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DIFFERENTIAL SUBORDINATION AND SUPERORDINATION
FOR CERTAIN SUBCLASSES OF ANALYTIC FUNCTIONS

INVOLVING AN EXTENDED INTEGRAL OPERATOR
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Abstract. In this paper we derived some subordination, superordination and
sandwich results for certain normalized analytic functions in the open unit disc,
which are acted upon by a class of extended integral operator.
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1. Introduction

Let H(U) be the class of analytic functions in the open unit disc U = {z ∈ C :
|z| < 1} and let H[a, k] consisting of functions of the form:

f(z) = a+ akz
k + ak+1z

k+1... (a ∈ C). (1.1)

Also, let A1 be the subclass of H(U) consisting of functions of the form:

f(z) = z +
∞∑

k=2

akz
k. (1.2)

If f, g ∈ H(U), we say that f is subordinate to g , written symbolically as f(z) ≺
g(z), if there exists a Schwarz function w, which (by definition) is analytic in U with
w(0) = 0 and |w(z)| < 1 (z ∈ U) such that f(z) = g(w(z)) . In particular, if the
function g is univalent in U , then we have the following equivalence (cf., e.g., [9];
see also [10, p.4]):

f(z) ≺ g(z) ⇔ f(0) = g(0) and f(U) ⊂ g(U).

Supposing that p, h are two analytic functions in U , let

ϕ(r, s, t; z) : C3 × U → C.
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If p and ϕ(p(z), zp
′
(z), z2p

′′
(z); z) are univalent functions in U and if p satisfies

the second-order superordination

h(z) ≺ ϕ(p(z), zp
′
(z), z2p

′′
(z); z), (1.3)

then p is called to be a solution of the differential superordination (1.3). (If f is
subordinate to F , then F is superordinate to f). An analytic function q is called
a subordinant of (1.3), if q(z) ≺ p(z) for all the functions p satisfying (1.3). A
univalent subordinant q̃ that satisfies q ≺ q̃ for all the subordinants q of (1.3), is
called the best subordinant (cf., e.g., [9], see also [10]).

Recently, Miller and Mocanu [9] obtained sufficient conditions on the functions
h, q and ϕ for which the following implication holds:

h(z) ≺ ϕ(p(z), zp
′
(z), z2p

′′
(z); z) ⇒ q(z) ≺ p(z). (1.4)

For ν > −1 and f(z) ∈ A1, we recall the generalized Bernardi-Libera-Livingston
integral operator Lνf(z) (see [1], [7] and [8]) as:

Lνf(z) =
ν + 1
zν

z∫
0

tν−1f(t)dt. (1.5)

In [2] Catas extended the multiplier transformation and defined the operator
Im(λ, `)f(z) on A1 by the following series:

Im(λ, `)f(z) = z +
∞∑

k=2

[
1 + `+ λ(k − 1)

1 + `

]m

akz
k

(λ ≥ 0; ` ≥ 0;m ∈ N0 = N ∪ {0}; N = {1, 2, ...}; z ∈ U). (1.6)

We note that I0(1, 0)f(z) = f(z) and I1(1, 0)f(z) = zf
′
(z).

Now, we define the integral operator Jm(λ, `)f(z) (λ > 0; ` ≥ 0;m ∈ N0) as
follows:

J0(λ, `)f(z) = f(z),

J1(λ, `)f(z) =
(

1 + `

λ

)
z1−( 1+`

λ )
z∫

0

t(
1+`
λ )−2f(t)dt (f ∈ A1; z ∈ U),

J2(λ, `)f(z) =
(

1 + `

λ

)
z1−( 1+`

λ )
z∫

0

t(
1+`
λ )−2J1(λ, `)f(t)dt (f ∈ A1; z ∈ U),
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and, in general,

Jm(λ, `)f(z) =
(

1 + `

λ

)
z1−( 1+`

λ )
z∫

0

t(
1+`
λ )−2Jm−1(λ, `)f(t)dt

= J1(λ, `)
(

z

1− z

)
∗ J1(λ, `)(

z

1− z
) ∗ ......J1(λ, `)(

z

1− z
) ∗ f(z)

b− − −−−−−−−−m− times−−−−−−−−−−c

(f ∈ A1;m ∈ N; z ∈ U). (1.7)

We note that if f(z) ∈ A1, then from (1.1) and (1.7), we have

Jm(λ, `)f(z) = z +
∞∑

k=2

[
1 + `

1 + `+ λ(k − 1)

]m

akz
k

(λ > 0; ` ≥ 0;m ∈ N0; z ∈ U). (1.8)

From (1.8), it is easy verify that

λz(Jm+1(λ, `)f(z))
′
= (1+`)Jm(λ, `)f(z)−(1+`−λ)Jm+1(λ, `)f(z)(λ > 0). (1.9)

The operator Jm(λ, `)f(z) was introduced by El-Ashwah and Aouf [4, with p = 1].
We note that:
(i) Jm(1, 1)f(z) = Imf(z) (see Flett [5] and Uralegaddi and Somanatha [15]);
(ii) Jm(1, 0)f(z) = Imf(z)(m ∈ N0) (see Salagean [13]);
(iii) Jα(1, 1)f(z) = Iαf(z)(α > 0) (see Jung et al. [6]);
(iv) Jm(λ, 0) = J−m

λ f(z) (see Patel [12]).

2.Preliminaries

In order to prove our subordination and superordination results, we make use of
the following known definition and results.
Definition 1 [11]. Denote by Q the set of all functions f(z) that are analytic and
injective on U\E(f), where

E(f) =
{
ζ : ζ ∈ ∂U and lim

z→ζ
f(z) = ∞

}
(2.1)

and are such that f
′
(ζ) 6= 0 for ζ ∈ ∂U\E(f).
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Lemma 1 [14]. Let q be a convex univalent function in U and let ψ ∈ C, δ ∈ C∗ =
C\{0} with

Re

{
1 +

zq
′′
(z)

q′(z)

}
> max

{
0,−Re

(
ψ

δ

)}
.

If p(z) is analytic in U and

ψp(z) + δzp
′
(z) ≺ ψq(z) + δzq

′
(z), (2.2)

then
p(z) ≺ q(z)

and q is the best dominant.
Lemma 2 [11]. Let q be convex univalent in U and δ ∈ C. Further assume that
Re(δ) > 0. If p(z) ∈ H[q(0), 1] ∩Q and p(z) + δzp

′
(z) is univalent in U , then

q(z) + δzq
′
(z) ≺ p(z) + δzp

′
(z), (2.3)

implies
q(z) ≺ p(z)

and q is the best subordinant.

3.Main Results

Unless otherwise mentioned we shall assume throughout the paper that λ >
0, ` ≥ 0,m ∈ N0 and z ∈ U .

Theorem 1. Let q be convex univalent in U, with q(0) = 1, γ ∈ C∗. Further,
assume that

Re

{
1 +

zq
′′
(z)

q′(z)

}
> max

{
0,−Re

(
`+ 1
λγ

)}
. (3.1)

If f ∈ A1, Jm(λ, `)f(z) 6= 0 for 0 < |z| < 1, and

Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

+ γ

{
1− Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)

(Jm(λ, `)f(z))2

}

≺ q(z) +
(

λγ

`+ 1

)
zq

′
(z), (3.2)

then
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

≺ q(z)
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and q is the best dominant of subordination (3.2).
Proof. Define a function p by

p(z) =
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

(z ∈ U). (3.3)

Then the function p is analytic in U and p(0) = 1. Therefore, differentiating
(3.3) logarithmically with respect to z and using the identity (1.9) in the resulting
equation, we have

Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

+ γ

{
1− Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)

(Jm(λ, `)f(z))2

}

= p(z) +
(

λγ

`+ 1

)
zp

′
(z),

that is,

p(z) +
(

λγ

`+ 1

)
zp

′
(z) ≺ q(z) +

(
λγ

`+ 1

)
zq

′
(z)

and therefore, the theorem follows by applying Lemma 1.

Putting q(z) =
1 +Az

1 +Bz
(A,B ∈ C, A 6= B and |B| ≤ 1) in Theorem 1, we obtain

the following corollary.

Corollary 1. If f(z) ∈ A1, Re
{

1−Bz

1 +Bz

}
> max

{
0,−Re

(
`+1
λγ

)}
and γ ∈ C∗

satisfy
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

+ γ

{
1− Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)

(Jm(λ, `)f(z))2

}
≺ 1 +Az

1 +Bz
+

(
λγ

`+ 1

)
(A−B)z
(1 +Bz)2

,

then
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

≺ 1 +Az

1 +Bz
(3.4)

and q(z) = 1+Az
1+Bz is the best dominant.

Putting A = 1 and B = −1 in Corollary 1, we have

Corollary 2. Let f(z) ∈ A1, and γ ∈ C∗ satisfy

Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

+ γ

{
1− Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)

(Jm(λ, `)f(z))2

}
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≺ 1 + z

1− z
+

(
2λγ
`+ 1

)
z

(1− z)2
,

then

Re
{
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

}
> 0.

Now, by appealing to Lemma 2, it can be easily prove the following theorem.

Theorem 2. Let q be convex univalent in U , with q(0) = 1. Let γ ∈ C with

Re(γ) > 0. If f ∈ A1,
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

∈ H[q(0), 1] ∩Q,

Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

+ γ

{
1− Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)

(Jm(λ, `)f(z))2

}
is univalent in U , and

q(z) +
(

λγ

`+ 1

)
zq

′
(z) ≺ Jm+1(λ, `)f(z)

Jm(λ, `)f(z)
+ γ

{
1−

Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)
(Jm(λ, `)f(z))2

}
, (3.5)

then

q(z) ≺ Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

, (3.6)

and q is the best subordinant.
Combining Theorem 1 and Theorem 2, we obtain the following sandwich thereom.

Theorem 3. Let q1 be convex univalent in U, with q1(0) = 1. Let γ ∈ C∗
with Re(γ) > 0, q2 be univalent in U, q2(0) = 1 and satisfies (3.1). If f ∈

A1,
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

∈ H[q(0), 1] ∩Q,

Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

+ γ

{
1− Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)

(Jm(λ, `)f(z))2

}
is univalent in U and

q1(z) +
(

λγ

`+ 1

)
zq

′
1(z) ≺ Jm+1(λ, `)f(z)

Jm(λ, `)f(z)
+ γ

{
1− Jm−1(λ, `)f(z)Jm+1(λ, `)f(z)

(Jm(λ, `)f(z))2

}
≺ q2(z) +

(
λγ

`+ 1

)
zq

′
2(z),
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then

q1(z) ≺
Jm+1(λ, `)f(z)
Jm(λ, `)f(z)

≺ q2(z) (3.7)

and q1(z) and q2(z) are, respectively, the best subordinant and the best dominant.

Theorem 4. Let q be convex univalent in U , with q(0) = 1, γ ∈ C∗. Further,
assume that (3.1) holds. If f ∈ A1 satisfies

(1 + γ)
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
+ γ

zJm−1(λ, `)f(z)
(Jm+1(λ, `)f(z))2

−

2γ
z(Jm(λ, `)f(z))2

(Jm+1(λ, `)f(z))3
≺ q(z) +

(
λγ

`+ 1

)
zq

′
(z), (3.8)

then
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
≺ q(z) (3.9)

and q(z) is the best dominant.
Proof. Define the function p by

p(z) =
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
(z ∈ U). (3.10)

Differentiating (3.10) logarithmically with respect to z, we obtain

zp
′
(z)

p(z)
=

(
`+ 1
λ

)
+

(
`+ 1
λ

)
Jm−1(λ, `)f(z)
Jm(λ, `)f(z)

− 2
(
`+ 1
λ

)
Jm(λ, `)f(z)
Jm+1(λ, `)f(z)

.

Then, simple computations show that

p(z) +
(

λγ

`+ 1

)
zp

′
(z) = (1 + γ)

zJm(λ, `)f(z)
(Jm+1(λ, `)f(z))2

+

+γ
zJm−1(λ, `)f(z)

(Jm+1(λ, `)f(z))2
− 2γ

z(Jm(λ, `)f(z))2

(Jm+1(λ, `)f(z))3
.

Applying Lemma 1, the theorem follows.

Taking q(z) =
1 +Az

1 +Bz
(A,B ∈ C, A 6= B and |B| ≤ 1) in Theorem 4, we obtain

the following corollary.

Corollary 3. If f(z) ∈ A1 and γ ∈ C∗ satisfy

(1 + γ)
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
+ γ

zJm−1(λ, `)f(z)
(Jm+1(λ, `)f(z))2

−
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2γ
z(Jm(λ, `)f(z))2

(Jm+1(λ, `)f(z))3
≺ 1 +Az

1 +Bz
+

(
λγ

`+ 1

)
(A−B)

(1 +Bz)2
,

then
Jm(λ, `)f(z)
Jm+1(λ, `)f(z)

≺ 1 +Az

1 +Bz
(3.12)

and q(z) =
1 +Az

1 +Bz
is the best dominant.

Theorem 5. Let q be convex univalent in U , with q(0) = 1. Let γ ∈ C. with

Re(γ) > 0. If f(z) ∈ A1,
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
∈ H[q(0), 1] ∩Q,

(1 + γ)
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
+ γ

zJm−1(λ, `)f(z)
(Jm+1(λ, `)f(z))2

− 2γ
z(Jm(λ, `)f(z))3

(Jm+1(λ, `)f(z))3

is univalent in U , and

q(z) +
(

λγ

`+ 1

)
zq

′
(z) ≺ (1 + γ)

zJm(λ, `)f(z)
(Jm+1(λ, `)f(z))2

+

γ
zJm−1(λ, `)f(z)

(Jm+1(λ, `)f(z))2
− 2γ

z(Jm(λ, `)f(z))2

(Jm+1(λ, `)f(z))3
(3.13)

then
q(z) ≺ zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
, (3.14)

and q is the best subordinant.
Proof The proof is similar to the proof of Theorem 3 and using Lemma 2.

Combining Theorem 4 and Theorem 5, we get the following sandwich theorem.

Theorem 6. Let q1 be convex univalent in U, with q1(0) = 1. Let γ ∈ C∗
with Re(γ) > 0, q2 be univalent in U , q2(0) = 1 and satisfies (3.1). If f ∈

A1,
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
∈ H[q(0), 1] ∩Q,

(1 + γ)
zJm(λ, `)f(z)

(Jm+1(λ, `)f(z))2
+ γ

zJm−1(λ, `)f(z)
(Jm+1(λ, `)f(z))2

− 2γ
z(Jm(λ, `)f(z))2

(Jm+1(λ, `)f(z))3

is univalent in U and

q1(z) +
(

λγ

`+ 1

)
zq

′
1(z) ≺ (1 + γ)

zJm(λ, `)f(z)
(Jm+1(λ, `)f(z))2

+
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γ
zJm−1(λ, `)f(z)

(Jm+1(λ, `)f(z))2
− 2γ

z(Jm(λ, `)f(z))2

(Jm+1(λ, `)f(z))3
≺

q2(z) +
(

λγ

`+ 1

)
zq

′
2(z),

then
q1(z) ≺

zJm(λ, `)f(z)
(Jm+1(λ, `)f(z))2

≺ q2(z)

and q1 and q2 are, respectively, the best subordinant and the best dominant.

Remark. Putting ` = 0 and λ = 1 in the above results, we obtain the results
obtained by Cotirlā [3].
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