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Abstract.The inverse and saturation theorems for the linear combinations of
a new class of linear positive operators have been studied. A number of well known
operators are special cases of this class of operators. The results make use of one
of the Peetre’s K- functionals. The analogues of inverse and saturation theorems in
simultaneous approximation have also been proved.
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1. Introduction

During the past few decades a number of authors, Becker and Nessel [1], Berens and
Lorentz [2], De Vore [4], Ditzian and May [5], May [8], Shapiro [12], and Timan
[13] etc. have made an extensive study of the problems related to the inverse and
saturation for different classes and sequences of the linear positive operators.In the
present paper we study the inverse and saturation problems for the linear combina-
tions of a new class of linear positive operators, Tλ. This class includes several well-
known sequences of linear positive operators as special cases [6], in particular, the
Gamma operators of Muller, the Modified Post-Widder and Post-Widder operators.
Let M(IR+) be the class of complex valued functions, measurable on IR+, Mb(IR+)
the subset of M(IR+) consisting of the functions essentially bounded on IR+. Let
G ∈ M(IR+) be a non-negative function satisfying :

(i) G(u) is continuous at u = 1,
(ii) for each δ > 0, ‖χδ,1G‖∞ < G(1), and
(iii) there exist θ1, θ2 > 0 such that (uθ1 + u−θ2)G(u) ∈ Mb(IR+),
where χδ,x is the characteristic function of IR+ − (x− δ, x + δ).
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Let the class of all such functions G be denoted by T (IR+). For G ∈ T (IR+), α ∈
IR, λ, x ∈ IR+ and f ∈ M(IR+), we define

Tλ(f ;x) = xα−1

a(λ)

∫∞
0 u−αf(u)Gλ(xu−1)du, (1.1)

where a(λ) =
∫∞
0 uα−2Gλ(u)du, whenever the above integral exists. It can be

easily seen that the integral (1.1) defines a class of linear positive operators.

2. Basic Definitions and Preliminary Results

Definition 1 Let Ω(> 1) be a continuous function defined on IR+. We call Ω
a bounding function [11] for G if for each compact K ⊆ IR+ there exist positive
numbers λK and MK such that

TλK
(Ω; x) < MK , x ∈ K. It is clear that if G ∈ T (IR+), then Ω(u) = up + u−q for

p, q > 0 is a bounding function for G. The notion of a bounding function enables us
to obtain results in a uniform set-up, which, at the same time , are applicable for a
general G ∈ T (IR+).

For a bounding function Ω, we define the set
DΩ = {f : f is locally integrable on IR+ and is such that

lim supu→0
f(u)
Ω(u) and lim supu→∞

f(u)
Ω(u) exist}

Definition 2 :Let f be a continuous function on the interval [a, b] ⊆ IR+ and
δ > 0. The p-modulus of continuity of f is defined by

ωp(f ; δ) = sup
|h|<δ

x,x+ph∈[a,b]

∣∣∣∣∣ p∑
j=0

(−1)p−j
(
p
j

)
f(x + jh)

∣∣∣∣∣
For p = 1, ωp(f ; δ) is simply written as ω(f ; δ). If ω(f ; δ) ≤ Mδβ , (0 < β ≤ 1),

where M is a constant, we say that f ∈ LipMβ. We define
Lip(β; a, b) = ∪

M>0
LipMβ.

L∞[a, b] ={ f : f is essentially bounded on [a, b] },
AC[a, b] ={ f : f is absolutely continuous on [a, b] },

Lip(p, β; a, b) = { f : f (k) ∈ AC[a, b], k = 0, 1, 2, ..., p − 1 and
f (p) ∈ Lip(β; a, b)}.

For 0 < β ≤ 2 and some constant M ,
Liz(p, β; a, b) = {f : ω2p(f ; δ) ≤ Mδβk, k = 1, 2, ..., p− 1}.

For p = 1, Liz(p, β; a, b) reduces to Lip∗(1; a, b).
We introduce some more classes of the functions :

T∞(IR+) = {G ∈ T (IR+) : G is infinitely differentiable at u = 1 and
G′′(1) 6= 0}
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C0(IR+) = {f : f is continuous on IR+ and has a compact support
in IR+}

Ck(IR+) = {f : f is k - times continuously differentiable on IR+}
Ck

0 (IR+) = {f : f ∈ Ck(IR+) and f is compactly supported on IR+}
C

(m)
b (IR+) = {f : f is m-times continuously differentiable and is such

that fk, k = 0, 1, 2, ...,m, are bounded on IR+}.

For a G ∈ T∞(IR+) and any fixed set of positive constants αi, i = 0, 1, 2, ..., k,
following [11] the linear combination Tλ,k of the operators Tαiλ, i = 0, 1, 2, ..., k is
defined by

Tλ,k(f ;x) = 1
∆

∣∣∣∣∣∣∣∣∣∣
Tα0λ(f ;x) α−1

0 α−2
0 .... α−k

0

Tα1λ(f ;x) α−1
1 α−2

1 .... α−k
1

..... .... .... .... ....

..... .... .... .... ....

Tαkλ(f ;x) α−1
k α−2

k .... α−k
k

∣∣∣∣∣∣∣∣∣∣
, (2.1)

where ∆ is the determinant obtained by replacing the operator column by
the entries ”1”. Clearly there exist constants C(j, k), j = 0, 1, 2, ..., such that
k∑

j=1
C(j, k) = 1 and Tλ,k =

k∑
j=0

C(j, k)Tαjλ.

Let [a′, b′] ⊂ (a, b). With ζ = {g : g ∈ C2k+2
0 , supp g ⊂ [a′, b′]}, for f ∈ C0(IR+)

with supp f ⊂ [a′, b′], we define
K(ξ; f) = inf

g∈ζ
{‖f − g‖+ ξ(‖g‖+

∥∥g(2k+2)
∥∥)},

where 0 < ξ < 1 and the norms are the max-norms on [a′, b′].
A function f ∈ C0(IR+) with supp f ⊂ [a′, b′] is said to belong to the interme-

diate space C0(β, p + 1; a′, b′), (0 < β ≤ 2) if
‖f‖β = sup

0<ξ<1
{ξ−

β
2 K(ξ; f)} < ∞.

For a detailed account of Peetre’s K-functionals and the intermediate spaces, we
refer [3]

We state the following results ([3] and [8] are referred for the details) on
the spaces C0(β, p + 1; a′, b′), Liz(β, k + 1; a′, b′) and the functionals K(ξ; f) which
will be used frequently in the proofs of the inverse and saturation theorems.

Lemma 1 -Let 0 < a < a′ < a′′ < b′′ < b′ < b < ∞. If f ∈ C0(IR+) with supp
f ⊂ [a′′, b′′], then f ∈ C0(β, p + 1; a′, b′) iff f ∈ Liz(β, p + 1; a, b).

Lemma 2 -Let 0 < β < 2 and 0 < a < b < ∞. Then, the following statements are
equivalent:

(i) f ∈ Liz(β, p + 1; a, b),

305



B. Kunwar, B. D. Pandey - Inverse and saturation theorems for linear...

(ii) (a) if m < β(p + 1) < m + 1, (m = 0, 1, 2, ..., 2p + 1), f (m) exists and belongs
to Lip(β, (p + 1)−m; a, b), and

(b) if m + 1 = β(p + 1), (m = 0, 1, 2, ..., 2p), f (m) exists and belongs to
Lip∗(1; a, b).

Lemma 3 - If for ξ, η ∈ (0, 1) and a constant M , there holds
K(ξ; f) ≤ M

∣∣∣η β
2 + ξ

η K(η; f)
∣∣∣ ,

where 0 < β < 2, then, there exists a constant M ′ such that
K(ξ; f) ≤ M ′ξ

β
2 .

Throughout this paper, {λn : n ∈ IN} denotes an increasing sequence of positive
numbers such that

(i) λn →∞ as n →∞, and
(ii) for some constant C > 0, λn+1

λn
≤ C, n ∈ IN..

3. Inverse Theorems(Ordinary Approximation)

Let K(ξ; f) denote the Peetre’s K-functionals. We first prove :

Lemma 4 - Let 0 < a < a′ < a′′ < b′′ < b′ < b < ∞. If G ∈ T∞(IR+), f ∈
Mb(IR+), supp f ⊂ [a′′, b′′] and

sup
x∈[a,b]

|Tλnk(f ;x)− f(x)| = o(λ
−β(k+1)

2
n ), (n →∞) (3.1)

where 0 < β < 2 and k is a non-negative integer, then f ∈ C0(IR+) and for
λ ≥ 1 there holds

K(ξ; f) ≤ M
∣∣∣λ−β(k+1)

2 + λk+1ξK(λ−(k+1); f)
∣∣∣ , (3.2)

where M is a constant.

Proof: - Due to the condition λn+1

λn
≤ C it is sufficient to prove (3.2) with λ

replaced by λn where n is sufficiently large. Since G ∈ T∞(IR+), for some δ >
0, G(u) is (2k + 2)− times continuously differentiable on (1− 2δ, 1 + 2δ). Here δ can
be chosen so small that 0 < 2δ < min{1− a′

a′′ ,
b′

b′′ − 1}. It is obvious that we can find
a function G∗ ∈ C2k+2

0 (IR+) such that

G∗(u) =
{

G(u), |u− 1| ≤ δ

0, u ≤ a′

a′′ or u ≥ b′

b′′

}
Then, if T ∗

λ denotes the operator in (1.1) obtained by replacing G by G∗,
in view of (3.1) we also have

sup
x∈[a,b]

∣∣∣T ∗
λn,k(f ;x)− f(x)

∣∣∣ ≤ M ′λ
−β

(k+1)
2

n , (n →∞) (3.3)
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where M ′ is some positive constant and T ∗
λn,k are the linear combinations

corresponding to the operators T∗
λn

. Here, we notice that T ∗
λ (f ;x) ∈ C2k+2

0 (IR+)
with supp T ∗

λ (f ;x) ⊂ [a′, b′] for all λ ∈ IR+. In view of (3.3) it is now clear that
f ∈ C0(IR+) and

K(ξ, f) ≤ Mλ
−β(k+1)

2
n +ξ{

∥∥∥T ∗
λn,k(f ;x)

∥∥∥
C[a′,b′]

+
∥∥∥T ∗(2k+2)

λn,k (f ;x)
∥∥∥

C[a′,b′]
} (3.4)

Next, we assert that for each g ∈ ζ = {g : g ∈ C2k+2
0 (IR+), supp g ⊂ [a′, b′]}

there holds the inequality∥∥∥T ∗(2k+2)

λ (g;x)
∥∥∥

C[a′,b′]
≤ A1λ

k+1 ‖g‖C[a′,b′] , (3.5)

where A1 is a constant. We have∣∣∣T ∗(2k+2)

λ (g;x)
∣∣∣ ≤ C1 ‖g‖∞

∑2k+2
j=0

∑k+1−j
υ=0 λυ+j a∗∗(λ)

a∗(λ) T ∗∗
λ (|u− 1|j ; 1), (3.6)

where C1 is a constant, T ∗∗
λ is the operator defined by (1.1) with G replaced

by G∗ and α by α + j and a∗∗(λ) [7] is the corresponding a(λ).
Now, in view of (3.6) and the fact that supp g ⊂ [a′, b′], (3.5) is clear. Also,

for every g ∈ ζ, it is clear that∥∥∥T ∗(2k+2)

λ (g;x)
∥∥∥

C[a′,b′]
≤ A2

∥∥g(2k+2)
∥∥

C[a′,b′]
, (3.7)

where A2 is a constant.
Using (3.5) and (3.7), for every g ∈ ζ we have∥∥∥T ∗
λn,k(f ;x)

∥∥∥
C[a′,b′]

+
∥∥∥T ∗(2k+2)

λn,k (f ;x)
∥∥∥

C[a′,b′]
(3.8)

≤ λk+1
n M ′′

∣∣∣‖f − g‖C[a′,b′] + λ
−(k+1)
n {‖g‖C[a′,b′] +

∥∥g(2k+2)
∥∥

C[a′,b′]
}
∣∣∣ ,

where M ′′ is a constant. Hence, by (3.4) and (3.8) with M = max{M ′,M ′′}
and for every g ∈ ζ, we have
K(ξ, f) ≤ M

∣∣∣λ−β(k+1)
n + λ

(k+1)
n ξ ‖f − g‖C[a′,b′] + λ

−(k+1)
n {‖g‖C[a′,b′] +

∥∥g(2k+2)
∥∥

C[a′,b′]
}
∣∣∣

(3.9)
Taking the infimum on the right hand side of (3.9), we get (3.2). This completes

the proof of the lemma.
Now, we are in position to prove the main result of this section :

Theorem 1 Let G ∈ T∞(IR+),Ω be a bounding function for G and f ∈ DΩ. If
0 < p < 2k + 2, k ∈ IN0 (set of non-negative integers) and 0 < a1 < a2 < a3 < b3 <
b2 < b1 < ∞, then in the following statements, the implication (i) ⇒ (ii) ⇒ (iii)
hold :

(i) sup
x∈[a1,b1]

|Tλn, k(f ;x)− f(x)| = o(λ
− p

2
n ), (n →∞),

(ii) If p 6= [p], f ([p]) exists and belongs to Lip(p− [p]; a2, b2) and if p = [p], f (p−1)

exists and belongs to Lip∗(1; a2, b2 );
(iii) sup

x∈[a3,b3]
|Tλ,k(f ;x)− f(x)| = O(λ−

p
2 ), (λ →∞).
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Proof: - Since 0 < p < 2k + 2, we write p = β(k + 1) for some β ∈ (0, 2).
We first prove that (ii) ⇒ (iii). Assuming (ii) and Lemma 2 a2 < a∗2 = a′ <
a′2 < a′′2 < a3 < b3 < b′′2 < b′2 < b′ = b∗2 < b2 and g0 ∈ C∞

0 (IR+) be such that
g0(u) = 1 for u∈ [a′′2, b

′′
2] and supp g0 ⊂ [a′2, b

′
2]. Then since f ∈ Liz(β, k + 1; a2, b2)

also f∗ = fg0 ∈ Liz(β, k + 1; a2, b2) and supp f∗ ⊂ [a′2, b
′
2]. Hence by Lemma1,

f∗ ∈ C0(β, k + 1; a∗2, b
∗
2). Then for x ∈ [a3, b3],

|Tλ,k(f ;x)− f(x)| ≤ |Tλ,k(f − f∗;x)|+|Tλ,k(f∗;x)− f∗(x)| (3.10)
≤ |Tλ,k(f∗;x)− f∗(x)|+ B1λ

− p
2 ,

where B1 is a constant independent of λ and x.
Now, for any g ∈ ζ and x ∈ [a∗2, b

∗
2], we have

|Tλ,k(f∗;x)− f(x)| ≤ |Tλ,k(f∗ − g;x)|+ |Tλ,k(g;x)− g(x)|
+ |g(x)− f∗(x)|

≤ B2 ‖f∗ − g‖C[a∗2,b∗2] + |Tλ,k(g;x)− g(x)| ,
where B2 is a constant. By a mean value theorem,

g(u)− g(x) =
2k+1∑
j=1

g(j)(x)
j! (u− x)j + (u−x)2k+2

(2k+2)! g(2k+2)(ξu)

for all u ∈ IR+, where ξu ∈ (u, x). Hence

Tλ,k(g(u);x)−g(x) =
2k+1∑
j=1

g(j)(x)
j! Tλ,k((u−x)j ;x)+Tλ,k(

(u−x)2k+2

(2k+2)! g(2k+2)(ξu);x)

=
∑

1 +
∑

2 (say).
By the definition of Tλ,k,

|
∑

1| ≤ B3λ
−(k+1)

2k+1∑
j=1

∥∥g(j)
∥∥

C[a∗2,b∗2]
, (3.11 a)

for large λ and x ∈ [a∗2, b
∗
2].

Also,

|
∑

2| ≤
‖g(2k+2)‖

C[a∗2,b∗2]

(2k+2)!

k∑
j=0

|C(j, k)|Tαjλ((u−x)2k+2;x) (3.11 b)

≤ B4λ
−(k+1)

∥∥g(2k+2)
∥∥

C[a∗2,b∗2]
,

where B3, B4 are constants.
Hence if B5 = max(B3, B4), we have

|Tλ,k(g;x)− g(x)| ≤ B5λ
−(k+1)

2k+1∑
j=1

∥∥g(j)
∥∥

C[a∗2,b∗2]
. (3.12)

Since, however, there exists a constant B6 such that
2k+1∑
j=1

∥∥g(j)
∥∥

C[a∗2,b∗2]
≤ B6{‖g‖C[a∗2,b∗2] +

∥∥g(2k+2)
∥∥

C[a∗2,b∗2]
},

it follows from (3.10 - 3.12 ) that for all sufficiently large λ
sup

x∈[a3,b3]
|Tλ,k(f ;x)− f(x)| (3.13)

308



B. Kunwar, B. D. Pandey - Inverse and saturation theorems for linear...

≤ M ′
∣∣∣‖f∗ − g‖C[a∗2,b∗2] + λ−(k+1){‖g‖C[a∗2,b∗2] +

∥∥g(2k+2)
∥∥

C[a∗2,b∗2]
}+ λ−β(k+1)

∣∣∣
where M ′ is some constant.Taking infimum over g ∈ ζ in (3.13) for sufficiently

large λ, we have
sup

x∈[a3,b3]
|Tλ,k(f ;x)− f(x)| ≤ M ′

∣∣∣λ−β(k+1)
2 + K(λ−(k+1); f∗)

∣∣∣ . (3.14)

since f∗ ∈ C0(β, k + 1; a∗2, b
∗
2) and a∗2 = a′, b∗2 = b′, we have

K(λ−(k+1); f∗) ≤ M ′′λ−β(k+1), (3.15)
where M ′′ is a constant. Also, as p = β(k + 1), it follows from (3.14) - (3.15)

that
sup

x∈[a3,b3]
|Tλ,k(f ;x)− f(x)| = O(λ−

p
2 ).

This completes the proof of (ii) ⇒ (iii) .
To prove that (i) ⇒ (ii) let us assume (i). If supp f ⊂ (a1, b1) with a = a1, b = b1,

we can choose a′, b′, a′′ and b′′ such that a < a1 = a < a′ < a′′ < b′′ < b′ < b = b1 <
∞ and supp f ⊂ [a′′, b′′]. By lemma 4 we obtain

K(ξ; f) ≤ Mλ−
β(k+1)

2 + λk+1ξK(λ−(k+1); f), (λ ≥ 1).
Hence by Lemma 3 we have (ii).

When suppf ⊂ (a1, b1),we proceed as follows. If a∗1, b
∗
1 are such that

a1 < a∗1 < a2 < b2 < b∗1 < b1 and f∗ = f on [a1, b1] and vanishes outside it. Then,
also

sup
x∈[a∗1,b∗1]

|Tλn,k(f∗;x)− f∗(x)| = o(λ
− p

2
n ). (3.16)

Let us first consider the case when 0 < p < 1. Let g ∈ C∞
0 (IR+) with

suppf ⊂ [a′′, b′′] and g(u) = 1 for u ∈ [a2, b2] where a1 < a∗1 < a′ < a′′ < b2 < b′′ <
b′ < b∗1 < b1. Then,

sup
x∈[a′,b′]

|Tλn,k(f∗g;x)− f∗(x)g(x)| ≤ sup
x∈[a′,b′]

|g(x)Tλn,k(f∗(u)− f∗(x);x)|

+ sup
x∈[a′,b′]

|Tλn,k(f∗(u)(g(u)− g(x));x)|

= I1 + I2, (say).

By (3.16), I1 = o(λ
− p

2
n ); and by a simple computation I2 = o(λ

− p
2

n ).
Hence, with F = f∗g, we have

sup
x∈[a′,b′]

|Tλn,k(F ;x)− F (x)| = o(λ
− p

2
n ), (3.17)

from which, since suppf ⊂ [a′, b′], it follows that F ∈ Liz(β, k + 1; a1, b1) as
before, and f∈ Liz(β, k + 1; a2,b2). Thus by Lemma 3, (ii) holds.

Next, we assume that assertion (i) ⇒ (ii) holds when 0 < p < m − δ
where 0 < δ < 1

2 is arbitrary and m takes one of the values of 1, 2, ..., 2k + 1.
Since, for m = 1 the result has already been proved, if we can establish it for
m − δ ≤ p < m + 1 − 2δ the proof will be over. Then, by the assumption that
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f (k−1) exists and belongs to Lip∗(1− δ; a∗2, b
∗
2), where [a∗2, b

∗
2 ] ⊂ (a1, b1) is any fixed

interval. Let a∗2 < a∗1 < a∗∗1 < a′ < a′′ < a2 < b2 < b′′ < b′ < b∗∗1 < b∗1 < b∗2. We
choose g as before and write F = f∗g after defining f∗ = f on [a∗2, b

∗
2 ] and zero

otherwise. Then,
sup

x∈[a′,b′]
|Tλn,k(F ;x)− F (x)| ≤ sup

x∈[a′,b′]
|g(x)Tλn,k(f∗(u)− f∗(x);x)|

+
sup

x∈[a′,b′]
|Tλn,k((f∗(u)− f∗(x))(g(u)− g(x));x)|

+ sup
x∈[a′,b′]

|f∗(x)Tλn,k(g(u)− g(x);x)|

= J1 + J2 + J3, (say).

Obviously, J1 = o(λ
− p

2
n ), J2 = o(λ

− p
2

n ) and J3 = o(λ
− p

2
n ).

Combining these estimates, we have

sup
x∈[a′,b′]

|Tλn,k(F ;x)− F (x)| = o(λ
− p

2
n ).

Again, since suppf ⊂ [a′′, b′′], as before F ∈ Liz(β, k + 1; a∗1, b∗1) and (ii)
follows. This completes the proof of the Theorem.

4. Saturation Theorems(Ordinary Approximation)

If G ∈ T∞(IR+),Ω is a bounding function for G and f ∈ DΩ, the following
asymptotic relation for Tλ,k holds :

Tλ,k(f ;x)−f(x) = λ−(k+1)
2k+2∑
i=1

f (i)(x)xi

i! γi,k+1
(−1)k

α0α1......αk
+o(λ−(k+1)), (4.1)

at any x ∈ IR+ where f (2k+2) exists. Moreover, if f (2k+2) exists and is contin-
uous on an open interval containing [a, b], (4.1) holds uniformly in x ∈ [a, b]. This
asymptotic formula indicates a saturation behaviour of the linear combinations Tλ,k.
A more precise result is as follows :

Theorem 2 Let k ∈ IN0,Ω be a bounding function for G and f ∈ DΩ. If 0 <
a1 < a2 < a3 < b3 < b2 < b1 < ∞, in the following statements, the implications
(i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (v) ⇒ (vi), hold.

(i) sup
x∈[a1,b1]

|Tλnk(f ;x)− f(x)| = o((λ−(k+1)
n ), (n →∞),

(ii) f (2k+1) ∈ AC[a2, b2] and f(2k + 2) ∈ L∞[a2, b2],
(iii) sup

x∈[a3,b3]
|Tλ,k(f ;x)− f(x)| = o(λ−(k+1)), (λ →∞),

(iv) sup
x∈[a1,b1]

|Tλnk(f ;x)− f(x)| = o(λ−(k+1)
n ), (n →∞),
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(v) f ∈ C2k+2[a2, b2] and
2k+2∑
i=1

f (i)(x)xi

i! γi,k+1 = 0, x ∈ [a2, b2],

and
(vi) sup

x∈[a3,b3]
|Tλ,k(f ;x)− f(x)| = o(λ−(k+1)), (λ →∞).

Proof: Assume (i).Let G∗ ∈ C∗
0 (IR+) ∩ T∞(IR+) and T ∗

λ denote the operator
defined as before. It is clear from theTheorem1 that f (2k+1) exists and is continuous
on on each closed subinterval of (a1, b1). Then, let f∗ ∈ C0(IR+) be such that f∗ = f
on [a∗1, b

∗
1 ] where a1 < a∗1 < a2 and b1 < b∗1 < b2. Then, we have

sup
x∈[a∗2,b∗2 ]

|Tλnk(f∗;x)− f∗(x)| = o(λ−(k+1)
n ) (n →∞),

where a∗1 < a∗2 < a2 and b∗1 < b∗2 < b1. Also, we have
sup

x∈[a∗3,b∗3 ]
λk+1

n |Tλnk((T ∗
λ (f∗;u);x)− Tλ(f ;x)|

= sup
x∈[a∗2,b∗2 ]

λk+1
n T ∗

λ (Tλnk(f∗;u)− f∗(u);x) = o(1),

where a∗2 < a∗3 < a2 and b2 < b∗3 < b∗2. Hence by uniformity assertion regarding
(3.1), we have ∥∥∥∥2k+2∑

i=1

xi

i! γi,k+1T
∗
λ (f∗;x)

∥∥∥∥
C[a∗3,b∗3 ]

≤ M,

where M is a constant. Hence for all λ sufficiently large,∥∥∥γ2k+2,k+1T
∗(2k+2)
λ (f∗;x)

∥∥∥
C[a∗3,b∗3 ]

≤ M1,

where M1 is a constant. But γ2k+2,k+1 6= 0. Hence there exists a constant M2

such that for all λ sufficiently large, there holds∥∥∥T
∗(2k+2)
λ (f∗;x)

∥∥∥
C[a∗3,b∗3 ]

< M2.

Thus, for all λ sufficiently large, T
∗(2k+2)
λ (f∗;x) are uniformly

bounded and hence belong to L∞[a∗3, b
∗
3 ]. As L∞[a∗3, b

∗
3 ] is dual of L1[a∗3, b

∗
3 ], by

weak-compactness, there is an h ∈ L∞[a∗3, b
∗
3 ] and sub-net {λi} of {λ} such that

T
∗(2k+2)
λi

(f∗;x) converges to h in the weak-topology. In particular, for any g ∈
C∗

0 (IR+) with suppg ⊂ (a∗3, b
∗
3), we have,

b∗3∫
a∗3

T
∗(2k+2)
λi

(f∗;x)g(x)dx →
b∗3∫
a∗3

h(x)g(x)dx, (λi →∞).

But, by integration by parts,
b∗3∫
a∗3

T
∗(2k+2)
λi

(f∗;x)g(x)dx = lim
i→∞

b∗3∫
a∗3

T ∗
λi

(f ;x)g(2k+2)(x)dx

=
b∗3∫
a∗3

f∗(x)g(2k+2)(x)dx,
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for every g as above. Hence, D2k+2f∗(t) = h(t) is a generalized function. Thus
Df∗(2k+2)(t) = h(t) ∈ L∞[a∗3, b

∗
3 ], implying that f∗(2k+1) ∈ AC[a2, b2] and f∗(2k+2) ∈

L∞[a1, b1].
But , f = f∗ on [a2, b2] and (ii) follows.
(ii) ⇒ (iii) is obvious.

Now, let (iv) hold. Then, proceeding as in the proof of (i) ⇒ (ii) we
have for all λ sufficiently large,

2k+2∑
i=1

xi

i! γi,k+1T
∗(i)
λ (f∗;x) = 0, x ∈ [a∗3, b

∗
3 ].

Thus, if P (D) denotes the differential operator
2k+2∑
i=1

xi

i! γi,k+1D
i and

P ∗(D) its adjoint, for any g ∈ C∞
0 (IR+) with suppg ⊂ (a∗3, b

∗
3 ), we have for all λ

sufficiently large,

0 =
b∗3∫
a∗3

P (D)T ∗
λ (f∗;x)g(x)dx =

b∗3∫
a∗3

T ∗
λ (f ;x)P ∗(D)g(x)dx.

Taking limit as λ →∞, we obtain
b∗3∫
a∗3

f∗(x)P ∗(D)g(x)dx = 0.

Hence, D2k+2f∗ ∈ C[a∗3, b
∗
3 ] and P (D)f∗(x) = 0, x ∈ [a∗3, b

∗
3 ], and (v)

follows, since f∗ = f on [a2, b2].Thus (iv) ⇒ (v).
Lastly, (v) ⇒ (vi) follows from the uniformity assertion for (3.1). This

completes the proof of the Theorem.

The Inverse and Saturation Theorems for the classes of continuously differen-
tiable functions can be obtained as follows :

Theorem 3 Let m∈ IN,G ∈ C
(m)
b (IR+)∩T∞(IR+),Ω be a bounding function for

G, and f ∈ DΩ. If 0 < p < 2k + 2, k ∈ IN0 and 0 < a1 < a2 < a3 < b3 < b2 < b1 <
∞, then in the following statements the implications (i) ⇒ (ii) ⇒ (iii) hold.

(i) If f (m) exists on [a1, b1] and

sup
x∈[a1,b1]

∣∣∣T (m)
λn,k(f ;x)− f (m)(x)

∣∣∣ = o(λ
− p

2
n ), (n →∞),

(ii) If p 6= [p] (the greatest integer not greater than p), f ([p]+m) exists and belngs
to Lip(p− [p]; a2, b2) and

(iii) If p = [p], f (m+p−1) exists and belongs to Lip∗(1; a2, b2), and
sup

x∈[a3,b3]

∣∣∣T (m)
λ,k (f ;x)− f (m)(x)

∣∣∣ = o(λ−
p
2 ), (λ →∞).

Proof: Assume (i). First of all, we note that an introduction of function G∗ ∈
C∞

0 (IR+) ∩ T∞(IR+) which coincides with G in a neighbourhood of ′1′ as in the
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proof of lemma4, implies that f (m)(x) is continuous on each open subinterval of
[a1, b1] and moreover that

sup
x∈[a∗1,b∗1 ]

∣∣∣T ∗(m)
λnk (f ;x)− f (m)(x)

∣∣∣ = o(λ
− p

2
n ), (n →∞). (4.2)

Next, if f∗ ∈ C
(m)
0 (IR+) and coincides with f on [a∗2, b

∗
2] ⊂ (a∗1, b

∗
1),

it follows that
sup

x∈[a∗3,b∗3 ]

∣∣∣T ∗(m)
λnk (f ;x)− f∗(m)(x)

∣∣∣ = o(λ
− p

2
n ), (n →∞), (4.3)

where a∗2 < a∗3 < a2 < b2 < b∗3 < b∗2. But here (5.2) is equivalent to

sup
x∈[a∗3,b∗3 ]

∣∣T ∗
λnk(u

mf∗(m)(u);x)− xmf∗(m)(x)
∣∣ = o(λ

− p
2

n ), (n →∞), . (4.4)

Thus, by Theorem1, since f∗ = f on [a2, b2], we have (ii).
Next, assume that f∗ ∈ C

(m)
0 (IR+) which coincide with f on

[a′2, b
′
2] ⊂ (a2, b2).Then (umf∗(m))([p]) ∈ Lip(p− [p]; a′2, b

′
2), if p 6= [p]

and (umf∗(m))(p−1) ∈ Lip(1; a′2, b
′
2) if p = [p]. Hence, by Theorem1, if

a′2 < a′3 < a3 < b3 < b′3 < b′2
sup

x∈[a′3,b′3 ]

∣∣Tλk(umf∗(m)(u);x)− xmf∗(m)(x)
∣∣ = o(λ−

p
2 ),

(λ →∞).
But, this is equivalent to

sup
x∈[a′3,b′3 ]

∣∣∣T (m)
λk (f∗(u);x)− f∗(m)(x)

∣∣∣ = o(λ−
p
2 ), (λ →∞). (4.5)

Again, by the coincidence of f∗ and g on [a′2, b
′
2] and (4.5) we have

(iii).
This completes the proof of the Theorem.

Theorem 4 Let m ∈ IN, k ∈ IN0, G ∈ C
(m)
b (IR+) ∩ T∞(IR+),Ω be a bounding

function for G, and f ∈ DΩ.If 0 < a1 < a2 < a3 < b3 < b2 < b1 < ∞, in the
following statements the following implications (i) ⇒ (ii) ⇒ (iii) and (iv) ⇒ (v) ⇒
(vi) hold.

(i) f (m) exists on [a1, b1] and
sup

x∈[a1,b1 ]

∣∣∣T (m)
λnk (f ;x)− f (m)(x)

∣∣∣ = o(λ−(k+1)
n ), (n →∞),

(ii) f (2k+m+1) ∈ AC[a2, b2] and f (2k+m+2) ∈ L∞[a2, b2],
(iii) sup

x∈[a3,b3 ]

∣∣∣T (m)
λk (f ;x)− f (m)(x)

∣∣∣ = o(λ−(k+1)), (λ →∞),

(iv) f (m) exists on [a1, b1] and
sup

x∈[a1,b1 ]

∣∣∣T (m)
λnk (f ;x)− f (m)(x)

∣∣∣ = o(λ−(k+1)
n ), (n →∞),
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(v) f ∈ C2k+m+2[a2, b2] and
2k+2∑
i=1

(f (i)(x)xi

i! )(m)γi,k+1 = 0, x ∈ [a2, b2],

(vi) sup
x∈[a3,b3 ]

∣∣∣T (m)
λk (f ;x)− f (m)(x)

∣∣∣ = o(λ−(k+1)), (λ →∞).

Proof: The proof of this theorem follows along the similar lines, with some es-
sential modifications as in the case of Theorems 2 and 3 .

Acknoledgement: The second author is highly thankful to CSIR for providing
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