{\lambda, k}(g(u) ; x)-g(x)=\sum_{j=1}^{2 k+1} \frac{g^{(j)}(x)}{j!} T_{\lambda, k}\left((u-x)^{j} ; x\right)+T_{\lambda, k}\left(\frac{(u-x)^{2 k+2}}{(2 k+2)!} g^{(2 k+2)}\left(\xi_{u}\right) ; x\right) \\
=\sum_{1}+\sum_{2} \quad \text { (say) } .
\end{gathered}
$$

By the definition of $T_{\lambda, k}$,

$$
\begin{equation*}
\left|\sum_{1}\right| \leq B_{3} \lambda^{-(k+1)} \sum_{j=1}^{2 k+1}\left\|g^{(j)}\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]} \tag{3.11a}
\end{equation*}
$$

for large λ and $x \in\left[a_{2}^{*}, b_{2}^{*}\right]$.
Also,

$$
\begin{align*}
\left|\sum_{2}\right| \leq \frac{\left\|g^{(2 k+2)}\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}}{(2 k+2)!} \sum_{j=0}^{k}|C(j, k)| & T_{\alpha_{j} \lambda}\left((u-x)^{2 k+2} ; x\right) \tag{3.11b}\\
& \leq B_{4} \lambda^{-(k+1)}\left\|g^{(2 k+2)}\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}
\end{align*}
$$

where B_{3}, B_{4} are constants.
Hence if $B_{5}=\max \left(B_{3}, B_{4}\right)$, we have

$$
\begin{equation*}
\left|T_{\lambda, k}(g ; x)-g(x)\right| \leq B_{5} \lambda^{-(k+1)} \sum_{j=1}^{2 k+1}\left\|g^{(j)}\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]} \tag{3.12}
\end{equation*}
$$

Since, however, there exists a constant B_{6} such that

$$
\sum_{j=1}^{2 k+1}\left\|g^{(j)}\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]} \leq B_{6}\left\{\|g\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}+\left\|g^{(2 k+2)}\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}\right\}
$$

it follows from (3.10-3.12) that for all sufficiently large λ

$$
\begin{equation*}
\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda, k}(f ; x)-f(x)\right| \tag{3.13}
\end{equation*}
$$

$$
\leq M^{\prime}\left|\left\|f^{*}-g\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}+\lambda^{-(k+1)}\left\{\|g\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}+\left\|g^{(2 k+2)}\right\|_{C\left[a_{2}^{*}, b_{2}^{*}\right]}\right\}+\lambda^{-\beta(k+1)}\right|
$$

where M^{\prime} is some constant.Taking infimum over $g \in \zeta$ in (3.13) for sufficiently large λ, we have

$$
\begin{align*}
& \sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda, k}(f ; x)-f(x)\right| \leq M^{\prime}\left|\lambda^{-\frac{\beta(k+1)}{2}}+K\left(\lambda^{-(k+1)} ; f^{*}\right)\right| . \tag{3.14}\\
& \text { since } f^{*} \in C_{0}\left(\beta, k+1 ; a_{2}^{*}, b_{2}^{*}\right) \text { and } a_{2}^{*}=a^{\prime}, b_{2}^{*}=b^{\prime}, \text { we have } \\
& K\left(\lambda^{-(k+1)} ; f^{*}\right) \leq M^{\prime \prime} \lambda^{-\beta(k+1)}
\end{align*}
$$

where $M^{\prime \prime}$ is a constant. Also, as $p=\beta(k+1)$, it follows from (3.14)-(3.15) that

$$
\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda, k}(f ; x)-f(x)\right|=O\left(\lambda^{-\frac{p}{2}}\right)
$$

This completes the proof of $(i i) \Rightarrow(i i i)$.
To prove that $(i) \Rightarrow(i i)$ let us assume (i). If $\operatorname{supp} f \subset\left(a_{1}, b_{1}\right)$ with $a=a_{1}, b=b_{1}$, we can choose $a^{\prime}, b^{\prime}, a^{\prime \prime}$ and $b^{\prime \prime}$ such that $a<a_{1}=a<a^{\prime}<a^{\prime \prime}<b^{\prime \prime}<b^{\prime}<b=b_{1}<$ ∞ and supp $f \subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$. By lemma 4 we obtain

$$
K(\xi ; f) \leq M \lambda^{-\frac{\beta(k+1)}{2}}+\lambda^{k+1} \xi K\left(\lambda^{-(k+1)} ; f\right),(\lambda \geq 1)
$$

Hence by Lemma 3 we have (ii).
When suppf $\subset\left(a_{1}, b_{1}\right)$, we proceed as follows. If a_{1}^{*}, b_{1}^{*} are such that $a_{1}<a_{1}^{*}<a_{2}<b_{2}<b_{1}^{*}<b_{1}$ and $f^{*}=f$ on $\left[a_{1}, b_{1}\right]$ and vanishes outside it. Then, also

$$
\begin{equation*}
\sup _{x \in\left[a_{1}^{*}, b_{1}^{*}\right]}\left|T_{\lambda_{n}, k}\left(f^{*} ; x\right)-f^{*}(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right) \tag{3.16}
\end{equation*}
$$

Let us first consider the case when $0<p<1$. Let $g \in C_{0}^{\infty}\left(I R^{+}\right)$with suppf $\subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$ and $g(u)=1$ for $u \in\left[a_{2}, b_{2}\right]$ where $a_{1}<a_{1}^{*}<a^{\prime}<a^{\prime \prime}<b_{2}<b^{\prime \prime}<$ $b^{\prime}<b_{1}^{*}<b_{1}$. Then,

$$
\begin{aligned}
& \quad \sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|T_{\lambda_{n}, k}\left(f^{*} g ; x\right)-f^{*}(x) g(x)\right| \leq \sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|g(x) T_{\lambda_{n}, k}\left(f^{*}(u)-f^{*}(x) ; x\right)\right| \\
& +\sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|T_{\lambda_{n}, k}\left(f^{*}(u)(g(u)-g(x)) ; x\right)\right| \\
& =I_{1}+I_{2}, \quad \text { (say). }
\end{aligned}
$$

By (3.16), $I_{1}=o\left(\lambda_{n}^{-\frac{p}{2}}\right)$; and by a simple computation $I_{2}=o\left(\lambda_{n}^{-\frac{p}{2}}\right)$.
Hence, with $F=f^{*} g$, we have

$$
\begin{equation*}
\sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|T_{\lambda_{n}, k}(F ; x)-F(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right), \tag{3.17}
\end{equation*}
$$

from which, since suppf $\subset\left[a^{\prime}, b^{\prime}\right]$, it follows that $F \in \operatorname{Liz}\left(\beta, k+1 ; a_{1}, b_{1}\right)$ as before, and $\mathrm{f} \in \operatorname{Liz}\left(\beta, k+1 ; a_{2}, b_{2}\right)$. Thus by Lemma $3,(i i)$ holds.

Next, we assume that assertion $(i) \Rightarrow(i i)$ holds when $0<p<m-\delta$ where $0<\delta<\frac{1}{2}$ is arbitrary and m takes one of the values of $1,2, \ldots, 2 k+1$. Since, for $m=1$ the result has already been proved, if we can establish it for $m-\delta \leq p<m+1-2 \delta$ the proof will be over. Then, by the assumption that
$f^{(k-1)}$ exists and belongs to $\operatorname{Lip}^{*}\left(1-\delta ; a_{2}^{*}, b_{2}^{*}\right)$, where $\left[a_{2}^{*}, b_{2}^{*}\right] \subset\left(a_{1}, b_{1}\right)$ is any fixed interval. Let $\mathrm{a}_{2}^{*}<a_{1}^{*}<a_{1}^{* *}<a^{\prime}<a^{\prime \prime}<a_{2}<b_{2}<b^{\prime \prime}<b^{\prime}<b_{1}^{* *}<b_{1}^{*}<b_{2}^{*}$. We choose g as before and write $F=f^{*} g$ after defining $f^{*}=f \quad$ on $\left[a_{2}^{*}, b_{2}^{*}\right]$ and zero otherwise. Then,

$$
\sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|T_{\lambda_{n}, k}(F ; x)-F(x)\right| \leq \sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|g(x) T_{\lambda_{n}, k}\left(f^{*}(u)-f^{*}(x) ; x\right)\right|
$$

$\sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|T_{\lambda_{n}, k}\left(\left(f^{*}(u)-f^{*}(x)\right)(g(u)-g(x)) ; x\right)\right|$

$$
\begin{aligned}
& +\sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|f^{*}(x) T_{\lambda_{n}, k}(g(u)-g(x) ; x)\right| \\
& \left.\quad=J_{1}+J_{2}+J_{3}, \quad \text { (say }\right) .
\end{aligned}
$$

Obviously, $J_{1}=o\left(\lambda_{n}^{-\frac{p}{2}}\right), J_{2}=o\left(\lambda_{n}^{-\frac{p}{2}}\right)$ and $J_{3}=o\left(\lambda_{n}^{-\frac{p}{2}}\right)$.
Combining these estimates, we have

$$
\sup _{x \in\left[a^{\prime}, b^{\prime}\right]}\left|T_{\lambda_{n}, k}(F ; x)-F(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right)
$$

Again, since suppf $\subset\left[a^{\prime \prime}, b^{\prime \prime}\right]$, as before $F \in \operatorname{Liz}\left(\beta, k+1 ; a_{1}^{*}, b_{1}^{*}\right)$ and (ii) follows. This completes the proof of the Theorem.

4. Saturation Theorems(Ordinary Approximation)

If $G \in T_{\infty}\left(I R^{+}\right), \Omega$ is a bounding function for G and $f \in D_{\Omega}$, the following asymptotic relation for $T_{\lambda, k}$ holds :

$$
\begin{equation*}
T_{\lambda, k}(f ; x)-f(x)=\lambda^{-(k+1)} \sum_{i=1}^{2 k+2} \frac{f^{(i)}(x) x^{i}}{i!} \gamma_{i, k+1} \frac{(-1)^{k}}{\alpha_{0} \alpha_{1} \ldots \ldots \alpha_{k}}+o\left(\lambda^{-(k+1)}\right), \tag{4.1}
\end{equation*}
$$

at any $x \in I R^{+}$where $f^{(2 k+2)}$ exists. Moreover, if $f^{(2 k+2)}$ exists and is continuous on an open interval containing $[a, b]$, (4.1) holds uniformly in $x \in[a, b]$. This asymptotic formula indicates a saturation behaviour of the linear combinations $T_{\lambda, k}$. A more precise result is as follows :

Theorem 2 Let $k \in I N^{0}$, Ω be a bounding function for G and $f \in D_{\Omega}$. If $0<$ $a_{1}<a_{2}<a_{3}<b_{3}<b_{2}<b_{1}<\infty$, in the following statements, the implications $(i) \Rightarrow(i i) \Rightarrow(i i i)$ and $(i v) \Rightarrow(v) \Rightarrow(v i)$, hold.

$$
\begin{equation*}
\sup _{x \in\left[a_{1}, b_{1}\right]}\left|T_{\lambda_{n} k}(f ; x)-f(x)\right|=o\left(\left(\lambda_{n}^{-(k+1)}\right), \quad(n \rightarrow \infty)\right. \tag{i}
\end{equation*}
$$

(ii) $f^{(2 k+1)} \in A C\left[a_{2}, b_{2}\right]$ and $f(2 k+2) \in L^{\infty}\left[a_{2}, b_{2}\right]$,
(iii)
(iv)

$$
\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda, k}(f ; x)-f(x)\right|=o\left(\lambda^{-(k+1)}\right), \quad(\lambda \rightarrow \infty)
$$

$$
\sup _{x \in\left[a_{1}, b_{1}\right]}\left|T_{\lambda_{n} k}(f ; x)-f(x)\right|=o\left(\lambda_{n}^{-(k+1)}\right), \quad(n \rightarrow \infty)
$$

(v)

$$
f \in C^{2 k+2}\left[a_{2}, b_{2}\right] \text { and } \sum_{i=1}^{2 k+2} \frac{f^{(i)}(x) x^{i}}{i!} \gamma_{i, k+1}=0, \quad x \in\left[a_{2}, b_{2}\right]
$$

and
(vi)

$$
\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda, k}(f ; x)-f(x)\right|=o\left(\lambda^{-(k+1)}\right), \quad(\lambda \rightarrow \infty) .
$$

Proof: Assume (i).Let $G^{*} \in C_{0}^{*}\left(I R^{+}\right) \cap T_{\infty}\left(I R^{+}\right)$and T_{λ}^{*} denote the operator defined as before. It is clear from theTheorem 1 that $f^{(2 k+1)}$ exists and is continuous on on each closed subinterval of $\left(a_{1}, b_{1}\right)$. Then, let $f^{*} \in C_{0}\left(I R^{+}\right)$be such that $f^{*}=f$ on $\left[a_{1}^{*}, b_{1}^{*}\right]$ where $a_{1}<a_{1}^{*}<a_{2}$ and $b_{1}<b_{1}^{*}<b_{2}$. Then, we have

$$
\begin{aligned}
& \sup _{x \in\left[a_{2}^{*}, b_{2}^{*}\right]}\left|T_{\lambda_{n} k}\left(f^{*} ; x\right)-f^{*}(x)\right|=o\left(\lambda_{n}^{-(k+1)}\right) \quad(n \rightarrow \infty), \\
& \text { where } a_{1}^{*}<a_{2}^{*}<a_{2} \text { and } b_{1}^{*}<b_{2}^{*}<b_{1} \text {. Also, we have } \\
& \sup _{x \in\left[a_{3}^{*}, b_{3}^{*}\right]} \lambda_{n}^{k+1} \mid T_{\lambda_{n} k}\left(\left(T_{\lambda}^{*}\left(f^{*} ; u\right) ; x\right)-T_{\lambda}(f ; x) \mid\right. \\
& =\sup _{x \in\left[a_{2}^{*}, b_{2}^{*}\right]} \lambda_{n}^{k+1} T_{\lambda}^{*}\left(T_{\lambda_{n} k}\left(f^{*} ; u\right)-f^{*}(u) ; x\right)=o(1)
\end{aligned}
$$

where $a_{2}^{*}<a_{3}^{*}<a_{2}$ and $b_{2}<b_{3}^{*}<b_{2}^{*}$. Hence by uniformity assertion regarding (3.1), we have

$$
\left\|\sum_{i=1}^{2 k+2} \frac{x^{i}}{i!} \gamma_{i, k+1} T_{\lambda}^{*}\left(f^{*} ; x\right)\right\|_{C\left[a_{3}^{*}, b_{3}^{*}\right]} \leq M
$$

where M is a constant. Hence for all λ sufficiently large,

$$
\left\|\gamma_{2 k+2, k+1} T_{\lambda}^{*(2 k+2)}\left(f^{*} ; x\right)\right\|_{C\left[a_{3}^{*}, b_{3}^{*}\right]} \leq M_{1}
$$

where M_{1} is a constant. But $\gamma_{2 k+2, k+1} \neq 0$. Hence there exists a constant M_{2} such that for all λ sufficiently large, there holds

$$
\left\|T_{\lambda}^{*(2 k+2)}\left(f^{*} ; x\right)\right\|_{C\left[a_{3}^{*}, b_{3}^{*}\right]}<M_{2}
$$

Thus, for all λ sufficiently large, $T_{\lambda}^{*(2 k+2)}\left(f^{*} ; x\right)$ are uniformly bounded and hence belong to $L^{\infty}\left[a_{3}^{*}, b_{3}^{*}\right]$. As $L^{\infty}\left[a_{3}^{*}, b_{3}^{*}\right]$ is dual of $L^{1}\left[a_{3}^{*}, b_{3}^{*}\right]$, by weak-compactness, there is an $h \in L^{\infty}\left[a_{3}^{*}, b_{3}^{*}\right]$ and sub-net $\left\{\lambda_{i}\right\}$ of $\{\lambda\}$ such that $T_{\lambda_{i}}^{*(2 k+2)}\left(f^{*} ; x\right)$ converges to h in the weak-topology. In particular, for any $g \in$ $C_{0}^{*}\left(I R^{+}\right)$with suppg $\subset\left(a_{3}^{*}, b_{3}^{*}\right)$, we have,

$$
\int_{a_{3}^{*}}^{b_{3}^{*}} T_{\lambda_{i}}^{*(2 k+2)}\left(f^{*} ; x\right) g(x) d x \rightarrow \int_{a_{3}^{*}}^{b_{3}^{*}} h(x) g(x) d x, \quad\left(\lambda_{i} \rightarrow \infty\right) .
$$

But, by integration by parts,

$$
\begin{aligned}
\int_{a_{3}^{*}}^{b_{3}^{*}} T_{\lambda_{i}}^{*(2 k+2)}\left(f^{*} ; x\right) g(x) d x= & \lim _{i \rightarrow \infty} \int_{a_{3}^{*}}^{b_{3}^{*}} T_{\lambda_{i}}^{*}(f ; x) g^{(2 k+2)}(x) d x \\
& =\int_{a_{3}^{*}}^{b_{3}^{*}} f^{*}(x) g^{(2 k+2)}(x) d x
\end{aligned}
$$

for every g as above. Hence, $D^{2 k+2} f^{*}(t)=h(t)$ is a generalized function. Thus $D f^{*(2 k+2)}(t)=h(t) \in L^{\infty}\left[a_{3}^{*}, b_{3}^{*}\right]$, implying that $f^{*(2 k+1)} \in A C\left[a_{2}, b_{2}\right]$ and $f^{*(2 k+2)} \in$ $L^{\infty}\left[a_{1}, b_{1}\right]$.

But, $f=f^{*}$ on $\left[a_{2}, b_{2}\right]$ and (ii) follows.
(ii) $\Rightarrow(i i i)$ is obvious.

Now, let $(i v)$ hold. Then, proceeding as in the proof of $(i) \Rightarrow(i i)$ we have for all λ sufficiently large,

$$
\sum_{i=1}^{2 k+2} \frac{x^{i}}{i!} \gamma_{i, k+1} T_{\lambda}^{*(i)}\left(f^{*} ; x\right)=0, \quad x \in\left[a_{3}^{*}, b_{3}^{*}\right] .
$$

Thus, if $P(D)$ denotes the differential operator $\sum_{i=1}^{2 k+2} \frac{x^{i}}{i!} \gamma_{i, k+1} D^{i}$ and $P^{*}(D)$ its adjoint, for any $g \in C_{0}^{\infty}\left(I R^{+}\right)$with $\operatorname{suppg} \subset\left(a_{3}^{*}, b_{3}^{*}\right)$, we have for all λ sufficiently large,

$$
0=\int_{a_{3}^{*}}^{b_{3}^{*}} P(D) T_{\lambda}^{*}\left(f^{*} ; x\right) g(x) d x=\int_{a_{3}^{*}}^{b_{3}^{*}} T_{\lambda}^{*}(f ; x) P^{*}(D) g(x) d x
$$

Taking limit as $\lambda \rightarrow \infty$, we obtain

$$
\int_{a_{3}^{*}}^{b_{3}^{*}} f^{*}(x) P^{*}(D) g(x) d x=0
$$

Hence, $D^{2 k+2} f^{*} \in C\left[a_{3}^{*}, b_{3}^{*}\right]$ and $P(D) f^{*}(x)=0, x \in\left[a_{3}^{*}, b_{3}^{*}\right]$, and (v) follows, since $f^{*}=f$ on $\left[a_{2}, b_{2}\right]$.Thus $(i v) \Rightarrow(v)$.

Lastly, $(v) \Rightarrow(v i)$ follows from the uniformity assertion for (3.1). This completes the proof of the Theorem.

The Inverse and Saturation Theorems for the classes of continuously differentiable functions can be obtained as follows :

Theorem 3 Let $m \in I N, G \in C_{b}^{(m)}\left(I R^{+}\right) \cap T_{\infty}\left(I R^{+}\right), \Omega$ be a bounding function for G, and $f \in D_{\Omega}$. If $0<p<2 k+2, k \in I N^{0}$ and $0<a_{1}<a_{2}<a_{3}<b_{3}<b_{2}<b_{1}<$ ∞, then in the following statements the implications $(i) \Rightarrow(i i) \Rightarrow($ iii $)$ hold.
(i) If $f^{(m)}$ exists on $\left[a_{1}, b_{1}\right]$ and

$$
\sup _{x \in\left[a_{1}, b_{1}\right]}\left|T_{\lambda_{n}, k}^{(m)}(f ; x)-f^{(m)}(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right), \quad(n \rightarrow \infty)
$$

(ii) If $p \neq[p]$ (the greatest integer not greater than $p), f^{([p]+m)}$ exists and belngs to $\operatorname{Lip}\left(p-[p] ; a_{2}, b_{2}\right)$ and
(iii) If $p=[p], f^{(m+p-1)}$ exists and belongs to $\operatorname{Lip}^{*}\left(1 ; a_{2}, b_{2}\right)$, and

$$
\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda, k}^{(m)}(f ; x)-f^{(m)}(x)\right|=o\left(\lambda^{-\frac{p}{2}}\right), \quad(\lambda \rightarrow \infty)
$$

Proof: Assume (i. First of all, we note that an introduction of function $G^{*} \in$ $C_{0}^{\infty}\left(I R^{+}\right) \cap T_{\infty}\left(I R^{+}\right)$which coincides with G in a neighbourhood of ' 1 ' as in the
proof of lemma4, implies that $f^{(m)}(x)$ is continuous on each open subinterval of [a_{1}, b_{1}] and moreover that

$$
\begin{equation*}
\sup _{x \in\left[a_{1}^{*}, b_{1}^{*}\right]}\left|T_{\lambda_{n} k}^{*(m)}(f ; x)-f^{(m)}(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right), \quad(n \rightarrow \infty) \tag{4.2}
\end{equation*}
$$

Next, if $f^{*} \in C_{0}^{(m)}\left(I R^{+}\right)$and coincides with f on $\left[a_{2}^{*}, b_{2}^{*}\right] \subset\left(a_{1}^{*}, b_{1}^{*}\right)$,
it follows that

$$
\begin{equation*}
\sup _{x \in\left[a_{3}^{*}, b_{3}^{*}\right]}\left|T_{\lambda_{n} k}^{*(m)}(f ; x)-f^{*(m)}(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right), \quad(n \rightarrow \infty), \tag{4.3}
\end{equation*}
$$

where $a_{2}^{*}<a_{3}^{*}<a_{2}<b_{2}<b_{3}^{*}<b_{2}^{*}$. But here (5.2) is equivalent to

$$
\begin{equation*}
\sup _{x \in\left[a_{3}^{*}, b_{3}^{*}\right]}\left|T_{\lambda_{n} k}^{*}\left(u^{m} f^{*(m)}(u) ; x\right)-x^{m} f^{*(m)}(x)\right|=o\left(\lambda_{n}^{-\frac{p}{2}}\right),(n \rightarrow \infty), \tag{4.4}
\end{equation*}
$$

Thus, by Theorem 1 , since $f^{*}=f$ on $\left[a_{2}, b_{2}\right]$, we have $(i i)$.
Next, assume that $f^{*} \in C_{0}^{(m)}\left(I R^{+}\right)$which coincide with f on
$\left[a_{2}^{\prime}, b_{2}^{\prime}\right] \subset\left(a_{2}, b_{2}\right)$.Then $\left(u^{m} f^{*(m)}\right)^{([p])} \in \operatorname{Lip}\left(p-[p] ; a_{2}^{\prime}, b_{2}^{\prime}\right)$, if $p \neq[p]$
and $\quad\left(u^{m} f^{*(m)}\right)^{(p-1)} \in \operatorname{Lip}\left(1 ; a_{2}^{\prime}, b_{2}^{\prime}\right)$ if $p=[p]$. Hence, by Theorem 1 , if $a_{2}^{\prime}<a_{3}^{\prime}<a_{3}<b_{3}<b_{3}^{\prime}<b_{2}^{\prime}$

$$
\sup _{x \in\left[a_{3}^{\prime}, b_{3}^{\prime}\right]}\left|T_{\lambda k}\left(u^{m} f^{*(m)}(u) ; x\right)-x^{m} f^{*(m)}(x)\right|=o\left(\lambda^{-\frac{p}{2}}\right)
$$

$(\lambda \rightarrow \infty)$.
But, this is equivalent to

$$
\begin{equation*}
\sup _{x \in\left[a_{3}^{\prime}, b_{3}^{\prime}\right]}\left|T_{\lambda k}^{(m)}\left(f^{*}(u) ; x\right)-f^{*(m)}(x)\right|=o\left(\lambda^{-\frac{p}{2}}\right), \quad(\lambda \rightarrow \infty) \tag{4.5}
\end{equation*}
$$

Again, by the coincidence of f^{*} and g on $\left[a_{2}^{\prime}, b_{2}^{\prime}\right]$ and (4.5) we have (iii).

This completes the proof of the Theorem.

Theorem 4 Let $m \in I N, k \in I N^{0}, G \in C_{b}^{(m)}\left(I R^{+}\right) \cap T_{\infty}\left(I R^{+}\right), \Omega$ be a bounding function for G, and $f \in D_{\Omega}$. If $0<a_{1}<a_{2}<a_{3}<b_{3}<b_{2}<b_{1}<\infty$, in the following statements the following implications $(i) \Rightarrow(i i) \Rightarrow(i i i)$ and $(i v) \Rightarrow(v) \Rightarrow$ (vi) hold.
(i) $f^{(m)}$ exists on $\left[a_{1}, b_{1}\right]$ and

$$
\sup _{x \in\left[a_{1}, b_{1}\right]}\left|T_{\lambda_{n} k}^{(m)}(f ; x)-f^{(m)}(x)\right|=o\left(\lambda_{n}^{-(k+1)}\right), \quad(n \rightarrow \infty),
$$

(ii) $f^{(2 k+m+1)} \in A C\left[a_{2}, b_{2}\right]$ and $f^{(2 k+m+2)} \in L^{\infty}\left[a_{2}, b_{2}\right]$,
(iii)

$$
\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda k}^{(m)}(f ; x)-f^{(m)}(x)\right|=o\left(\lambda^{-(k+1)}\right), \quad(\lambda \rightarrow \infty),
$$

(iv) $f^{(m)}$ exists on $\left[a_{1}, b_{1}\right]$ and

$$
\sup _{x \in\left[a_{1}, b_{1}\right]}\left|T_{\lambda_{n} k}^{(m)}(f ; x)-f^{(m)}(x)\right|=o\left(\lambda_{n}^{-(k+1)}\right), \quad(n \rightarrow \infty),
$$

B. Kunwar, B. D. Pandey - Inverse and saturation theorems for linear...
(v) $f \in C^{2 k+m+2}\left[a_{2}, b_{2}\right]$ and $\sum_{i=1}^{2 k+2}\left(\frac{f^{(i)}(x) x^{i}}{i!}\right)^{(m)} \gamma_{i, k+1}=0, x \in\left[a_{2}, b_{2}\right]$,
(vi) $\sup _{x \in\left[a_{3}, b_{3}\right]}\left|T_{\lambda k}^{(m)}(f ; x)-f^{(m)}(x)\right|=o\left(\lambda^{-(k+1)}\right), \quad(\lambda \rightarrow \infty)$.

Proof: The proof of this theorem follows along the similar lines, with some essential modifications as in the case of Theorems 2 and 3 .

Acknoledgement: The second author is highly thankful to CSIR for providing financial support under fellowship no. 09/827(0004)/2007.

References

[1] Becker, M. and Nessel, R. J., Inverse results via smoothing, Proc. International Conf. Constructive Function Theory, Sofia (1978).
[2] Berens, H. and Lorentz, G. G., Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972) 693-708.
[3] Butzer, P. L. and Berens H., Semigroups of Operators and Approximation, Springer-Verlag, New York (1967).
[4] Devore, R. A., Saturation of positive convolution operators, J. Approx. Theory $3(1970)$ 410-429.
[5] Ditzian, Z. and May C. P. A saturation result for combinations of Bernstein polynomials, Tohoku Math. J. 28(1976).
[6] Kunwar, B., Approximation of analytic functions by a class of linear positive operators, J. Approx. Theory 44, 173-182 (1985).
[7] Kunwar, B. and Bramha Dutta Pandey, Simultaneous approximation by a class of linear positive operators, Acta Universitatis Apulensis Romania (24/2010) 73-87.
[8] May, C. P., Saturation and inverse theorems for combinations of a class of exponential-type operators, Canadian Journal of Math.(1976) 1224-1250.
[9] Neeraj Kumar, Rate of convergence for a general sequence of Durrmeyer-Type operators. JIPAM, vol. 5, Issue 3,Art. 79 (2004).
[10] Rathore, R. K. S., Linear combinations of linear positive operators and generating relations in special functions, Thesis IIT Delhi India(1973).
B. Kunwar, B. D. Pandey - Inverse and saturation theorems for linear...
[11] Rathore, R. K. S.Approximation of Unbounded functions with Linear Positive Operators, Doctoral Dissertation, Technische Hogeschool Delft (1974).
[12] Shapiro, S. H., Smoothing and Approximation of Functions, Van Nostrand Riehold Co. New York (1969).
[13] Timan, A. F., Theory of Approximation of Functions of a Real Variable, Pergaman-Press, Oxford (Trans. 1963).
B. Kunwar

Department of Applied Sciences
Institute of Engineering andTechnology, Lucknow-21
India
email:bkunwar.asd@ietlucknow.edu
Bramha Dutta Pandey
Department of Applied Sciences
Institute of Engineering andTechnology, Lucknow-21
India.
email:bdpandey05@rediffmail.com

