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SOME FIXED POINT THEOREMS OF PRES̆IĆ - ĆIRIĆ TYPE

Nguyen Van Luong and Nguyen Xuan Thuan

Abstract. In this paper, we first prove a fixed point theorem for mappings in
complete metric spaces satisfying Pres̆ić - Ćirić type which is a generalization of the
result of Ćirić and Pres̆ić [L. B. Ćirić and S. B. Pres̆ić, On Pres̆ić type generaliza-
tion of the Banach contraction mapping principle, Acta. Math. Univ. Comenian.
LXXVI (2) (2007) 143-147]. Then we present this result in the context of ordered
metric spaces by using monotone non-decreasing mappings. We also support our
results by some examples.
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1.Introduction and preliminaries

Difference equations play a prominent role in economics, biology, ecology, ge-
netics, psychology, sociology, probability theory and other disciplines. Recently,
nonlinear difference equations have been studied by many authors (see for exam-
ple, [2], [3], [5], [6], [14], [16]). Some known difference equations can be found, for
example, in [14], [16] and references therein:

• The flour beetle population model:

xn+3 = axn+2 + bxne
−(cxn+2+dxn), n ∈ N

where a, b, c, d ≥ 0 and c+ d > 0

• The generalized Beddington-Holt stock recruitment model:

xn+1 = axn +
bxn−1

1 + cxn−1 + dxn
, x0, x1 > 0, n ∈ N

where a ∈ (0, 1), b ∈ R∗+ and c, d ∈ R+ with c+ d > 0.
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• The delay model of a perennial grass:

xn+1 = axn + (b+ cxn−1) e
xn , n ∈ N

where a, c ∈ (0, 1) and b ∈ R+.

These suggest considering the k-th order nonlinear difference equation:

xn+k = f(xn, xn+1, ..., xn+k−1), n ∈ N, (1)

with the initial values x0, x1, ..., xk ∈ X, where (X, d) is a metric space, k ∈ N∗ and
f : Xk → X.

The equation (1) can be studied by means of a fixed point theory in view of the
fact that x∗ ∈ X is a solution of (1) if and only if x∗ is a fixed point of f , that is,

x∗ = f(x∗, x∗, ..., x∗)

One of the most important results on this direction has been obtained by S. Pres̆ić
in [11] which is a generalization of Banach contraction mapping principle:

Theorem 1.1. ([11]) Let (X, d) be a complete metric space, k a positive integer,
α1, α2, ..., αk ∈ R+,

∑k
i=1 αi = α < 1 and f : Xk → X a mapping satisfying

d (f(x0, x1, ..., xk−1), f(x1, x2, ..., xk)) ≤ α1d(x0, x1)+α2d(x1, x2)+...+αkd(xk−1, xk)

for all x0, x1, ..., xk ∈ X.
Then:
1) f has a unique fixed point x∗ ∈ X.
2) the sequence {xn}n≥0defined by

xn+k = f (xn, xn+1, ..., xn+k−1) , n ∈ N (2)

converges to x∗ for any x0, x1, ..., xk−1 ∈ X and

limxn = f (limxn, limxn, ..., limxn) .

Afterward, some generalizations of Theorem 1.1 were established ([4], [11], [13] and
references therein). An important generalization result was obtained by Ćirić and
Pres̆ić in [4]:

Theorem 1.2. ([4]) Let (X, d) be a complete metric space, k a positive integer and
f : Xk → X a mapping satisfying the following contractive type condition

d (f(x1, x2, ..., xk), f(x2, x3, ..., xk+1)) ≤ λmax{d(xi, xi+1) : 1 ≤ i ≤ k} (3)
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where k ∈ (0, 1) is constant and x1, x2, ..., xk+1 are arbitrary elements in X. Then
there exists a point x in X such that f (x, x, ..., x) = x. Moreover, if x1, x2, ..., xk+1

are arbitrary elements in X and for n ∈ N

xn+k = f (xn, xn+1, ..., xn+k−1)

then the sequence {xn}∞n=1 is convergent and

limxn = f (limxn, limxn, ..., limxn)

If in addition we suppose that on diagonal ∆ ∈ Xk,

d (f(u, u, ..., u), f(v, v, ..., v)) < d (u, v)

holds for all u, v ∈ X, with u 6= v, then x is the unique fixed point of f in X with
f (x, x, ..., x) = x.

In this paper, we first prove a fixed point theorem for mappings satifying nonlinear
contraction of Pres̆ić - Ćirić type in complete metric spaces which is a generalization
of Theorem 1.2. Then we present this result in the context of ordered metric spaces
by using monotone non-decreasing mapping.

2. Main results

Let Φ denote all functions ϕ : [0,∞)→ [0,∞) satisfying
(i) ϕ is continuous and non-decreasing,

(ii)
∞∑
i=l

ϕi (t) <∞ for all t ∈ (0,∞).

Lemma 2.1. ([8]) Suppose that ϕ : [0,∞) → [0,∞) is non-decreasing. Then for
every t > 0, limn→∞ϕ

n (t) = 0 implies ϕ(t) < t.
The property (ii) of ϕ implies limn→∞ϕ

n (t) = 0 for every t > 0. Therefore, by
Lemma 2.1, ϕ ∈ Φ then ϕ(t) < t for every t > 0.

2.1. Fixed point theorem of Pres̆ić – Ćirić type

In this section, we prove a fixed point theorem which is a generalization of The-
orem 1.2.
Theorem 2.2 Let (X, d) be a complete metric space, k a positive integer and map-
ping f : Xk → X . Suppose that there exists ϕ ∈ Φ such that

d (f(x1, x2, ..., xk), f(x2, x3, ..., xk+1)) ≤ ϕ (max{d(xi, xi+1) : 1 ≤ i ≤ k}) (4)
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for all x1, x2, ..., xk+1 ∈ X. Then there exists a point x in X such that f (x, x, ..., x) =
x. Moreover, if x1, x2, ..., xk+1 are arbitrary elements in X and for n ∈ N

xn+k = f (xn, xn+1, ..., xn+k−1)

then the sequence {xn}∞n=1 is convergent and

limxn = f (limxn, limxn, ..., limxn)

If in addition we suppose that on diagonal ∆ ∈ Xk,

d (f(u, u, ..., u), f(v, v, ..., v)) < d (u, v) (5)

holds for all u, v ∈ X, with u 6= v, then x is the unique fixed point of f in X with
f (x, x, ..., x) = x.

Proof. Let x1, x2, ..., xk be k arbitrary points in X. We define the sequence {xn} as
follows

xn+k = f (xn, xn+1, ..., xn+k−1) , n = 1, 2, ...

Set θ = max{d(x1, x2), d(x2, x3), ..., d(xk, xk+1)}. If x1 = x2 = ... = xk = xk+1 = x
then x is a fixed point of f .Thus, we may assume that x1, x2, ..., xk, xk+1 are not all
equal, that is, θ > 0.
By the assumptions, we have the following estimations:

d(xk+1, xk+2) = d (f(x1, x2, ..., xk), f(x2, x3, ..., xk+1))

≤ ϕ (max{d(x1, x2), d(x2, x3), ..., d(xk, xk+1)})
≤ ϕ (θ) < θ

d(xk+2, xk+3) = d (f(x2, x3, ..., xk+1), f(x3, x4, ..., xk+2))

≤ ϕ (max{d(x2, x3), d(x3, x4), ..., d(xk+1, xk+2)})
≤ ϕ (max{θ, ϕ(θ)}) = ϕ (θ) < θ

. . .

d(x2k, x2k+1) = d (f(xk, xk+1, ..., x2k−1), f(xk+1, xk+2, ..., x2k))

≤ ϕ (max{d(xk, xk+1), d(xk+1, xk+2), ..., d(x2k−1, x2k)})
≤ ϕ (max{θ, ϕ(θ), ..., ϕ(θ)}) = ϕ (θ) < θ
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d(x2k+1, x2k+2) = d (f(xk+1, xk+2, ..., x2k), f(xk+2, xk+3, ..., x2k+1))

≤ ϕ (max{d(xk+1, xk+2), d(xk+2, xk+3), ..., d(x2k, x2k+1)})
≤ ϕ (max{ϕ(θ), ϕ(θ), ..., ϕ(θ)}) = ϕ2 (θ) < ϕ (θ)

and so on
d(xnk+1, xnk+2) ≤ ϕn(θ), n ≥ 1

or
d(xn+1, xn+2) ≤ ϕ[nk ](θ), n ≥ k (6)

By the property (ii) of ϕ, we have

lim
n→∞

d(xn+1, xn+2) = 0 (7)

For any n, p ∈ N, n > k, we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xn+p−1, xn+p)

≤ ϕ[n−1
k ](θ) + ϕ[nk ](θ) + ...+ ϕ[n+p−2

k ](θ) (8)

Set

l =

[
n− 1

k

]
and m =

[
n+ p− 2

k

]
then l ≤ m. From (8), we have

d(xn, xn+p) ≤ ϕl(θ) + ϕl(θ) + ...ϕl(θ)︸ ︷︷ ︸
k times

+ϕl+1(θ) + ϕl+1(θ) + ...ϕl+1(θ)︸ ︷︷ ︸
k times

+...+ ϕm(θ) + ϕm(θ) + ...ϕm(θ)︸ ︷︷ ︸
k times

so

d(xn, xn+p) ≤ k
m∑
i=l

ϕi (θ) (9)

By the property (ii) of ϕ, we have

lim
l→∞

∞∑
i=l

ϕi (t) = 0
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and, in view of (9), we have d(xn, xn+p)→ 0 as n→∞. This means that {xn} is a
Cauchy sequence. Since X is complete, there exists x ∈ X such that

lim
n→∞

xn = x (10)

We have

d(xn+k, f(x, x, ..., x)) = d(f(xn, xn+1, ..., xn+k−1), f(x, x, ..., x))

≤ d(f(xn, xn+1, ..., xn+k−1), f(xn+1, ..., xn+k−1, x))

+d(f(xn+1, ..., xn+k−1, x), f(xn+2, ..., xn+k−1, x, x))

+...+ d(f(xn+k−1, x, ..., x), f(x, x, ..., x))

Therefore, by (4), we have

d(xn+k, f(x, x, ..., x)) ≤ ϕ (max{d(xn, xn+1), ..., d(xn+k−2, xn+k−1), d(xn+k−1, x)})
+ϕ (max{d(xn+1, xn+2), ..., d(xn+k−1, x), d(x, x)})
+...+ ϕ (max{d(xn+k−1, x), d(x, x), ..., d(x, x)})

Taking n→∞ and using (7), (10) and the property of ϕ, we have d (x, f(x, x, ..., x)) ≤
0, i.e.,

d (x, f(x, x, ..., x)) = 0

That implies x = f(x, x, .., x), i.e., x is a fixed point of f .
Let us assume that there exists y ∈ X such that y = f(y, y, ..., y). Suppose that

y 6= x, using (5) , we have

d(x, y) = d(f(x, x, ..., x), f(y, y, ..., y)) < d(x, y)

which is a contraction. Thus, x = y, i.e., x is the unique fixed point of f .

Remark 2.3. In Theorem 2.2, taking ϕ(t) = λt for all t ∈ [0,∞) with λ ∈ (0, 1) we
get the result of Ćirić and Pres̆ić (Theorem 1.2)

2.2. Fixed point theorem of Pres̆ić – Ćirić type in partially ordered
metric spaces

In this section, we extend Theorem 2.2 and prove a fixed point theorem for
monotone nondecreasing mappings in the context of ordered metric spaces.

Let (X,�) be a partially ordered set. Consider on Xk the following partial order:
for (x1, x2, ..., xk), (y1, y2, ..., yk) in Xk

(x1, x2, ..., xk) v (y1, y2, ..., yk) ⇔ x1 � y1, x2 � y2, ..., xk � yk
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Definition 2.4. Let (X,�) be a partially ordered set and f : Xk → X. f is said to
be monotone non-decreasing if for all (x1, x2, ..., xk), (y1, y2, ..., yk) in Xk

(x1, x2, ..., xk) v (y1, y2, ..., yk) ⇒ f(x1, x2, ..., xk) � f(y1, y2, ..., yk)

Theorem 2.5. Let (X,�) be a partially ordered set and suppose there is a metric
d on X such that (X, d) be a complete metric space, k is a positive integer and the
mapping f : Xk → X . Suppose that there exists ϕ ∈ Φ such that

d (f(y1, y2, ..., yk), f(y2, y3, ..., yk+1)) ≤ ϕ (max{d(yi, yi+1) : 1 ≤ i ≤ k}) (11)

for all y1, y2, ..., yk+1 ∈ X and y1 � y2 � ... � yk+1.
Suppose either

(a) f is continuous or
(b) X has the property: if {xn} is a monotone non-decreasing sequence, xn → x

then xn � x for all n.
If there exist k elements x1, x2, ..., xk ∈ X such that

x1 � x2 � ... � xk and xk � f(x1, x2, ..., xk)

Then there exists a point x in X such that f (x, x, ..., x) = x.
If in addition we suppose that on diagonal ∆ ∈ Xk,

d (f(u, u, ..., u), f(v, v, ..., v)) < d (u, v)

holds for all u, v ∈ X, with u 6= v, then x is the unique fixed point of f in X with
f (x, x, ..., x) = x.

Proof. Let x1, x2, ..., xk be k points in X such that

x1 � x2 � ... � xk and xk � f(x1, x2, ..., xk)

Denote
xk+1 = f (x1, x2, ..., xk) � xk

xk+2 = f (x2, x3, ..., xk+1) � f (x1, x2, ..., xk) = xk+1

Continuing this process, we obtain the sequence {xn} with

xn+k = f (xn, xn+1, ..., xn+k−1) , n = 1, 2, ...

and
x1 � x2 � ... � xn � ... (12)
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Set θ = max{d(x1, x2), d(x2, x3), ..., d(xk, xk+1)}. If x1 = x2 = ... = xk = xk+1 = x
then x is a fixed point of f . Thus, we may assume that x1, x2, ..., xk, xk+1 are not
all equal, that is, θ > 0.
From (12) and (11), we have the following estimations:

d(xk+1, xk+2) = d (f(x1, x2, ..., xk), f(x2, x3, ..., xk+1))

≤ ϕ (max{d(x1, x2), d(x2, x3), ..., d(xk, xk+1)})
≤ ϕ (θ) < θ

d(xk+2, xk+3) = d (f(x2, x3, ..., xk+1), f(x3, x4, ..., xk+2))

≤ ϕ (max{d(x2, x3), d(x3, x4), ..., d(xk+1, xk+2)})
≤ ϕ (max{θ, ϕ(θ)}) = ϕ (θ) < θ

. . .

d(x2k, x2k+1) = d (f(xk, xk+1, ..., x2k−1), f(xk+1, xk+2, ..., x2k))

≤ ϕ (max{d(xk, xk+1), d(xk+1, xk+2), ..., d(x2k−1, x2k)})
≤ ϕ (max{θ, ϕ(θ), ..., ϕ(θ)}) = ϕ (θ) < θ

d(x2k+1, x2k+2) = d (f(xk+1, xk+2, ..., x2k), f(xk+2, xk+3, ..., x2k+1))

≤ ϕ (max{d(xk+1, xk+2), d(xk+2, xk+3), ..., d(x2k, x2k+1)})
≤ ϕ (max{ϕ(θ), ϕ(θ), ..., ϕ(θ)}) = ϕ2 (θ) < ϕ (θ)

and so on
d(xnk+1, xnk+2) ≤ ϕn(θ), n ≥ 1

or
d(xn+1, xn+2) ≤ ϕ[nk ](θ), n ≥ k (13)

By the property (ii) of ϕ, we have

lim
n→∞

d(xn+1, xn+2) = 0 (14)

For any n, p ∈ N, n > k, we have

d(xn, xn+p) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xn+p−1, xn+p)

≤ ϕ[n−1
k ](θ) + ϕ[nk ](θ) + ...+ ϕ[n+p−2

k ](θ) (15)
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Set

l =

[
n− 1

k

]
and m =

[
n+ p− 2

k

]
then l ≤ m. From (15), we have

d(xn, xn+p) ≤ ϕl(θ) + ϕl(θ) + ...ϕl(θ)︸ ︷︷ ︸
k times

+ϕl+1(θ) + ϕl+1(θ) + ...ϕl+1(θ)︸ ︷︷ ︸
k times

+...+ ϕm(θ) + ϕm(θ) + ...ϕm(θ)︸ ︷︷ ︸
k times

so

d(xn, xn+p) ≤ k
m∑
i=l

ϕi (θ) (16)

By the property (ii) of ϕ, we have

lim
l→∞

∞∑
i=l

ϕi (t) = 0

and, in view of (16), we have d(xn, xn+p) → 0 as n → ∞. This means that {xn} is
a Cauchy sequence. Since X is complete, there exists x ∈ X such that

lim
n→∞

xn = x (17)

Now, suppose that the assumption (a) holds. We have

x = lim
n→∞

xn+k = lim
n→∞

f(xn, xn+1, ..., xn+k−1)

= f( lim
n→∞

xn, lim
n→∞

xn+1, ..., lim
n→∞

xn+k−1) = f(x, x, ..., x)

Finally, suppose that the assumption (b) holds. Then xn � x for all n (since xn → x
as n→∞).
By (11), we have

d(xn+k, f(x, x, ..., x)) = d(f(xn, xn+1, ..., xn+k−1), f(x, x, ..., x))

≤ d(f(xn, xn+1, ..., xn+k−1), f(xn+1, ..., xn+k−1, x))

+d(f(xn+1, ..., xn+k−1, x), f(xn+2, ..., xn+k−1, x, x))

+...+ d(f(xn+k−1, x, ..., x), f(x, x, ..., x)) (18)
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Therefore, by (11) and (12), we have

d(xn+k, f(x, x, ..., x)) ≤ ϕ (max{d(xn, xn+1), ..., d(xn+k−2, xn+k−1), d(xn+k−1, x)})
+ϕ (max{d(xn+1, xn+2), ..., d(xn+k−1, x), d(x, x)})
+...+ ϕ (max{d(xn+k−1, x), d(x, x), ..., d(x, x)})

Taking n→∞ and using (14), (17) and the property of ϕ, we have d (x, f(x, x, ..., x)) ≤
0, i.e.,

d (x, f(x, x, ..., x)) = 0

That implies x = f(x, x, .., x), i.e., x is a fixed point of f .
The uniqueness of the fixed point x is shown as in the proof of Theorem 2.2.

Corollary 2.6. Let (X,�) be a partially ordered set and suppose there is a metric
d on X such that (X, d) be a complete metric space, k is a positive integer and the
mapping f : Xk → X . Suppose that there exists λ ∈ (0, 1) such that

d (f(y1, y2, ..., yk), f(y2, y3, ..., yk+1)) ≤ λmax{d(yi, yi+1) : 1 ≤ i ≤ k} (19)

for all y1, y2, ..., yk+1 ∈ X and y1 � y2 � ... � yk+1.
Suppose either

(a) f is continuous or
(b) X has the property: if {xn} is a monotone non-decreasing sequence, xn → x

then xn � x for all n.
If there exist k elements x1, x2, ..., xk ∈ X such that

x1 � x2 � ... � xk and xk � f(x1, x2, ..., xk)

Then there exists a point x in X such that f (x, x, ..., x) = x.
If in addition we suppose that on diagonal ∆ ∈ Xk,

d (f(u, u, ..., u), f(v, v, ..., v)) < d (u, v)

holds for all u, v ∈ X, with u 6= v, then x is the unique fixed point of f in X with
f (x, x, ..., x) = x.

Proof. In Theorem 2.5, taking ϕ(t) = λt for all t ∈ [0,∞), we obtain Corollary 2.6.

Example 2.7. Let X = {0, 1, 2} with the usual metric d(x, y) = |x − y| for all
x, y ∈ X. Then (X, d) is a complete metric space. Consider on X the partial order:

x, y ∈ X, x � y ⇔ x, y ∈ {0, 1} and x ≤ y
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where ≤ be the usual order.
ThenX has the property: if {xn} is a monotone non-decreasing sequence, xn → x

then xn � x for all n.
Define f : X2 → X as follows:

f(0, 0) = f(0, 1) = f(1, 1) = f(1, 0) = f(2, 2) = 0

f(0, 2) = f(2, 1) = 1, f(1, 2) = f(2, 0) = 2

Obviously, f is monotone non-decreasing. Let ϕ : [0,∞) → [0,∞) be given by
ϕ = t/2 for all t ∈ [0,∞).

If y1, y2, y3 ∈ X with y1 � y2 � y3, then y1 = y2 = y3 = 0 or y1 = y2 = y3 = 1 or
y1 = y2 = 0, y3 = 1 or y1 = 0, y2 = y3 = 1.
In all cases, we have d(f(y1, y2), f(y2, y3)) = 0, so

d(f(y1, y2), f(y2, y3)) ≤ ϕ (max{d(y1, y2), d(y2, y3)})

Also, d(f(0, 0), f(1, 1)) = 0 < 1 = d(0, 1), d(f(0, 0), f(2, 2, )) = 0 < 2 = d(0, 2) and
d(f(1, 1), f(2, 2)) = 0 < 1 = d(1, 1).
Therefore, all the conditions of Theorem 2.5 are satisfied. Applying Theorem 2.5
we can conclude that f has a unique fixed point in X. In fact, 0 is the unique fixed
point of f .
However, the condition (4) does not hold when x1 = x2 = 1, x3 = 2. In fact,

ϕ (max{d(1, 1), d(1, 2)}) = ϕ(1) < 1 < 2 = d(f(1, 1), f(1, 2)).

for every ϕ ∈ Φ.
Therefore, we can not apply this example to Theorem 2.2.

Example 2.8. Let X = R with the usual metric d(x, y) = |x− y| for all x, y ∈ X.
Consider on X the usual partial order. Then (X, d) is complete and X has property:
if {xn} is a monotone non-decreasing sequence, xn → x then xn � x for all n.
Let f : X2 → X be given by

f(x, y) =
x− y

4
, for allx, y ∈ X

Clearly, 0 is the unique fixed point of f . However, f is not monotone non-decreasing,
so we can not apply Theorem 2.5. For all x, y, z ∈ X, we have

d(f(x, y), f(y, z)) =

∣∣∣∣x− y4
− y − z

4

∣∣∣∣ =

∣∣∣∣x− y4
+
z − y

4

∣∣∣∣ ≤ 1

2
max{d(x, y), d(y, z)}.
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Thus, f satisfies (11) with ϕ(t) = t/2 for all t ≥ 0.
Obviously, for all x 6= y, d(f(x, x), f(y, y)) < d(x, y). Therefore, all the conditions
of Theorem 2.2 are satisfied. Applying Theorem 2.2 we can conclude that f has a
unique fixed point in X.
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