PERMUTATIONS OF RATIONAL RESIDUES

Mark Budden, Sean Eastman, Scott King, and Alexander Moisant

Abstract. In 1872, Zolotarev gave a new proof of the law of quadratic reciprocity by equating the value of the Legendre symbol $\left(\frac{a}{p}\right)$ with the signature of the permutation

$$
i \quad(\bmod p) \mapsto i a \quad(\bmod p)
$$

on $(\mathbb{Z} / p \mathbb{Z})^{\times}$. In this paper, we show how Zolotarev's approach may be extended to proving higher powered rational reciprocity laws.

2000 Mathematics Subject Classification: Primary 11A15, 11R18; Secondary 11R32.

1. Introduction

Recent estimates (eg., see [6]) claim that there are about 224 different proofs of the law of quadratic reciprocity. One of the gems on the list includes a proof that follows from Zolotarev's 1872 observation that the permutation

$$
i \quad(\bmod p) \mapsto i a \quad(\bmod p)
$$

on the nonzero congruence class representatives of $\mathbb{Z} / p \mathbb{Z}$ is even if and only if a is a quadratic residue modulo p. Duke and Hopkins [3] recently revived Zolotarev's work, extending it to define a quadratic symbol for all finite groups and proving a corresponding quadratic reciprocity law.

In this paper, we extend Zolotarev's equivalent description of the Legendre symbol to 2^{t} th rational residues modulo a prime $p \equiv 1\left(\bmod 2^{t}\right)$. Our extension is not new as it is a special case of Theorem 6 of Lehmer's paper [4]. However, the proof we give is self-contained and does not make use of Lehmer's generalization of Gauss' Lemma (Theorem 3 of [4]). Using this extension, we then provide a new proof of the recent $2 n$th reciprocity law proved by Budden, Collins, Lea, and Savioli [1], in the special case where n is a power of 2 . Many of the known rational reciprocity laws follow from this result by choosing appropriate primitive elements for the subfields of $\mathbb{Q}\left(\zeta_{p}\right)$.

2. Rational Residues Modulo p

In this section, we prove an analogue of Zolotarev's description of the Legendre symbol for the 2^{t} th rational residue symbol. First, we establish the main definitions and notations. Letting p be an odd prime, we will be working in the finite field $\mathbb{Z} / p \mathbb{Z}$, and by abuse of notation, we will frequently write the least residue a in place of the left coset $a+p \mathbb{Z}$. The notation (\vdots) will be used to denote the Legendre symbol. We can generalize the Legendre symbol to higher power residues in two ways: the power residue symbol and the rational residue symbol.

To define the power residue symbol, let k be an algebraic number field and $n \geq 1$ an integer. If \mathfrak{p} is an ideal in the ring of integers \mathcal{O}_{k} that is relatively prime to n, then for every $\alpha \in \mathcal{O}_{k}-\mathfrak{p}$, define the nth power residue symbol by

$$
\left(\frac{\alpha}{\mathfrak{p}}\right)_{n} \equiv \alpha^{(N \mathfrak{p}-1) / n} \quad(\bmod \mathfrak{p})
$$

We will only define the rational residue symbol in the case of even powers. If we assume that $p \equiv 1(\bmod 2 n), a \in \mathbb{Z}$ is relatively prime to p, and

$$
a^{(p-1) / n} \equiv 1 \quad(\bmod p)
$$

then the $2 n$th rational residue symbol is given by

$$
\left(\frac{a}{p}\right)_{2 n} \equiv a^{(p-1) / 2 n} \quad(\bmod p)
$$

This symbol agrees with the power residue symbol $\left(\frac{a}{\mathfrak{p}}\right)_{2 n}$, where \mathfrak{p} is any prime ideal above $p \mathbb{Z}$ in $\mathcal{O}_{\mathbb{Q}\left(\zeta_{2 n}\right)}=\mathbb{Z}\left[\zeta_{2 n}\right]$. We denote the subgroup of $2 n$th rational residues in $(\mathbb{Z} / p \mathbb{Z})^{\times}$by $(\mathbb{Z} / p \mathbb{Z})^{\times 2 n}$. The following theorem describes the relationship between the 2^{t} th rational residue symbol and the corresponding permutation on $(\mathbb{Z} / p \mathbb{Z})^{\times}$.

Theorem 1. Let $p \equiv 1\left(\bmod 2^{t}\right)$ be a prime for $t \geq 1$ and assume that $\left(\frac{a}{p}\right)_{2^{t-1}}=1$ for $a \in \mathbb{Z}$ relatively prime to p. Then

$$
\left(\frac{a}{p}\right)_{2^{t}}=\left.1 \quad \Longleftrightarrow \quad \phi_{a}\right|_{(\mathbb{Z} / p \mathbb{Z}) \times 2^{t-1}} \text { is even }
$$

where ϕ_{a} is the permutation on $(\mathbb{Z} / p \mathbb{Z})^{\times}$given by

$$
i \quad(\bmod p) \mapsto i a \quad(\bmod p)
$$

Proof. In the case $t=1$, we set $\left(\frac{a}{p}\right)_{1}=1$ by convention (since every element in $(\mathbb{Z} / p \mathbb{Z})^{\times}$is a first power). Then Zolotarev [7] proved

$$
\left(\frac{a}{p}\right)=1 \quad \Longleftrightarrow \quad \phi_{a} \text { is even. }
$$

We proceed by induction on t. Suppose the theorem holds for the $(t-1)$ th case and that $\left(\frac{a}{p}\right)_{2^{t-1}}=1$. Let f denote the order of a in $(\mathbb{Z} / p \mathbb{Z})^{\times}$and write $g=\frac{p-1}{f}$. If \mathfrak{p} is any prime ideal above $p \mathbb{Z}$ in $\mathcal{O}_{\mathbb{Q}\left(\zeta_{2} t-1\right)}$, then the sets

$$
B_{i}:=\left\{b \in(\mathbb{Z} / p \mathbb{Z})^{\times} \left\lvert\,\left(\frac{b}{\mathfrak{p}}\right)_{2^{t-1}}=\zeta_{2^{t-1}}^{i}\right.\right\}
$$

each have cardinality $\frac{p-1}{2^{t-1}}$ and

$$
\left(\frac{\phi_{a}(b)}{\mathfrak{p}}\right)_{2^{t-1}}=\left(\frac{b a}{\mathfrak{p}}\right)_{2^{t-1}}=\left(\frac{b}{\mathfrak{p}}\right)_{2^{t-1}}\left(\frac{a}{\mathfrak{p}}\right)_{2^{t-1}}=\left(\frac{b}{\mathfrak{p}}\right)_{2^{t-1}}
$$

implies that ϕ_{a} preserves the 2^{t-1} th rational residue classes modulo p. We also note that

$$
\phi_{a}^{f}(b) \equiv b a^{f} \equiv b \quad(\bmod p)
$$

with f minimal, shows that ϕ_{a} is a product of g cycles of length f and that ϕ_{a} affects each B_{i} in exactly the same way. It follows that

$$
\begin{aligned}
\left(\frac{a}{p}\right)_{2^{t}} \equiv a^{(p-1) / 2^{t}} \equiv 1 \quad(\bmod p) & \Longleftrightarrow f \text { divides } \frac{p-1}{2^{t}}=\frac{f g}{2^{t}} \\
& \Longleftrightarrow g \equiv 0 \quad\left(\bmod 2^{t}\right) \\
& \left.\Longleftrightarrow \phi_{a}\right|_{(\mathbb{Z} / p \mathbb{Z})^{\times 2^{t-1}}} \text { is even }
\end{aligned}
$$

completing the proof of Theorem 1.

3. Reciprocity Laws

Utilizing our new description of the rational residue symbol, we provide a new proof of the $2 n$th reciprocity law of Budden, Collins, Lea, and Savioli [1] in the special case where n is a power of 2 . From this result, all of the known rational quartic reciprocity laws follow (cf. [5]) by choosing appropriate primitive elements for K_{4}, the unique quartic subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ (assuming $p \equiv 1(\bmod 4)$). When $p \equiv 1\left(\bmod 2^{t}\right)$, the 2^{t} th generalization of Scholz's Reciprocity Law proved in [2]
also follows from the following theorem by choosing an appropriate primitive element for $K_{2^{t}}$, the unique subfield of $\mathbb{Q}\left(\zeta_{p}\right)$ of dimension 2^{t} over \mathbb{Q}.

Our setup is similar to that of Duke and Hopkins [3] and may shed some light on the potential formulation of a rational 2^{t} th reciprocity law in any finite group. The additive group $\mathbb{Z} / p \mathbb{Z}$ is abelian, and thus has p irreducible characters

$$
\chi_{i}: \mathbb{Z} / p \mathbb{Z} \longrightarrow \mathbb{C}^{\times}
$$

given by $\chi_{i}(a)=\zeta_{p}^{i a}$, for $0 \leq i<p$. The Galois $\operatorname{group} \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / \mathbb{Q}\right)$ is given by

$$
\left\{\sigma_{k}: \mathbb{Q}\left(\zeta_{p}\right) \longrightarrow \mathbb{Q}\left(\zeta_{p}\right) \mid \sigma_{k}\left(\zeta_{p}\right)=\zeta_{p}^{k}\right\} \cong(\mathbb{Z} / p \mathbb{Z})^{\times}
$$

Assuming that $p \equiv 1\left(\bmod 2^{t}\right)$, the fundamental theorem of Galois theory implies that

$$
\operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{2^{t}}\right) \cong(\mathbb{Z} / p \mathbb{Z})^{\times 2^{t}}
$$

The action of any automorphism σ_{k} may be identified with the permutation ϕ_{k} via

$$
\sigma_{k}\left(\chi_{i}(a)\right)=\sigma_{k}\left(\zeta_{p}^{i a}\right)=\zeta_{p}^{i a k}=\chi_{i}\left(\phi_{k}(a)\right)
$$

Theorem 2. Let $p \equiv q \equiv 1\left(\bmod 2^{t}\right)$ be distinct primes such that

$$
\left(\frac{p}{q}\right)_{2^{t-1}}=\left(\frac{q}{p}\right)_{2^{t-1}}=1
$$

If $\beta \in \mathcal{O}_{K_{2^{t-1}}}$ such that $K_{2^{t}}=\mathbb{Q}(\sqrt{\beta})$, then

$$
\left(\frac{q}{p}\right)_{2^{t}}=\left(\frac{\beta}{\mathfrak{q}}\right)_{2}
$$

where \mathfrak{q} is any prime ideal above $q \mathbb{Z}$ in $\mathcal{O}_{K_{2^{t-1}}}$.

Proof. Let $a_{1}, a_{2}, \ldots, a_{k}$ denote the 2^{t-1} th residues of p, with $k=\frac{p-1}{2^{t-1}}$, and consider the matrix

$$
R=\left(\begin{array}{ccc}
\chi_{1}\left(a_{1}\right) & \cdots & \chi_{1}\left(a_{k}\right) \\
\vdots & \ddots & \vdots \\
\chi_{k}\left(a_{1}\right) & \cdots & \chi_{k}\left(a_{k}\right)
\end{array}\right)
$$

For any $a \in(\mathbb{Z} / p \mathbb{Z})^{\times 2^{t-1}}$, the automorphism σ_{a} maps $\chi_{i}\left(a_{j}\right) \mapsto \chi_{i}\left(\phi_{a}\left(a_{j}\right)\right)$ and hence, permutes the columns of R. From Theorem 1 and the basic properties of determinants, it follows that

$$
\sigma_{a}(\operatorname{det}(R))=\left(\frac{a}{p}\right)_{2^{t}} \operatorname{det}(R)
$$

When the automorphism $\sigma_{a} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{p}\right) / K_{2^{t-1}}\right)$ is restricted to $K_{2^{t}}$, it agrees with either the identity or conjugation $\sqrt{\beta} \mapsto-\sqrt{\beta}$, depending on whether or not a is a 2^{t} th residue of p. Hence, it follows that

$$
\begin{equation*}
\sigma_{a}(\sqrt{\beta} \operatorname{det}(R))=\sqrt{\beta} \operatorname{det}(R) \tag{1}
\end{equation*}
$$

so that $\sqrt{\beta} \operatorname{det}(R) \in K_{2^{t-1}}$. Now suppose that \mathfrak{q} is any prime ideal above $q \mathbb{Z}$ in $K_{2^{t-1}}$ and consider the congruence

$$
\begin{align*}
\sigma_{q}(\sqrt{\beta} \operatorname{det}(R)) & \equiv(\sqrt{\beta})^{q}\left(\frac{q}{p}\right)_{2^{t}} \operatorname{det}(R) \quad(\bmod \mathfrak{q}) \\
& \equiv \beta^{(q-1) / 2}\left(\frac{q}{p}\right)_{2^{t}} \sqrt{\beta} \operatorname{det}(R) \quad(\bmod \mathfrak{q}) \\
& \equiv\left(\frac{\beta}{\mathfrak{q}}\right)_{2}\left(\frac{q}{p}\right)_{2^{t}} \sqrt{\beta} \operatorname{det}(R) \quad(\bmod \mathfrak{q}) \tag{2}
\end{align*}
$$

Comparing (1) and (2) when $a=q$, we obtain

$$
\begin{equation*}
\sqrt{\beta} \operatorname{det}(R) \equiv\left(\frac{\beta}{\mathfrak{q}}\right)_{2}\left(\frac{q}{p}\right)_{2^{t}} \sqrt{\beta} \operatorname{det}(R) \quad(\bmod \mathfrak{q}) \tag{3}
\end{equation*}
$$

Since the matrix R is of Vandermonde-type, its determinant is given by

$$
\begin{aligned}
\operatorname{det}(R) & =\prod_{1 \leq m \leq k} \zeta_{p}^{a_{m}} \cdot \prod_{1 \leq i<j \leq k}\left(\zeta_{p}^{a_{j}}-\zeta_{p}^{a_{i}}\right) \\
& =\prod_{1 \leq m \leq k} \zeta_{p}^{a_{m}} \cdot \prod_{1 \leq i<j \leq k} \zeta_{p}^{a_{j}}\left(1-\zeta_{p}^{a_{i}-a_{j}}\right)
\end{aligned}
$$

which is a product of units and factors that divide p in $\mathbb{Q}\left(\zeta_{p}\right)$. Also, the principal ideal generated by β in $\mathcal{O}_{K_{2}^{t-1}}$ becomes a square when lifted to $K_{2^{t}}$, so β must be relatively prime to q. Thus, $\sqrt{\beta} \operatorname{det}(R)$ is not in the ideal \mathfrak{q} and can be canceled from both sides of the congruence (3). Since the residue symbols in (3) only take on the values ± 1, we may drop the congruence to obtain the desired result.

Note that Theorem 2 is independent of the choice of prime ideal \mathfrak{q}. Since we assume $\left(\frac{p}{q}\right)_{2^{t-1}}=1, q \mathbb{Z}$ splits completely in $K_{2^{t-1}}$ giving the isomorphism

$$
\mathcal{O}_{K_{2^{t-1}}} / \mathfrak{q} \cong \mathbb{Z} / q \mathbb{Z}
$$

Thus, we can identify $\left(\frac{\beta}{q}\right)_{2}$ with a Legendre symbol $\left(\frac{b}{q}\right)$ via

$$
b \equiv \beta \quad(\bmod \mathfrak{q})
$$

with $b \in(\mathbb{Z} / p \mathbb{Z})^{\times}$.
Our approach to proving this theorem using a partial character table (matrix) is similar to the method employed by Duke and Hopkins [3] in the proof of their quadratic reciprocity law in finite groups. This demonstrates the potential for extending their results to 2^{t} th rational residues.

References

[1] M. Budden, A. Collins, K. Lea, and S. Savioli, Rational Residuacity of Primes, Involve, 3, (2010), 249-257.
[2] M. Budden, R.J Eisenmenger, and J. Kish, A Generalization of Scholz's Reciprocity Law, J. Théor. Nombres Bordeaux, 19, (2007), 583-594.
[3] W. Duke and K. Hopkins, Quadratic Reciprocity in a Finite Group, Amer. Math. Monthly, 112, (2005), 251-256.
[4] E. Lehmer, Generalizations of Gauss' Lemma, Number Theory and Algebra, Academic Press, New York, (1977), 187-194.
[5] F. Lemmermeyer, Rational Quartic Reciprocity, Acta Arith., 67, (1994), 387390.
[6] F. Lemmermeyer, Reciprocity Laws, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000.
[7] G. Zolotarev, Nouvelle démonstration de la loi de réciprocité de Legendre, Nouvelle Ann. Math., 11, No. 2, (1872), 354-362.

Mark Budden
Mathematics and Computer Science Department
Western Carolina University
Cullowhee, NC 28723
email:mrbudden@email.wcu.edu

Sean Eastman

Department of Mathematics
M. Budden, S. Eastman, S. King, A. Moisant - Permutations of rational residues

Armstrong Atlantic State University 11935 Abercorn St.
Savannah, GA 31419
email:Sean.Eastman@armstrong.edu
Scott King
4345 Driggers Road
Waycross, GA 31503
email:scottjacksonking@gmail.com
Alexander Moisant
Department of Mathematics
Armstrong Atlantic State University
11935 Abercorn St.
Savannah, GA 31419
email:am1677@students.armstrong.edu

