SOME SUBCLASSES OF ANALYTIC FUNCTIONS INVOLVING $\lambda\text{-}\mathbf{SPIRALLIKENESS}$ OF ORDER α

Oana Crișan and Andreea Elena Tudor

ABSTRACT. In the present paper, using the Sălăgean integral operator, we introduce two subclasses of analytic functions involving λ -spirallikeness of order α and study some inclusion properties.

2000 Mathematics Subject Classification: 30C45.

1. INTRODUCTION

Let $\mathcal{H}(U)$ denote the class of analytic functions in the unit disc $U = \{z \in \mathbb{C} : |z| < 1\}$ and \mathcal{A} the class of functions from $\mathcal{H}(U)$ of the form

$$f(z) = z + \sum_{k=2}^{\infty} a_k z^k.$$

For $0 \le \alpha < 1$ and $|\lambda| < \pi/2$, a function $f \in \mathcal{A}$ is said to be λ -spirallike of order α in U if

$$\operatorname{Re}\left[e^{i\lambda}\frac{zf'(z)}{f(z)}\right] > \alpha \cos\lambda, \quad z \in U.$$
(1)

We denote by $S^{\lambda}(\alpha)$ the class consisting of functions from \mathcal{A} which are λ -spirallike of order α in U, and $F^{\lambda}(\alpha)$ the subclass of \mathcal{A} consisting of all functions f(z) for which

$$\operatorname{Re}\left[e^{i\lambda}\left(1+\frac{zf''(z)}{f'(z)}\right)\right] > \alpha \cos \lambda, \quad z \in U.$$
(2)

It follows from (1) and (2) that $f(z) \in F^{\lambda}(\alpha)$ if and only if $zf'(z) \in S^{\lambda}(\alpha)$.

The class $S^{\lambda}(\alpha)$ was considered by Libera in [4] and the class $F^{\lambda}(\alpha)$ was studied by Chichra in [3].

We note that $S^0(\alpha) = S^*(\alpha)$ and $F^0(\alpha) = K(\alpha)$, where $S^*(\alpha)$ and $K(\alpha)$ denote the classes of starlike functions of order α and convex functions of order α , introduced

by Robertson in [6] and [7]. Also, $S^{\lambda}(0) = \hat{S}_{\lambda}$, where \hat{S}_{λ} represents the class of spirallike functions of type λ , which was introduced by Špaček in [8].

We will next consider the integral operators I^n , defined by Sălăgean in [9] and L_c , introduced by Bernardi in [2].

For $f(z) \in \mathcal{A}$ and $n \in \mathbb{N} = \{0, 1, 2, ...\}$, let

$$I^{0}f(z) = f(z),$$

$$I^{1}f(z) = If(z) = \int_{0}^{z} f(t)t^{-1}dt,$$

and

$$I^{n}f(z) = I(I^{n-1}f(z)).$$
 (3)

If $f \in \mathcal{A}$, $f(z) = z + \sum_{k=2}^{\infty} a_k z^k$, it is easy to show that

$$I^n f(z) = z + \sum_{k=2}^{\infty} \frac{a_k}{k^n} z^k, \quad z \in U, \ n \in \mathbb{N}_0$$

$$\tag{4}$$

and

$$z(I^n f(z))' = I^{n-1} f(z), \quad z \in U.$$
 (5)

For $f(z) \in \mathcal{A}$ and $c \in \mathbb{N}$, we define the integral operator $L_c f(z)$ of the form

$$L_c f(z) = \frac{c+1}{z^c} \int_0^z f(t) t^{c-1} dt$$
 (6)

We will now introduce and study some properties of two new classes of analytic function, defined using the operator I^n :

$$S_n^{\lambda}(\alpha) = \{ f \in \mathcal{A} \mid I^n f(z) \in S^{\lambda}(\alpha) \},$$
$$F_n^{\lambda}(\alpha) = \{ f \in \mathcal{A} \mid I^n f(z) \in F^{\lambda}(\alpha) \}.$$

It is easy to see that $f(z) \in F_n^{\lambda}(\alpha)$ if and only if $zf'(z) \in S_n^{\lambda}(\alpha)$. Also, $S_0^{\lambda}(\alpha) = S^{\lambda}(\alpha)$ and $F_0^{\lambda}(\alpha) = F^{\lambda}(\alpha)$.

In order to prove our main theorems, we also need the following notions and results.

If f(z) and g(z) are in $\mathcal{H}(U)$, the function f is said to be subordinate to g if there exists a function w analytic in U, with w(0) = 0 and |w(z)| < 1, $z \in U$, such that $f(z) = g(w(z)), z \in U$. In this case, we write $f \prec g$ or $f(z) \prec g(z), z \in U$. If the function g is univalent in U, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subseteq g(U)$.

Lemma 1 ([5]). Let h be a convex function in U with $\operatorname{Re}[\beta h(z) + \delta] > 0$, $z \in U$. If q is an analytic function in U such that q(0) = h(0) and $q(z) + \frac{zq'(z)}{\beta q(z) + \delta} \prec h(z)$, then $q(z) \prec h(z)$.

2. Main Results

Theorem 1. For all $n \in \mathbb{N}$, $S_n^{\lambda}(\alpha) \subset S_{n+1}^{\lambda}(\alpha)$, where $\lambda \in (-\pi/2, \pi/2)$ and $\alpha \in [0, 1)$. *Proof.* Let $f \in S_n^{\lambda}(\alpha)$ and let

$$p(z) = \frac{z(I^{n+1}f(z))'}{I^{n+1}f(z)} = \frac{I^n f(z)}{I^{n+1}f(z)}.$$
(7)

Then $p(z) = 1 + a_1 z + a_2 z^2 + ...$ is analytic in U and $p(z) \neq 0$, for all $z \in U$. Differentiating (13) logarithmically we have

$$\frac{z(I^n f(z))'}{I^n f(z)} - \frac{z(I^{n+1} f(z))'}{I^{n+1} f(z)} = \frac{zp'(z)}{p(z)},$$

or, equivalently,

$$\frac{z(I^n f(z))'}{I^n f(z)} = p(z) + \frac{zp'(z)}{p(z)}.$$
(8)

Multiplying the last equation by $e^{i\lambda}$ and denoting $e^{i\lambda}p(z)$ by q(z), (8) becomes

$$e^{i\lambda} \frac{z(I^n f(z))'}{I^n f(z)} = q(z) + \frac{zq'(z)}{e^{-i\lambda}q(z)}.$$
(9)

Because $f \in S_n^{\lambda}(\alpha)$, from (9) we obtain

$$\operatorname{Re}\left[e^{i\lambda}\frac{z(I^n f(z))'}{I^n f(z)}\right] = \operatorname{Re}\left[q(z) + \frac{zq'(z)}{e^{-i\lambda}q(z)}\right] > \alpha \cos\lambda, \quad z \in U.$$
(10)

Let h be a convex function such that $h(0) = q(0) = e^{i\lambda}$ and which transforms the unit disc U into the domain $\{z \in \mathbb{C} \mid \text{Re } z > \alpha \cos \lambda\}$. Then (10) can be written as

$$q(z) + \frac{zq'(z)}{e^{-i\lambda}q(z)} \prec h(z), \quad z \in U.$$
(11)

Because $\lambda \in (-\pi/2, \pi/2)$, we have that $\operatorname{Re}[e^{-i\lambda}h(z)] > 0$ for $z \in U$ and so applying Lemma 1 we obtain $q(z) \prec h(z)$. Therefore

$$\operatorname{Re}\left[e^{i\lambda}\frac{z(I^{n+1}f(z))'}{I^{n+1}f(z)}\right] > \alpha \cos\lambda, \quad z \in U.$$
(12)

which shows that $f \in S_{n+1}^{\lambda}(\alpha)$.

Theorem 2. For all $n \in \mathbb{N}$, $F_n^{\lambda}(\alpha) \subset F_{n+1}^{\lambda}(\alpha)$, where $\lambda \in (-\pi/2, \pi/2)$ and $\alpha \in [0, 1)$.

Proof. If $f(z) \in F_n^{\lambda}(\alpha)$, then $I^n f(z) \in F^{\lambda}(\alpha)$, which is equivalent to $z(I^n f(z))' \in S^{\lambda}(\alpha)$. But this implies that $I^n(zf'(z)) \in S^{\lambda}(\alpha)$, or, equivalently, $zf'(z) \in S_n^{\lambda}(\alpha)$. From Theorem 1, we obtain that $zf'(z) \in S_{n+1}^{\lambda}(\alpha)$, which shows that $I^{n+1}(zf'(z)) \in S_{\lambda}(\alpha)$ and so $z(I^{n+1}f(z))' \in S^{\lambda}(\alpha)$. From this we have $I^{n+1}f(z) \in F^{\lambda}(\alpha)$ and so $f(z) \in F_{n+1}^{\lambda}(\alpha)$.

Theorem 3. Let $c \in \mathbb{N}$, $\lambda \in (-\pi/2, \pi/2)$, $\alpha \in [0, 1)$. If $f(z) \in S_n^{\lambda}(\alpha)$ then $L_c f(z) \in S_n^{\lambda}(\alpha)$, for all $z \in U$.

Proof. Let $f(z) \in S_n^{\lambda}(\alpha)$ and

$$p(z) = \frac{z \left(I^n L_c f(z) \right)'}{I^n L_c f(z)} \,. \tag{13}$$

Then $p(z) = 1 + a_1 z + a_2 z^2 + \dots$ is analytic in U and $p(z) \neq 0$, for all $z \in U$. From (6), we obtain the following recurrence:

$$z \left(I^n L_c f(z) \right)' = (c+1) I^n f(z) - c I^n L_c f(z) \,. \tag{14}$$

Using (14) and (6), we get

$$p(z) + c = (c+1)\frac{I^n f(z)}{I^n L_c f(z)}.$$
(15)

Now, differentiating (15) logarithmically, we obtain

$$\frac{z\left(I^n f(z)\right)'}{I^n f(z)} = p(z) + \frac{zp'(z)}{p(z) + c}.$$
(16)

Multiplying (16) by $e^{i\lambda}$ and choosing $q(z) = e^{i\lambda}p(z)$, we have

$$e^{i\lambda} \frac{z \left(I^n f(z) \right)'}{I^n f(z)} = q(z) + \frac{z q'(z)}{e^{-i\lambda} q(z) + c} \,. \tag{17}$$

Let h(z) be a convex function with $h(0) = e^{i\lambda}$ which maps the unit disk into the domain $\{z \in \mathbb{C} \mid \text{Re} \, z > \alpha \cos \lambda\}$. In these conditions, from (17), we have

$$q(z) + \frac{zq'(z)}{e^{-i\lambda}q(z) + c} \prec h(z).$$
(18)

We know that $\operatorname{Re} c \geq 0$ and $\lambda \in (-\pi/2, \pi/2)$, therefore $\operatorname{Re} \left[e^{-i\lambda}h(z) + c\right] > 0$. From Lemma 1, where $\beta = e^{-i\lambda}$ and $\delta = c$, follows that $q(z) \prec h(z)$, which means that

$$\operatorname{Re}\left[e^{i\lambda}\frac{z\left(I^{n}L_{c}f(z)\right)'}{I^{n}L_{c}f(z)}\right] > \alpha\cos\lambda.$$
(19)

Theorem 4. Let $c \in \mathbb{N}$, $\lambda \in (-\pi/2, \pi/2)$, $\alpha \in [0, 1)$. If $f(z) \in F_n^{\lambda}(\alpha)$ then $L_c f(z) \in F_n^{\lambda}(\alpha)$, for all $z \in U$.

Proof. If $f(z) \in F_n^{\lambda}(\alpha)$, then $zf'(z) \in S_n^{\lambda}(\alpha)$. From Theorem 3, we obtain that $L_c(zf'(z)) \in S_n^{\lambda}(\alpha)$, which shows that $z(L_cf(z))' \in S_n^{\lambda}(\alpha)$ and so $L_cf(z) \in F_n^{\lambda}(\alpha)$.

Acknowledgment. This work was possible with the financial support of the Sectoral Operation Programme for Human Resources Development 2007-2013, co-financed by the European Social Fund, under the project number POSDRU/107/1.5/S/76841 with the title "Modern Doctoral Studies: Internationalization and Interdisciplinarity".

References

- M.K. Aouf, The Sălăgean integral operator and strongly starlike functions, Stud. Univ. Babeş-Bolyai Math., 56(2011), 109-115.
- [2] S.D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc., 135(1969), 429-446.
- [3] P.N. Chichra, Regular functions f(z) for which zf'(z) is α -spiral-like, Proc. Amer. Math. Soc., 49(1975), no. 1, 151-160.
- [4] R.J. Libera, Univalent λ -spiral functions, Canad. J. Math, 19(1967), 449-456.
- [5] S.S. Miller, P.T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, Marcel Dekker, New York, 2000.
- [6] M.S. Robertson, On the theory of univalent functions, Ann. Math., 37(1936), 374-408.

- [7] M.S. Robertson, Univalent functions f(z) for which zf'(z) is spirallike, Michigan Math. J., 16(1969), 97-101.
- [8] L. Špaček, Contribution à la théorie des fonctions univalentes, Časopis Pěst. Mat., 62(1932), 12-19 (in Czech).
- G.Ş. Sălăgean, Subclasses of univalent functions, Lecture Notes in Math., Springer Verlang, Berlin, 1013(1983), 362-372.

Oana Crişan Department of Mathematics University of Babeş-Bolyai 1 Kogălniceanu Street 400084 Cluj-Napoca, Romania email:*oana.crisan@ubbcluj.ro*

Andreea Elena Tudor Department of Mathematics University of Babeş-Bolyai 1 Kogălniceanu Street 400084 Cluj-Napoca, Romania email:*andreea.tudor@ubbcluj.ro*