CERTAIN CLASSES OF MULTIVALENT FUNCTIONS RELATED WITH A LINEAR OPERATOR

Saqib Hussain, Naveed Anjum, Imran Zulfiqar Cheema

Abstract. In this paper, we introduce and study some new classes of analytic functions using a convolution operator $L_{p}^{*}(a, c): A \rightarrow A$. Some inclusion relationships and a radius problem are investigated. We also show that the class $R_{k, p}(a, c, \alpha)$ is closed under convolution operator with a convex function for $k=2$.

2000 Mathematics Subject Classification: 30C45, 30C50.

1.Introduction

Let A_{p} denotes the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $E=\{z:|z|<1\}$ and $p \in N=\{1,2,3,4, \ldots\}$. Further for $0 \leq \alpha<p$, we denote $S_{p}^{*}(\alpha), C_{p}(\alpha)$ and $K_{p}(\alpha, \gamma)$ be the sbclasses of A_{p} consisting of functions which are respectively, p-valently starlike, convex and close-to-convex of order α and type γ in E. For $\alpha=0$ these classes S_{p}^{*} and K_{p} was introduced by Goodman [2].

The convolution (or Hadmard product) is deonoted and defined by

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} b_{p+k} z^{p+k} \tag{1.2}
\end{equation*}
$$

where

$$
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k} \quad \text { and } \quad g(z)=z^{p}+\sum_{k=1}^{\infty} b_{p+k} z^{p+k} .
$$

The generalized Bernadi operator is deonoted and defined as,

$$
\begin{equation*}
J_{c, p}(f(z))=\frac{c+p}{z^{c}} \int_{0}^{z} t^{c-1} f(t) d t, c>-p \tag{1.3}
\end{equation*}
$$

Inspiring from carlson Shaffer, Saitoh [9] introduced a linear operator, $L_{p}(a, c)$, $(a \in R, c \in C-\{0,-1,-2, \ldots\})$ as:

$$
\begin{equation*}
L_{p}(a, c) f(z)=\phi_{p}(a, c ; z) * f(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} a_{k+p} z^{p+k} \tag{1.4}
\end{equation*}
$$

where

$$
\phi_{p}(a, c ; z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{p+k}
$$

and $(a)_{k}$ is Pochhammer symbol.
Al-Kharasani and Al-Hajiry [1] defined the linear operator $L_{p}^{*}(a, c)$ as

$$
\begin{equation*}
L_{p}^{*}(a, c) f(z)=\phi_{p}^{*}(a, c ; z) * f(z) \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
\phi_{p}(a, c ; z) * \phi_{p}^{*}(a, c ; z)=\frac{z^{p}}{(1-z)^{p+1}} \tag{1.6}
\end{equation*}
$$

From (1.5) and (1.6) the following identity can be easily verified

$$
\begin{equation*}
L_{p}^{*}(a, c+1) f(z)=z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}+(c-p) L_{p}^{*}(a, c) f(z) \tag{1.7}
\end{equation*}
$$

Let $P_{k}(\alpha)$ be the class of functions $p(z)$ analytic in the unit disc E, satisfying the properties $p(0)=1$ and

$$
\int_{0}^{2 \Pi}\left|\frac{\operatorname{Re} p(z)-\alpha}{1-\alpha}\right| d \theta \leq k \pi
$$

where $z=r e^{i \theta}, k \geq 2$ and $0 \leq \alpha<1$. For $\alpha=0$, we obtain the class P_{k} defined by Pinchuk [6].

We also represent $p \in P_{k}(\alpha)$ as

$$
\begin{equation*}
p(z)=\left(\frac{k}{4}+\frac{1}{2}\right) p_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) p_{2}(z) \tag{1.8}
\end{equation*}
$$

where $p_{i} \in P(\alpha)$, for $i=1,2$ and $z \in E$.

We have the following known classes. For $0 \leq \alpha, \beta<1, k \geq 2$,
$R_{k}(\alpha)=\left\{f: f \in A_{p}\right.$ and $\left.\frac{z f^{\prime}}{f} \in P_{k}(\alpha)\right\}$,
$V_{k}(\alpha)=\left\{f: f \in A_{p}\right.$ and $\left.\frac{\left(z f^{\prime}\right)^{\prime}}{f^{\prime}} \in P_{k}(\alpha)\right\}$ and
$T_{k}(\beta, \alpha)=\left\{f: f \in A_{p}, g \in R_{2}(\alpha)\right.$ and $\left.\frac{z f^{\prime}}{g} \in P_{k}(\beta)\right\}$.
Remark 1.1.

$$
f \in V_{k}(\alpha) \Longleftrightarrow \frac{z f^{\prime}}{p} \in R_{k}(\alpha) .
$$

Using the operator $L_{p}^{*}(a, c)$, we introduce the following new classes of analytic functions. For $0 \leq \alpha, \beta<1, k \geq 2$.

Definition 1.1.

$R_{k, p}(a, c, \alpha)=\left\{f: f \in A_{p}\right.$ and $\left.L_{p}^{*}(a, c) f \in R_{k}(\alpha)\right\}$.
Definition 1.2.
$V_{k, p}(a, c, \alpha)=\left\{f: f \in A_{p}\right.$ and $\left.L_{p}^{*}(a, c) f \in V_{k}(\alpha)\right\}$.

Definition 1.3.

$T_{k, p}(a, c, \beta, \alpha)=\left\{f: f \in A_{p}\right.$ and $\left.L_{p}^{*}(a, c) f \in T_{k}(\beta, \alpha)\right\}$.

Note.

For special values of parameters these classes were investigated by several authors, see [1-3] and [5].

2.Preliminary Results

Lemma 2.1 [4]. Let $u=u_{1}+i u_{2}$ and $v=v_{1}+i v_{2}$ and let ϕ be a complex-valued function satisfying the conditions.
i) $\phi(u, v)$ is continuous in $D \subset C^{2}$,
ii) $(1,0) \in D$ and $\operatorname{Re} \phi(1,0)>0$,
iii) $\operatorname{Re} \phi\left(i u_{2}, v_{1}\right) \leq 0$, where $\left(i u_{2}, v_{1}\right) \in D$ and $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$.

If

$$
h(z)=1+\sum_{m=2}^{\infty} c_{m} z^{m}
$$

is a function analytic in E such that $\left(h(z), z h^{\prime}(z)\right) \in D$ and $\operatorname{Re} \phi\left(h(z), z h^{\prime}(z)\right)>$ 0 , for $z \in E$, then $\operatorname{Reh}(z)>0$ in E.

Lemma 2.2

Let $p(z)$ be analytic in E with $p(0)=1$ and $\operatorname{Re} p(z)>0, z \in E$. Then for $s>0$ and $\eta \neq 1$ (complex),
$\operatorname{Re}\left\{p(z)+\frac{s z p^{\prime}(z)}{p(z)+\eta}\right\}>0$, for $|z|<r_{\circ}$,
where r_{\circ} is given by

$$
r_{\circ}=\frac{|\eta+1|}{\sqrt{A+\left(A^{2}-\left|\eta^{2}-1\right|\right)^{\frac{1}{2}}}}, A=2(s+1)^{2}+|\eta|^{2}-1
$$

and this radius is best possible. For this result we refer to [8].

Lemma 2.3[7]

Let ψ be convex and g be starlike in E. Then, for F analytic in E with $F(0)=1$, $\frac{\psi * F g}{\psi * g}$ is contained in the convex hull of $F(E)$.

Lemma 2.4[10]
If $p(z)$ is analytic in E with $p(0)=1$, and if λ is a complex number satisfying $\operatorname{Re} \lambda \geq 0,(\lambda \neq 0)$, then $\operatorname{Re}\left[p(z)=\lambda z p^{\prime}(z)\right]>\beta,(0 \leq \beta<1)$ implies $\operatorname{Re} p(z)>$ $\beta+(1-\beta)(2 \gamma-1)$, where γ is given by

$$
\gamma=\int_{0}^{1}\left(1+t^{\operatorname{Re} \lambda}\right)^{-t} d t
$$

which is an increasing function of $\operatorname{Re} \lambda$ and $\frac{1}{2} \leq \gamma<1$. The estimate is sharp in the sense that bound cannot be improved.

3.MAIN RESULTS

Theorem 3.1.For $0 \leq \alpha<p, c \geq p, k \geq 2$,

$$
R_{k, p}(a, c+1, \alpha) \subseteq R_{k, p}(a, c, \beta)
$$

where

$$
\begin{equation*}
\beta=\frac{2[p-2 \alpha(p-c)]}{\sqrt{(2 c-2 p-2 \alpha+1)^{2}+8(p-2 \alpha(p-c))+(2 c-2 p-2 \alpha+1)}} . \tag{3.1}
\end{equation*}
$$

Proof. Let $f \in R_{k, p}(a, c+1, \alpha)$ and let

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)}=H(z)=(p-\beta) h(z)+\beta \tag{3.2}
\end{equation*}
$$

From (1.7), (3.2) and after some simplification, we have

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) f(z)}-\alpha=(\beta-\alpha)+(p-\beta) h(z)+\frac{(p-\beta) z h^{\prime}(z)}{(p-\beta) h(z)+(\beta+c-p)} \tag{3.3}
\end{equation*}
$$

and

$$
\begin{equation*}
H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) \tag{3.4}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+\ldots$ is analytic and $h(0)=1$ in E. We want to show that $H(z) \in P_{k}(\beta)$ or $h_{i}(z) \in P(\beta), i=1,2$.

From (3.3), (3.4) we have

$$
\begin{aligned}
& \begin{aligned}
& \frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) f(z)}-\alpha=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(\beta-\alpha)+(p-\beta) h_{1}(z)\right\} \\
& \quad\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(\beta-\alpha)+(p-\beta) h_{2}(z)\right\} \\
&+\left(\frac{k}{4}+\frac{1}{2}\right)\left\{\frac{(p-\beta) z h_{1}^{\prime}(z)}{(p-\beta) h_{1}(z)+(\beta+c-p)}\right\} \\
& \quad-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{\frac{(p-\beta) z h_{2}^{\prime}(z)}{(p-\beta) h_{2}(z)+(\beta+c-p)}\right\}
\end{aligned} \\
& =\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(\beta-\alpha)+(p-\beta) h_{1}(z)+\frac{(p-\beta) z h_{1}^{\prime}(z)}{(p-\beta) h_{1}(z)+(\beta+c-p)}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(\beta-\alpha)+(p-\beta) h_{2}(z)+\frac{(p-\beta) z h_{2}^{\prime}(z)}{(p-\beta) h_{2}(z)+(\beta+c-p)}\right\}
\end{aligned}
$$

and this implies that

$$
\operatorname{Re}\left\{(\beta-\alpha)+(p-\beta) h_{i}(z)+\frac{(p-\beta) z h_{i}^{\prime}(z)}{(p-\beta) h_{1}(z)+(\beta+c-p)}\right\}>0, z \in E, i=1,2
$$

We formulate a functional $\phi(u, v)$ by taking $u=h_{i}(z)$ and $v=z h_{i}^{\prime}(z)$. Thus

$$
\phi(u, v)=(\beta-\alpha)+(p-\beta) h_{i}(z)+\frac{(p-\beta) z h_{i}^{\prime}(z)}{(p-\beta) h_{1}(z)+(\beta+c-p)}
$$

It can be easily seen that $\phi(u, v)$ satisfies the conditions (i) and (ii) of Lemma (2.1) in the domain of $D \subseteq C \times\left(C-\frac{\beta+c-p}{\beta-p}\right)$.

To verify the condition (iii) we proceed as follows

$$
\operatorname{Re}\left[\phi\left(i u_{2}, v_{1}\right)\right]=(\beta-\alpha)+\frac{(p-\beta)(\beta+c-p)}{(p-\beta)^{2} u_{2}^{2}+(\beta+c-p)^{2}}
$$

When we put $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, then $\operatorname{Re}\left[\phi\left(i u_{2}, v_{1}\right)\right] \leq \frac{A+B u_{2}^{2}}{2 C}$, where

$$
\begin{gathered}
A=2(\beta-\alpha)(\beta=c-p)^{2}-(\beta+c-p)(p-\beta), \\
B=2(\beta-\alpha)(p-\beta)^{2}-(\beta+c-p)(p-\beta), \\
C=(\beta=c-p)^{2}+(p-\beta)^{2} u_{2}^{2}>0 .
\end{gathered}
$$

Note that $\operatorname{Re}\left[\phi\left(i u_{2}, v_{1}\right)\right] \leq 0$ if and only if $A \leq 0$ and $B \leq 0$. From $A \leq 0$ we obtain β, given by (3.1) and from $B \leq 0$ gives $0 \leq \beta<p$. Hence $h_{i}(z) \in P(\beta)$ and consequently $f(z) \in R_{k, p}(a, c, \beta)$.

Theorem 3.2.For $0 \leq \alpha<p, c \geq p, k \geq 2$, where β is given by (3.1),

$$
V_{k, p}(a, c+1, \alpha) \subseteq V_{k, p}(a, c, \alpha) .
$$

Proof.Let $f \in V_{k, p}(a, c+1, \alpha)$. Then $L_{p}^{*}(a, c) f(z) \in V_{k}(\alpha)$ and by remark (1.1), we have $z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime} \in R_{k}(\alpha)$. This implies $L_{p}^{*}(a, c)\left(z f^{\prime}(z)\right) \in R_{k}(\alpha) \Longrightarrow$ $z f^{\prime}(z) \in R_{k, p}(a, c+1, \alpha) \subseteq R_{k, p}(a, c, \alpha)$. Consequently $f \in V_{k, p}(a, c, \alpha)$, where β is given by (3.1).

Theorem 3.3. For $0 \leq \alpha<p, c \geq p, k \geq 2$,

$$
T_{k, p}(a, c+1, \beta, \alpha) \subseteq T_{k, p}(a, c, \beta, \alpha) .
$$

Proof. Let $f \in T_{k, p}(a, c+1, \beta, \alpha)$. Then there exists $g_{1}(z) \in R_{2}(\alpha)$ such that

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{g_{1}(z)} \in P_{k}(\beta) . \tag{3.5}
\end{equation*}
$$

Let $g_{1}(z)=L_{p}^{*}(a, c+1) g(z)$. Then $g(z) \in R_{2, p}(a, c+1, \alpha)$.
We set

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) g(z)}=H(z)=(p-\beta) h(z)+\alpha, \tag{3.6}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ is analytic and $h(0)=1$ in E. By using (1.7) and after some simplification, we get

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) g(z)}=\frac{z\left(L_{p}^{*}(a, c)\left(z f^{\prime}(z)\right)\right)^{\prime}+(c-p) L_{p}^{*}(a, c)\left(z f^{\prime}(z)\right)}{z\left(L_{p}^{*}(a, c) g(z)\right)^{\prime}+(c-p) L_{p}^{*}(a, c) g(z)} \text {. } \tag{3.7}
\end{equation*}
$$

Also, $g \in R_{2, p}(a, c+1, \alpha)$ and by using Theorem (3.1), with $k=2$ and $\beta=\alpha$, we have $g \in R_{2, p}(a, c, \alpha)$. Therefore we can write

$$
\frac{z\left(L_{p}^{*}(a, c) g(z)\right)^{\prime}}{L_{p}^{*}(a, c) g(z)}=H_{\circ}(z)=(p-\alpha) q(z)+\alpha, \text { where } q(z) \in P .
$$

By logarithmic differentiation of (3.6) and after some simplification, we have

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c)\left(z f^{\prime}(z)\right)\right)^{\prime}}{L_{p}^{*}(a, c+1) g(z)}=H(z) H_{\circ}(z)+z H^{\prime}(z) \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), we obtain

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) g(z)}=H(z)+\frac{z H^{\prime}(z)}{H_{\circ}(z)+(c-p)} \in P_{k}(\beta) \tag{3.9}
\end{equation*}
$$

Let

$$
H(z)=\left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\beta) h_{1}(z)+\alpha\right\}-\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\beta) h_{2}(z)+\alpha\right\}
$$

and
$c(z)=H_{\circ}(z)+(c-p)=(p-\alpha) q(z)+\alpha+(c-p)$.
We want to show that $H \in P_{k}(\beta)$ or $h_{i} \in P$ for $i=1,2$. Then $\operatorname{Rec}(z)>0$ if $(c-p)>-\alpha$.

From (3.6) and (3.7), we will get

$$
\begin{aligned}
\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) g(z)}-\alpha= & \left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\beta) h_{1}(z)+\frac{(p-\beta) z h_{1}^{\prime}(z)}{(p-\alpha) q(z)+\alpha+(c-p)}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\beta) h_{2}(z)+\frac{(p-\beta) z h_{2}^{\prime}(z)}{(p-\alpha) q(z)+\alpha+(c-p)}\right\}
\end{aligned}
$$

and this implies that

$$
\operatorname{Re}\left\{(p-\beta) h_{i}(z)+\frac{(p-\beta) z h_{i}^{\prime}(z)}{(p-\alpha) q(z)+\alpha+(c-p)}\right\}>0, z \in E, i=1,2
$$

Now by taking $u=h_{i}(z)$ and $v=z h_{i}^{\prime}(z)$, we formulate a functional $\phi(u, v)$. Thus

$$
\phi(u, v)=(p-\beta) u+\frac{(p-\beta) v}{(p-\alpha) q(z)+\alpha+(c-p)}
$$

Then clearly $\phi(u, v)$ satisfies the conditions (i) and (ii) of Lemma (2.1).
To verify the condition (iii), we start, with $q(z)=q_{1}+i q_{2}$, as follows:

$$
\begin{aligned}
\operatorname{Re}\left[\phi\left(i u_{2}, v_{1}\right)\right] & =\operatorname{Re}\left\{\frac{(p-\beta) v_{1}}{(p-\alpha)\left(q_{1}+i q_{2}\right)+\alpha+(c-p)}\right\} \\
& =\frac{(p-\beta)\left\{(p-\alpha) q_{1}+\alpha+(c-p)\right\} v_{1}}{\left\{(p-\alpha) q_{1}+\alpha+(c-p)\right\}^{2}+(p-\alpha)^{2} q_{2}^{2}}
\end{aligned}
$$

After putting $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$, we have

$$
\operatorname{Re}\left[\phi\left(i u_{2}, v_{1}\right)\right] \leq \frac{(p-\beta)\left\{(p-\alpha) q_{1}+\alpha+(c-p)\right\} v_{1}}{\left\{(p-\alpha) q_{1}+\alpha+(c-p)\right\}^{2}+(p-\alpha)^{2} q_{2}^{2}} \leq 0
$$

By applying Lemma (2.1), we have $\operatorname{Re} h_{i}(z)>0$, for $i=1,2$ and consequently $h(z) \in P$. Thus $f \in T_{k, p}(a, c, \beta, \alpha)$.

Theorem 3.4. Let $f \in R_{k, p}(a, c, \beta)$, then $J_{c, p} f \in R_{k, p}(a, c, \beta)$.
Proof. Let

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) J_{c, p} f(z)\right)^{\prime}}{L_{p}^{*}(a, c) J_{c, p} f(z)}=H(z)=(p-\beta) h(z)+\beta \tag{3.10}
\end{equation*}
$$

where $h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ is analytic and $h(0)=1$ in E. Using $(1.7),(3.10)$ and after some simplification, we have

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) J_{c, p} f(z)\right)^{\prime}}{L_{p}^{*}(a, c) J_{c, p} f(z)}=(p-\beta) h(z)+\frac{(p-\beta) z h^{\prime}(z)}{(p-\beta) h(z)+(\beta+c)} \in P_{k}(\beta) \tag{3.11}
\end{equation*}
$$

and

$$
\begin{equation*}
H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z) . \tag{3.12}
\end{equation*}
$$

From (3.11) and (3.12), we obtain

$$
\begin{aligned}
\frac{z\left(L_{p}^{*}(a, c) J_{c, p} f(z)\right)^{\prime}}{L_{p}^{*}(a, c) J_{c, p} f(z)}= & \left(\frac{k}{4}+\frac{1}{2}\right)\left\{(p-\beta) h_{1}(z)+\frac{(p-\beta) z h_{1}^{\prime}(z)}{\left.(p-\beta) h_{1}(z)+(\beta+c)\right)}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{(p-\beta) h_{2}(z)+\frac{(p-\beta) z h_{2}^{\prime}(z)}{\left.(p-\beta) h_{1}(z)+(\beta+c)\right)}\right\}
\end{aligned}
$$

and this implies that

$$
\operatorname{Re}\left\{(p-\beta) h_{i}(z)+\frac{(p-\beta) z h_{i}^{\prime}(z)}{(p-\beta) h_{i}(z)+(\beta+c)}\right\}>0, z \in E, i=1,2 .
$$

Now we define a function $\phi(u, v)$, by putting $u=h_{i}(z)$ and $v=z h_{i}^{\prime}(z)$.
Thus

$$
\phi(u, v)=(p-\beta) u+\frac{(p-\beta) v}{(p-\beta) u+(\beta+c)} .
$$

Then clearly $\phi(u, v)$ satisfies all the propereties of Lemma (2.1). Hence $H(z) \in$ $P_{k}(\beta)$ and consequently $J_{c, p} f \in R_{k, p}(a, c, \beta)$.

Theorem 3.5.Let ϕ be a convex function and $f \in R_{2, p}(a, c, \alpha)$. Then $G \in$ $R_{2, p}(a, c, \alpha)$, where $G=\phi * f$.

Proof. Let $G=\phi * f$ and let

$$
\phi(z)=z^{p}+\sum_{k=1}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{p+k}, \quad f(z)=z^{p}+\sum_{k=1}^{\infty} a_{p+k} z^{p+k}
$$

Then

$$
\begin{equation*}
L_{p}^{*}(a, c) G=\phi *\left(L_{p}^{*}(a, c) f\right) \tag{3.13}
\end{equation*}
$$

Also, $f \in R_{2, p}(a, c, \alpha)$. Therefore, $L_{p}^{*}(a, c) f \in R_{2},(\alpha)=S_{p}^{*}(\alpha)$.
By logarithmic differentiation of (3.13) and after some simplification, we have

$$
\frac{z\left(L_{p}^{*}(a, c) G\right)^{\prime}}{L_{p}^{*}(a, c) G}=\frac{\phi * F L_{p}^{*}(a, c) f}{\phi * L_{p}^{*}(a, c) f}
$$

where

$$
F=\frac{z\left(L_{p}^{*}(a, c) f\right)^{\prime}}{L_{p}^{*}(a, c) f}
$$

As $F(z)$ is analytic in E and $F(0)=1$. From Lemma (2.3), we can see that $\frac{z\left(L_{p}^{*}(a, c) G\right)^{\prime}}{L_{p}^{*}(a, c) G}$ is contained in the convex hull of $F(E)$. Since $\frac{z\left(L_{p}^{*}(a, c) G\right)^{\prime}}{L_{p}^{*}(a, c) G}$ is analytic in E and

$$
F(E) \subseteq \Omega=\left\{W: \frac{z\left(L_{p}^{*}(a, c) W(z)\right)^{\prime}}{L_{p}^{*}(a, c) W(z)} \in P_{2}(\alpha)\right\}
$$

then $\frac{z\left(L_{p}^{*}(a, c) G\right)^{\prime}}{L_{p}^{*}(a, c) G}$ lies in Ω. This implies that $G=\phi * f \in R_{2, p}(a, c, \alpha)$.
Theorem 3.6. Let for $z \in E, f(z) \in R_{k, p}(a, c, \alpha)$. Then $f(z) \in R_{k, p}(a, c+1, \alpha)$, for

$$
\begin{equation*}
|z|<r_{\circ}=\frac{|\eta+1|}{\sqrt{A+\left(A^{2}-\left|\eta^{2}-1\right|\right)^{\frac{1}{2}}}} \tag{3.14}
\end{equation*}
$$

where $A=2(s+1)^{2}+|\eta|^{2}-1$, with $\eta=\frac{\alpha+p-c}{p-\alpha}$, and $s=\frac{1}{p-\alpha}$. The value of r_{\circ} is exact.

Proof. Let

$$
\begin{equation*}
\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)}=H(z)=(p-\alpha) h(z)+\alpha \tag{3.15}
\end{equation*}
$$

Where $h(z)=1+c_{1} z+c_{2} z^{2}+c_{3} z^{3}+\ldots$ is analytic and $h(0)=1$ in E. From (1.7), (3.15) and after some simplification, we have

$$
\begin{equation*}
\left(\frac{1}{p-\alpha}\right)\left\{\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) f(z)}-\alpha\right\}=h(z)+\frac{\left(\frac{1}{p-\alpha}\right) z h^{\prime}(z)}{h(z)+\frac{\alpha+p-c}{p-\alpha}} \tag{3.16}
\end{equation*}
$$

Also

$$
H(z)=\left(\frac{k}{4}+\frac{1}{2}\right) h_{1}(z)-\left(\frac{k}{4}-\frac{1}{2}\right) h_{2}(z)
$$

and (3.16) implies

$$
\begin{aligned}
\left(\frac{1}{p-\alpha}\right)\left\{\frac{z\left(L_{p}^{*}(a, c+1) f(z)\right)^{\prime}}{L_{p}^{*}(a, c+1) f(z)}-\alpha\right\}= & \left(\frac{k}{4}+\frac{1}{2}\right)\left\{h_{1}(z)+\frac{\left(\frac{1}{p-\alpha}\right) z h_{1}^{\prime}(z)}{h_{2}(z)+\frac{\alpha+p-c}{p-\alpha}}\right\} \\
& -\left(\frac{k}{4}-\frac{1}{2}\right)\left\{h_{2}(z)+\frac{\left(\frac{1}{p-\alpha}\right) z h_{2}^{\prime}(z)}{h_{2}(z)+\frac{\alpha+p-c}{p-\alpha}}\right\} .
\end{aligned}
$$

where $\operatorname{Re} h_{i}(z)>0$, for $i=1,2$. By using Lemma (2.2), with $\eta=\frac{\alpha+p-c}{p-\alpha} \neq-1$, and $s=\frac{1}{p-\alpha}$, we have

$$
\operatorname{Re}\left\{h_{i}(z)+\frac{s z h_{i}^{\prime}(z)}{h_{i}(z) \eta}\right\}>0, \text { for }|z|<r_{\circ}
$$

and r_{\circ} is given by (3.14). Thus $\frac{z\left(L_{p}^{*}(a, c) f(z)\right)^{\prime}}{L_{p}^{*}(a, c) f(z)} \in P_{k}(\alpha)$ and consequently $f(z) \in$ $R_{k, p}(a, c+1, \alpha)$ for $|z|<r_{\circ}$ and this radius is best possible.

References

[1] H. A. Al-kharasani and S.S. Al-Hajiry, A linear operator and its applications on p-valent functions, Int. J. of. Math. Analysis,(2007), 627-634.
[2] A. W. Goodman, On Schwarz-Christofell transformation and p-valent functions,Tran. Amer. Math. Soc.,68(1950) 204-223.
[3] S.Hussain, Some new classes of analytic functions defined by mean of a convolution operator, Acta Univ. Apul., 20(2009), 203-209.
[4] S.S. Miller, Differential inequalities and Caratheodory functions, Bull. Amer. Math. Soc., 81(2005) 79-81.
[5] K.I.Noor and S.Hussain, An integral operator and its application on certain classes of analytic functions, Adv. in Appl. Math. Anal., 4(2009)51-625.
[6] B.Pinchuk, Function with bounded boundary rotations, Isr. J. Math., 10(1971), 7-16.
[7] S. Ruscheweyh and T. Shiel-small, Hadmard prouduct of schlicht functions and Polya-Schoenberg conjecture, Comment. Math. Helv.,48(1973), 119-135.
[8] S. Ruscheweyh and V.Singh, On certain extermal problems for functions with positive real part, Proc. Amer. Math. Soc.,61(1976), 329-334.
[9]H. Saitoh, A Linear Operator and its Application of First Order Differential Subordinations, Math. Japonica.,44(1996), 31-38.
[10] R. Singh and S. Singh, Convolution properties of a class of starlike functions, Proc. Amer. Math. Soc., 106(1989), 145-152.

Saqib Hussain
Department of Mathematics, COMSATS Institute of Information Technology,
Abbottabad, Pakistan
email:saqib_math@yahoo.com
Naveed Anjum
Department of Mathematics, COMSATS Institute of Information Technology, Abbottabad, Pakistan
email:naveed_maths@yahoo.com
Imran Zulfiqar Cheema
Department of Mathematics, COMSATS Institute of Information Technology,
Lahore, Pakistan
email: imran.cheema@hotmail.com

