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PERMUTATIONS OF RATIONAL RESIDUES

Mark Budden, Sean Eastman, Scott King, and Alexander Moisant

Abstract. In 1872, Zolotarev gave a new proof of the law of quadratic reci-
procity by equating the value of the Legendre symbol

(
a
p

)
with the signature of the

permutation
i (mod p) 7→ ia (mod p)

on (Z/pZ)×. In this paper, we show how Zolotarev’s approach may be extended to
proving higher powered rational reciprocity laws.
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1. Introduction

Recent estimates (eg., see [6]) claim that there are about 224 different proofs of
the law of quadratic reciprocity. One of the gems on the list includes a proof that
follows from Zolotarev’s 1872 observation that the permutation

i (mod p) 7→ ia (mod p)

on the nonzero congruence class representatives of Z/pZ is even if and only if a is
a quadratic residue modulo p. Duke and Hopkins [3] recently revived Zolotarev’s
work, extending it to define a quadratic symbol for all finite groups and proving a
corresponding quadratic reciprocity law.

In this paper, we extend Zolotarev’s equivalent description of the Legendre sym-
bol to 2tth rational residues modulo a prime p ≡ 1 (mod 2t). Our extension is not
new as it is a special case of Theorem 6 of Lehmer’s paper [4]. However, the proof
we give is self-contained and does not make use of Lehmer’s generalization of Gauss’
Lemma (Theorem 3 of [4]). Using this extension, we then provide a new proof of the
recent 2nth reciprocity law proved by Budden, Collins, Lea, and Savioli [1], in the
special case where n is a power of 2. Many of the known rational reciprocity laws
follow from this result by choosing appropriate primitive elements for the subfields
of Q(ζp).
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2. Rational Residues Modulo p

In this section, we prove an analogue of Zolotarev’s description of the Legendre
symbol for the 2tth rational residue symbol. First, we establish the main definitions
and notations. Letting p be an odd prime, we will be working in the finite field Z/pZ,
and by abuse of notation, we will frequently write the least residue a in place of the
left coset a + pZ. The notation

( ·
·
)

will be used to denote the Legendre symbol. We
can generalize the Legendre symbol to higher power residues in two ways: the power
residue symbol and the rational residue symbol.

To define the power residue symbol, let k be an algebraic number field and n ≥ 1
an integer. If p is an ideal in the ring of integers Ok that is relatively prime to n,
then for every α ∈ Ok − p, define the nth power residue symbol by(

α

p

)
n

≡ α(Np−1)/n (mod p).

We will only define the rational residue symbol in the case of even powers. If we
assume that p ≡ 1 (mod 2n), a ∈ Z is relatively prime to p, and

a(p−1)/n ≡ 1 (mod p),

then the 2nth rational residue symbol is given by(
a

p

)
2n

≡ a(p−1)/2n (mod p).

This symbol agrees with the power residue symbol
(

a
p

)
2n

, where p is any prime ideal

above pZ in OQ(ζ2n) = Z[ζ2n]. We denote the subgroup of 2nth rational residues in
(Z/pZ)× by (Z/pZ)×2n. The following theorem describes the relationship between
the 2tth rational residue symbol and the corresponding permutation on (Z/pZ)×.

Theorem 1. Let p ≡ 1 (mod 2t) be a prime for t ≥ 1 and assume that
(

a
p

)
2t−1

= 1
for a ∈ Z relatively prime to p. Then(

a

p

)
2t

= 1 ⇐⇒ φa|(Z/pZ)×2t−1 is even,

where φa is the permutation on (Z/pZ)× given by

i (mod p) 7→ ia (mod p).
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Proof. In the case t = 1, we set
(

a
p

)
1

= 1 by convention (since every element in

(Z/pZ)× is a first power). Then Zolotarev [7] proved(
a

p

)
= 1 ⇐⇒ φa is even.

We proceed by induction on t. Suppose the theorem holds for the (t− 1)th case and
that

(
a
p

)
2t−1

= 1. Let f denote the order of a in (Z/pZ)× and write g = p−1
f . If p

is any prime ideal above pZ in OQ(ζ2t−1 ), then the sets

Bi :=
{

b ∈ (Z/pZ)×
∣∣∣∣ (

b

p

)
2t−1

= ζi
2t−1

}
each have cardinality p−1

2t−1 and(
φa(b)

p

)
2t−1

=
(

ba

p

)
2t−1

=
(

b

p

)
2t−1

(
a

p

)
2t−1

=
(

b

p

)
2t−1

implies that φa preserves the 2t−1th rational residue classes modulo p. We also note
that

φf
a(b) ≡ baf ≡ b (mod p),

with f minimal, shows that φa is a product of g cycles of length f and that φa affects
each Bi in exactly the same way. It follows that(

a

p

)
2t

≡ a(p−1)/2t ≡ 1 (mod p) ⇐⇒ f divides
p− 1

2t
=

fg

2t

⇐⇒ g ≡ 0 (mod 2t)
⇐⇒ φa|(Z/pZ)×2t−1 is even,

completing the proof of Theorem 1.

3. Reciprocity Laws

Utilizing our new description of the rational residue symbol, we provide a new
proof of the 2nth reciprocity law of Budden, Collins, Lea, and Savioli [1] in the
special case where n is a power of 2. From this result, all of the known rational
quartic reciprocity laws follow (cf. [5]) by choosing appropriate primitive elements
for K4, the unique quartic subfield of Q(ζp) (assuming p ≡ 1 (mod 4)). When
p ≡ 1 (mod 2t), the 2tth generalization of Scholz’s Reciprocity Law proved in [2]
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also follows from the following theorem by choosing an appropriate primitive element
for K2t , the unique subfield of Q(ζp) of dimension 2t over Q.

Our setup is similar to that of Duke and Hopkins [3] and may shed some light
on the potential formulation of a rational 2tth reciprocity law in any finite group.
The additive group Z/pZ is abelian, and thus has p irreducible characters

χi : Z/pZ −→ C×

given by χi(a) = ζia
p , for 0 ≤ i < p. The Galois group Gal(Q(ζp)/Q) is given by{
σk : Q(ζp) −→ Q(ζp) | σk(ζp) = ζk

p

}
∼= (Z/pZ)× .

Assuming that p ≡ 1 (mod 2t), the fundamental theorem of Galois theory implies
that

Gal(Q(ζp)/K2t) ∼= (Z/pZ)×2t

.

The action of any automorphism σk may be identified with the permutation φk via

σk(χi(a)) = σk(ζia
p ) = ζiak

p = χi(φk(a)).

Theorem 2. Let p ≡ q ≡ 1 (mod 2t) be distinct primes such that(
p

q

)
2t−1

=
(

q

p

)
2t−1

= 1.

If β ∈ OK2t−1 such that K2t = Q(
√

β), then(
q

p

)
2t

=
(

β

q

)
2

,

where q is any prime ideal above qZ in OK2t−1 .

Proof. Let a1, a2, . . . , ak denote the 2t−1th residues of p, with k = p−1
2t−1 , and consider

the matrix

R =

 χ1(a1) · · · χ1(ak)
...

. . .
...

χk(a1) · · · χk(ak)

 .
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For any a ∈ (Z/pZ)×2t−1
, the automorphism σa maps χi(aj) 7→ χi(φa(aj)) and

hence, permutes the columns of R. From Theorem 1 and the basic properties of
determinants, it follows that

σa(det(R)) =
(

a

p

)
2t

det(R).

When the automorphism σa ∈ Gal(Q(ζp)/K2t−1) is restricted to K2t , it agrees with
either the identity or conjugation

√
β 7→ −

√
β, depending on whether or not a is a

2tth residue of p. Hence, it follows that

σa

(√
β det(R)

)
=

√
β det(R), (1)

so that
√

β det(R) ∈ K2t−1 . Now suppose that q is any prime ideal above qZ in
K2t−1 and consider the congruence

σq

(√
β det(R)

)
≡

(√
β
)q

(
q

p

)
2t

det(R) (mod q)

≡ β(q−1)/2

(
q

p

)
2t

√
β det(R) (mod q)

≡
(

β

q

)
2

(
q

p

)
2t

√
β det(R) (mod q). (2)

Comparing (1) and (2) when a = q, we obtain

√
β det(R) ≡

(
β

q

)
2

(
q

p

)
2t

√
β det(R) (mod q). (3)

Since the matrix R is of Vandermonde-type, its determinant is given by

det(R) =
∏

1≤m≤k

ζam
p ·

∏
1≤i<j≤k

(ζaj
p − ζai

p )

=
∏

1≤m≤k

ζam
p ·

∏
1≤i<j≤k

ζ
aj
p (1− ζ

ai−aj
p ),

which is a product of units and factors that divide p in Q(ζp). Also, the principal
ideal generated by β in OKt−1

2
becomes a square when lifted to K2t , so β must be

relatively prime to q. Thus,
√

β det(R) is not in the ideal q and can be canceled
from both sides of the congruence (3). Since the residue symbols in (3) only take on
the values ±1, we may drop the congruence to obtain the desired result.
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Note that Theorem 2 is independent of the choice of prime ideal q. Since we
assume

(
p
q

)
2t−1

= 1, qZ splits completely in K2t−1 giving the isomorphism

OK2t−1/q ∼= Z/qZ.

Thus, we can identify
(

β
q

)
2

with a Legendre symbol
(

b
q

)
via

b ≡ β (mod q),

with b ∈ (Z/pZ)×.
Our approach to proving this theorem using a partial character table (matrix)

is similar to the method employed by Duke and Hopkins [3] in the proof of their
quadratic reciprocity law in finite groups. This demonstrates the potential for ex-
tending their results to 2tth rational residues.
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