APPLICATIONS OF DIFFERENTIAL SUBORDINATION ON CERTAIN CLASS OF MEROMORPHIC P-VALENT FUNCTIONS ASSOCIATED WITH CERTAIN INTEGRAL OPERATOR

R. M. El-Ashwah and M. K. Aouf

Abstract. By making use of the principle of differential subordination, we investigate some interesting properties of certain subclasses of p-valent meromorphic functions which are defined by certain integral operator.

2000 Mathematics Subject Classification : 30C45.
Keywords and phrases : Meromorphic functions, p-valent, integral operator.

1. Introduction

Let $\Sigma_{p, n}$ denote the class of meromorphically multivalent functions $f(z)$ of the form:

$$
\begin{equation*}
f(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k} z^{k} \quad(n>-p ; p, n \in \mathbb{N}=\{1,2, \ldots .\}) \tag{1.1}
\end{equation*}
$$

which are analytic in the punctured unit disc $U^{*}=\{z: z \in \mathbb{C}$ and $0<|z|<1\}=$ $U \backslash\{0\}$, we denote for $\Sigma_{p, 1-p}$ by Σ_{p}.

For two functions f and g analytic in U, we say that f is subordinate to g, and write $f \prec g$ in U or $f(z) \prec g(z)(z \in U)$, if there exists a Schwarz function $w(z)$, which is analytic in U with

$$
w(0)=0 \text { and }|w(z)|<1 \quad(z \in U),
$$

such that

$$
f(z)=g(w(z)) \quad(z \in U) .
$$

It is known that

$$
f(z) \prec g(z) \Rightarrow f(0)=g(0) \text { and } f(U) \subset g(U),
$$

Furthermore, if the function g is univalent in U, then (see, [5], p.4),

$$
f(z) \prec g(z) \Leftrightarrow f(0)=g(0) \text { and } f(U) \subset g(U) .
$$

Let $\varphi(r, s ; z): \mathbb{C}^{2} \times U \rightarrow \mathbb{C}$ and $h(z)$ be univalent in U. If $p(z)$ is analytic in U and satisfies the first order differential subordination:

$$
\begin{equation*}
\varphi\left(p(z), z p^{\prime}(z) ; z\right) \prec h(z) \tag{1.2}
\end{equation*}
$$

then $p(z)$ is a solution of the differential subordination (1.2). The univalent function $q(z)$ is called a dominant of the solutions if $p(z) \prec q(z)$ for all $p(z)$ satisfying (1.2). A univalent dominant \widetilde{q} that satisfies $\widetilde{q} \prec q$ for all dominants of (1.2) is called the best dominant (see [5]).
For functions $f_{j}(z) \in \Sigma_{p, n}$, given by

$$
\begin{equation*}
f_{j}(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k, j} z^{k} \quad(j=1,2), \tag{1.3}
\end{equation*}
$$

we define the Hadamard product (or convolution) of $f_{1}(z)$ and $f_{2}(z)$ by

$$
\left(f_{1} * f_{2}\right)(z)=z^{-p}+\sum_{k=n}^{\infty} a_{k, 1} a_{k, 2} z^{k}=\left(f_{2} * f_{1}\right)(z)
$$

For $p \in \mathbb{N}, \alpha>0, \lambda \geq 0$ and $f \in \Sigma_{p, n}$ given by (1.1), we define the following integral operator

$$
\begin{aligned}
J_{p, \alpha}^{0} f(z) & =f(z) \\
J_{p, \alpha}^{\lambda} f(z) & =\frac{\alpha^{\lambda}}{z^{\alpha+p} \Gamma(\lambda)} \int_{0}^{z}\left(\log \frac{z}{t}\right)^{\lambda-1} t^{\alpha+p-1} f(t) d t \quad(\lambda>0 ; z \in U)
\end{aligned}
$$

and

$$
J_{p, \alpha} f(z)=J_{p, \alpha}^{1} f(z)=\frac{\alpha}{z^{\alpha+p}} \int_{0}^{z} t^{\alpha+p-1} f(t) d t \quad(z \in U)
$$

Using the elementary integral calculation, it is easy to verify that

$$
\begin{equation*}
J_{p, \alpha}^{\lambda} f(z)=z^{-p}+\sum_{k=n}^{\infty}\left(\frac{\alpha}{k+p+\alpha}\right)^{\lambda} a_{k} z^{k} \quad(\alpha>0, \lambda \geq 0) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{p, \alpha} f(z)=z^{-p}+\sum_{k=n}^{\infty}\left(\frac{\alpha}{k+p+\alpha}\right) a_{k} z^{k} \quad(\alpha>0) \tag{1.5}
\end{equation*}
$$

For the general integral operator $J_{p, \alpha}^{\lambda} f(z)$, it is not difficult to deduce from (1.4) that

$$
\begin{equation*}
z\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}=\alpha J_{p, \alpha}^{\lambda-1} f(z)-(\alpha+p) J_{p, \alpha}^{\lambda} f(z), \quad(\lambda \geq 1) \tag{1.6}
\end{equation*}
$$

We note that
(i) For $n=0, J_{p, 1}^{\lambda} f(z)=P_{p}^{\lambda} f(z)$ (Aqlan et al. [1]);
(ii) $J_{1,1}^{m} f(z)=J^{m} f(z)$ (Uralegaddi and Somanatha [8]);
(iii) $J_{1, \alpha}^{\lambda} f(z)=P_{\alpha}^{\lambda} f(z)(\alpha>0, \lambda>0)$ (Lashin [3]);
(iv) $J_{1, \alpha}^{1} f(z)=J_{\alpha} f(z)=\frac{1}{z}+\sum_{k=1}^{\infty}\left(\frac{\alpha}{k+\alpha+1}\right) a_{k} z^{k}(\alpha>0)$.

Now we introduce the following subclass of $\Sigma_{p, n}$ associated with the integral operator $J_{p, \alpha}^{\lambda}$.
Definition 1. For fixed parameter $A, B(-1 \leq B<A \leq 1)$ a function $f(z) \in \Sigma_{p, n}$ is said to be in the class $\sum_{p, n}^{\lambda}(\alpha, \beta, A, B)$ if

$$
\begin{equation*}
-\frac{z^{p+1}}{p}\left\{(1-\beta)\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}+\beta\left(J_{p, \alpha}^{\lambda-1} f(z)\right)^{\prime}\right\} \prec \frac{1+A z}{1+B z}, \tag{1.7}
\end{equation*}
$$

where $p \in \mathbb{N}, \beta \geq 0, \alpha>0$ and $\lambda \geq 1$.
In the present paper, we derive some subordination results for the function class $\sum_{p, n}^{\lambda}(\alpha, \beta, A, B)$ and investigate various other properties of functions belonging to the class $\sum_{p, n}^{\lambda}(\alpha, \beta, A, B)$. Relevant connections of the results presented in this paper with those obtained in earlier works are also pointed out.

2. Preliminaries

Lemma 1 [2]. Let $h(z)$ be analytic and convex (univalent) in $U, h(0)=1$, and let

$$
\begin{equation*}
\varphi(z)=1+c_{p+n} z^{p+n}+\ldots \tag{2.1}
\end{equation*}
$$

be analytic in U. If

$$
\varphi(z)+\frac{1}{\delta} z \varphi^{\prime}(z) \prec h(z)
$$

then for $\delta \neq 0$ and $R e \delta \geq 0$

$$
\begin{equation*}
\varphi(z) \prec \psi(z)=\frac{\delta}{p+n} z^{-\frac{\delta}{p+n}} \int_{0}^{z} t^{\frac{\delta}{p+n}-1} h(t) d t \quad(z \in U) \tag{2.2}
\end{equation*}
$$

and ψ is the best dominant of (2.2).
Denote by $P(\gamma)$ the class of functions $\varphi(z)$ given by

$$
\varphi(z)=1+b_{1} z+b_{2} z^{2}+\ldots
$$

which are analytic in U and satisfy the following inequality:

$$
\operatorname{Re}(\varphi(z))>\gamma \quad(0 \leq \gamma<1 ; z \in U)
$$

We note that $P(0)=P$.
Lemma 2 [4]. Let the function $\varphi(z)$, given by (2.1), be in the class P. Then

$$
\operatorname{Re}\left\{\varphi(z) \geq \frac{1-|z|}{1+|z|}(z \in U)\right.
$$

Lemma 3 [7]. For $0 \leq \gamma_{1}<\gamma_{2}<1$,

$$
P\left(\gamma_{1}\right) * P\left(\gamma_{2}\right) \subset P\left(\gamma_{3}\right) \quad\left(\gamma_{3}=1-2\left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right)\right)
$$

For real or complex numbers $a, b, c\left(c \notin \mathbb{Z}_{0}^{-}=\{0,-1,-2, \ldots\}\right)$, the Gaussian hypergeometric function is defined by

$$
{ }_{2} F_{1}(a, b, c ; z)=1+\frac{a b}{c} \frac{z}{1!}+\frac{a(a+1) b(b+1)}{c(c+1)} \frac{z^{2}}{2!}+\ldots . .
$$

We note that the above series converges absolutely for $z \in U$ and hence represents an analytic function in the unit disc U (see, for details, [9, Chapter 14]).

Each of the identities (asserted by Lemma 3 below) is fairly well known (cf. , e.g., [9, Chapter 14]).

Lemma 4 [9]. For real or complex parameters $a, b, c\left(c \notin \mathbb{Z}_{0}^{-}\right)$,

$$
\begin{gather*}
\int_{0}^{1} t^{b-1}(1-t)^{c-b-1}(1-t z)^{-a} d t=\frac{\Gamma(b) \Gamma(c-b)}{\Gamma(c)}{ }_{2} F_{1}(a, b ; c ; z)(\operatorname{Re}(c)>\operatorname{Re}(b)>0) \tag{2.3}\\
{ }_{2} F_{1}(a, b ; c ; z)=(1-z)^{-a}{ }_{2} F_{1}\left(a, c-b ; c ; \frac{z}{z-1}\right) \tag{2.4}\\
{ }_{2} F_{1}\left(1,1 ; 2 ; \frac{1}{2}\right)=2 \ln 2 \tag{2.5}
\end{gather*}
$$

and

$$
\begin{equation*}
{ }_{2} F_{1}\left(\alpha_{1}, \alpha_{2}, \frac{\alpha_{1}+\alpha_{2}+1}{2} ; \frac{1}{2}\right)=\frac{\sqrt{\pi} \Gamma\left(\frac{\alpha_{1}+\alpha_{2}+1}{2}\right)}{\Gamma\left(\frac{\alpha_{1}+1}{2}\right) \Gamma\left(\frac{\alpha_{2}+1}{2}\right)} . \tag{2.6}
\end{equation*}
$$

3. MAIN RESULTS

Unless otherwise mentioned we shall assume throughout the paper that $p \in$ $\mathbb{N}, \alpha, \beta>0, \lambda \geq 1$ and $-1 \leq B<A \leq 1$.
Theorem 1. If $f(z) \in \sum_{p, n}^{\lambda}(\alpha, \beta, A, B)$, then

$$
\begin{equation*}
-\frac{z^{p+1}}{p}\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime} \prec Q(z) \prec \frac{1+A z}{1+B z}, \tag{3.1}
\end{equation*}
$$

where the function $Q(z)$ given by

$$
Q(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1, \frac{\alpha}{\beta(p+n)}+1 ; \frac{B z}{1+B z}\right) & (B \neq 0) \\ 1+\frac{\alpha}{\beta(p+n)+\alpha} A z & (B=0)\end{cases}
$$

is the best dominant of (3.1). Furthermore

$$
\begin{equation*}
\operatorname{Re}\left(-\frac{z^{p+1}}{p}\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}\right)^{1 / k}>\rho^{1 / k} \quad(k \in \mathbb{N} ; z \in U) \tag{3.2}
\end{equation*}
$$

where

$$
\rho(\lambda, \alpha, \beta, A . B)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1, \frac{\alpha}{\beta(p+n)}+1 ; \frac{B}{B-1}\right) & (B \neq 0) \\ 1-\frac{\alpha}{\beta(p+n)+\alpha} A & (B=0)\end{cases}
$$

The inequality in (3.2) is the best possible.
Consider the function $\varphi(z)$ defined by

$$
\begin{equation*}
\varphi(z)=-\frac{z^{p+1}}{p}\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime} \quad(z \in U) \tag{3.3}
\end{equation*}
$$

Then $\varphi(z)$ is analytic in U with $\varphi(0)=1$. Applying the identity (1.6) in (3.3) and differentiating the resulting equation with respect to z, we get

$$
-\frac{z^{p+1}}{p}\left\{(1-\beta)\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}+\beta\left(J_{p, \alpha}^{\lambda-1} f(z)\right)^{\prime}\right\}=\varphi(z)+\frac{\beta}{\alpha} z \varphi^{\prime}(z) \prec \frac{1+A z}{1+B z}
$$

Now by using Lemma 1 for $\gamma=\frac{\alpha}{\beta}$, we deduce that

$$
\begin{gathered}
-\frac{z^{p+1}}{p}\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime} \prec Q(z) \\
=\frac{\alpha}{\beta(p+n)} z^{-\left\{\frac{\alpha}{\beta(p+n)}\right\}} \int_{0}^{z} t^{\left\{\frac{\alpha}{\beta(p+n)}\right\}-1}\left(\frac{1+A t}{1+B t}\right) d t
\end{gathered}
$$

$$
= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1, \frac{\alpha}{\beta(p+n)}+1 ; \frac{B z}{1+B z}\right) & (B \neq 0) \\ 1+\frac{\alpha}{\beta(p+n)+\alpha} A z & (B=0)\end{cases}
$$

by change of variables followed by the use of identities (2.3) and (2.4) (with $b=$ $\frac{\alpha}{\beta(p+n)}$ and $\left.c=b+1\right)$. This proves assertion (3.1) of Theorem 1.

Next, in order to prove the assertion (3.2) of Theorem 1, it suffices to show that,

$$
\begin{equation*}
\inf _{|z|<1}\{\operatorname{Re}(Q(z))\}=Q(-1) \tag{3.4}
\end{equation*}
$$

Indeed, for $|z| \leq r<1$,

$$
\operatorname{Re}\left(\frac{1+A z}{1+B z}\right) \geq \frac{1-A r}{1-B r} \quad(|z| \leq r<1)
$$

Upon setting

$$
G(s, z)=\frac{1+A s z}{1+B s z}
$$

and

$$
d \nu(s)=\frac{\alpha}{\beta(p+n)} s^{\left\{\frac{\alpha}{\beta(p+n)}-1\right\}} d s(0 \leq s \leq 1),
$$

which is a positive measure on the closed interval $[0,1]$, we get

$$
Q(z)=\int_{0}^{1} G(s, z) d \nu(s)
$$

so that

$$
\operatorname{Re}\{Q(z)\} \geq \int_{0}^{1} \frac{1-A s r}{1-B s r} d \nu(s)=Q(-r) \quad(|z| \leq r<1)
$$

Letting $r \rightarrow 1^{-}$in the above inequality, and using the aid of the elementary inequality

$$
\operatorname{Re}\left(w^{\frac{1}{k}}\right) \geq(\operatorname{Re}(w))^{\frac{1}{k}}(\operatorname{Re}(w)>0 ; k \in \mathbb{N})
$$

the estimate (3.2) follows.
Finally, the estimate in (3.2) is the best possible as the function $Q(z)$ is the best dominant of (3.1)

Putting $\beta=\frac{\sigma \alpha}{1-2 \sigma}\left(0<\sigma<\frac{1}{2}\right)$ in Theorem 1, we obtain the following corollary.
Corollary 1. If $f \in \Sigma_{p, n}$ satisfies

$$
-\frac{z^{p+1}}{p} \frac{\left[(1+\sigma(p-1))\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}+\sigma z\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime \prime}\right]}{1-2 \sigma} \prec \frac{1+A z}{1+B z}
$$

then

$$
-\frac{z^{p+1}}{p}\left[\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}\right] \prec Q^{*}(z) \prec \frac{1+A z}{1+B z},
$$

where the function $Q^{*}(z)$ given by
$Q^{*}(z)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1+B z)^{-1}{ }_{2} F_{1}\left(1,1, \frac{1-2 \sigma}{\sigma(p+n)}+1 ; \frac{B z}{B z+1}\right) & (B \neq 0) \\ 1-\frac{1-2 \sigma}{1-2 \sigma+\sigma(p+n)} A z & (B=0),\end{cases}$
is the best dominant . Furthermore,

$$
\operatorname{Re}\left(-\frac{z^{p+1}}{p}\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}\right)>\rho^{*}(z \in U)
$$

$\rho^{*}(\sigma, A, B)= \begin{cases}\frac{A}{B}+\left(1-\frac{A}{B}\right)(1-B)^{-1}{ }_{2} F_{1}\left(1,1 ; \frac{1-2 \sigma}{\sigma(p+n)}+1 ; \frac{B}{B-1}\right) & (B \neq 0) \\ 1-\frac{1-2 \sigma}{1-2 \sigma+\sigma(p+n)} A & (B=0) .\end{cases}$
The result is the best possible.
Remark 1. Putting $\lambda=0$ and $p=1$ in Corollary 1, we obtain the result obtained by Patel and Sahoo [6, Theorem 1].

Putting $A=1-2 \delta(0 \leq \delta<1), B=-1$ and $\beta=\alpha$ in Theorem 1, we get the following corollary.
Corollary 2. If $f(z) \in \Sigma_{p, n}$ satisfies the following inequality:

$$
\operatorname{Re}\left\{-\frac{z^{p+1}}{p}\left[(2+p)\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}+z\left(J_{p, \alpha}^{\lambda} f(z)^{\prime \prime}\right]\right\}>\delta \quad(0 \leq \delta<1 ; z \in U)\right.
$$

then
$\operatorname{Re}\left\{-\frac{z^{p+1}}{p}\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}\right\}>1+2(1-\delta)\left[\frac{1}{2}{ }_{2} F_{1}\left(1,1 ; \frac{1}{(p+n)}+1 ; \frac{1}{2}\right)-1\right] \quad(z \in U)$.
The result is the best possible.
Remark 2. Putting $p=1$ and $n=0$ in Corollary 2, we obtain the result obtained by Lashin [3, Corollary 2].

Taking $A=1-2 \delta(0 \leq \delta<1), B=-1$ and $\beta=2 \alpha$ in Theorem 1, we obtain the following corollary.
Corollary 3. If $f(z) \in \Sigma_{p, n}$ satisfies the following inequality

$$
\operatorname{Re}\left\{-\frac{z^{p+1}}{p}\left[(5+2(p-1))\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}+2 z\left(J_{p, \alpha}^{\lambda} f(z)^{\prime \prime}\right]\right\}>-\frac{\pi-2}{4-\pi} \quad(z \in U)\right.
$$

then

$$
\operatorname{Re}\left\{-\frac{z^{p+1}}{p}\left(J_{p, \alpha}^{\lambda} f(z)\right)^{\prime}\right\}>\left(-\frac{\pi}{4-\pi}\right)+\left(\frac{2}{4-\pi}\right){ }_{2} F_{1}\left(1,1 ; \frac{1}{(p+n)}+1 ; \frac{1}{2}\right)(z \in U)
$$

The result is the best possible.
Remark 3 Putting $p=1$ and $n=0$ in Corollary 3, we obtain the result obtained by Lashin [3, Corollary 3].
Theorem 2. If $f(z) \in \Sigma_{p, n}$ satisfies

$$
z^{p}\left[(1-\beta) J_{p, \alpha}^{\lambda} f(z)+\beta J_{p, \alpha}^{\lambda-1} f(z)\right] \prec \frac{1+A z}{1+B z}
$$

then

$$
z^{p} J_{p, \alpha}^{\lambda} f(z) \prec Q(z) \prec \frac{1+A z}{1+B z},
$$

and

$$
\operatorname{Re}\left\{z^{p} J_{p, \alpha}^{\lambda} f(z)\right\}>\rho(\lambda, \alpha, \beta, A, B) \quad(z \in U)
$$

where Q and $\rho(\lambda, \alpha, \beta, A, B)$ are given as in Theorem 1. The result is the best possible.

The proof following by replacing $\varphi(z)$ by $z^{p} J_{p, \alpha}^{\lambda} f(z)$ in (3.3) and using the same lines as in the proof of Theorem 1.
Theorem 3. Let $-1 \leq B_{i}<A_{i} \leq 1(i=1,2)$. If each of the functions $f_{i}(z) \in \Sigma_{p}$ satisfies the following subordination condition

$$
\begin{equation*}
(1-\beta) z^{p} J_{p, \alpha}^{\lambda} f_{i}(z)+\beta z^{p} J_{p, \alpha}^{\lambda-1} f_{i}(z) \prec \frac{1+A_{i} z}{1+B_{i} z} \quad(i=1,2) \tag{3.5}
\end{equation*}
$$

then

$$
(1-\beta) z^{p} J_{p, \alpha}^{\lambda} G(z)+\beta z^{p} J_{p, \alpha}^{\lambda-1} G(z) \prec \frac{1+(1-2 \eta) z}{1-z}
$$

where

$$
G(z)=J_{p, \alpha}^{\lambda}\left(f_{1} * f_{2}\right)(z)
$$

and

$$
\eta=1-\frac{4\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-{ }_{2} F_{1}\left(1,1, \frac{\alpha}{\beta}+1 ; \frac{1}{2}\right)\right]
$$

The result is the best possible when $B_{1}=B_{2}=-1$.
Suppose that each of the functions $f_{i}(z) \in \Sigma_{p}(i=1,2)$ satisfies the condition (3.5). Then by letting

$$
\begin{equation*}
\varphi_{i}(z)=(1-\beta) z^{p} J_{p, \alpha}^{\lambda} f_{i}(z)+\beta z^{p} J_{p, \alpha}^{\lambda-1} f_{i}(z)(i=1,2) \tag{3.6}
\end{equation*}
$$

we have

$$
\varphi_{i}(z) \in P\left(\gamma_{i}\right) \quad\left(\gamma_{i}=\frac{1-A_{i}}{1-B_{i}} ; i=1,2\right)
$$

By making use of the identity (1.6) in (3.6), we observe that

$$
J_{p, \alpha}^{\lambda} f_{i}(z)=\frac{\alpha}{\beta} z^{-p-\frac{\alpha}{\beta}} \int_{0}^{z} t^{\frac{\alpha}{\beta}-1} \varphi_{i}(t) d t \quad(i=1,2)
$$

which, in view of the definition of $G(z)$, we have,

$$
\begin{equation*}
J_{p, \alpha}^{\lambda} G(z)=\frac{\alpha}{\beta} z^{-p-\frac{\alpha}{\beta}} \int_{0}^{z} t^{\frac{\alpha}{\beta}-1} \varphi_{0}(t) d t \tag{3.7}
\end{equation*}
$$

where, for convenience,

$$
\begin{align*}
\varphi_{0}(z) & =z^{p}\left\{(1-\beta) J_{p, \alpha}^{\lambda} G(z)+\beta J_{p, \alpha}^{\lambda-1} G(z)\right\} \\
& =\frac{\alpha}{\beta} z^{-\frac{\alpha}{\beta}} \int_{0}^{z} t^{\frac{\alpha}{\beta}-1}\left(\varphi_{1} * \varphi_{2}\right)(t) d t \tag{3.8}
\end{align*}
$$

Since $\varphi_{i}(z) \in P\left(\gamma_{i}\right)(i=1,2)$ it follows from Lemma 3, that

$$
\begin{equation*}
\left(\varphi_{1} * \varphi_{2}\right)(z) \in P\left(\gamma_{3}\right) \quad\left(\gamma_{3}=1-2\left(1-\gamma_{1}\right)\left(1-\gamma_{2}\right)\right) \tag{3.9}
\end{equation*}
$$

Now, by using (3.9) in (3.8) and then appealing to Lemma 2 and Lemma 4, we get

$$
\begin{aligned}
\operatorname{Re}\left\{\varphi_{0}(z)\right\} & =\frac{\alpha}{\beta} \int_{0}^{1} u^{\frac{\alpha}{\beta}-1} \operatorname{Re}\left(\varphi_{1} * \varphi_{2}\right)(u z) d u \\
& \geq \frac{\alpha}{\beta} \int_{0}^{1} u^{\frac{\alpha}{\beta}-1}\left(2 \gamma_{3}-1+\frac{2\left(1-\gamma_{3}\right)}{1+u|z|}\right) d u
\end{aligned}
$$

$$
\begin{aligned}
& >\frac{\alpha}{\beta} \int_{0}^{1} u^{\frac{\alpha}{\beta}-1}\left(2 \gamma_{3}-1+\frac{2\left(1-\gamma_{3}\right)}{1+u}\right) d u \\
& =1-\frac{4\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left(1-\frac{\alpha}{\beta} \int_{0}^{1} u^{\frac{\alpha}{\beta}-1}(1+u)^{-1} d u\right) \\
& =1-\frac{4\left(A_{1}-B_{1}\right)\left(A_{2}-B_{2}\right)}{\left(1-B_{1}\right)\left(1-B_{2}\right)}\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1, \frac{\alpha}{\beta}+1 ; \frac{1}{2}\right)\right] \\
& =\eta(z \in U) .
\end{aligned}
$$

When $B_{1}=B_{2}=-1$, we consider the functions $f_{i}(z) \in \Sigma_{p}(i=1,2)$, which satisfy the hypothesis (3.5) of Theorem 3 and are defined by

$$
J_{p, \alpha}^{\lambda} f_{i}(z)=\frac{\alpha}{\beta} z^{-p-\frac{\alpha}{\beta}} \int_{0}^{z} t^{\frac{\alpha}{\beta}-1}\left(\frac{1+A_{i} t}{1-t}\right) d t \quad(i=1,2) .
$$

Thus it follows from (3.8) and Lemma 4 that

$$
\begin{aligned}
& \varphi_{0}(z)=\frac{\alpha}{\beta} \int_{0}^{1} u^{\frac{\alpha}{\beta}-1}\left(1-\left(1+A_{1}\right)\left(1+A_{2}\right)+\frac{\left(1+A_{1}\right)\left(1+A_{2}\right)}{1-u z}\right) d u \\
= & 1-\left(1+A_{1}\right)\left(1+A_{2}\right)+\left(1+A_{1}\right)\left(1+A_{2}\right)(1-z)_{2}^{-1} F_{1}\left(1,1, \frac{\alpha}{\beta}+1 ; \frac{z}{z-1}\right) \\
\rightarrow & 1-\left(1+A_{1}\right)\left(1+A_{2}\right)+\frac{1}{2}\left(1+A_{1}\right)\left(1+A_{2}\right)_{2} F_{1}\left(1,1, \frac{\alpha}{\beta}+1 ; \frac{1}{2}\right) \text { as } z \rightarrow-1,
\end{aligned}
$$

which evidently completes the proof of Theorem 3.
Taking $A_{i}=1-2 \alpha_{i}\left(0 \leq \alpha_{i}<1\right) B_{i}=-1(i=1,2)$ and $\frac{\beta}{\alpha}=\tau$, in Theorem 3, we obtain the following corollary.
Corollary 4. If the functions $f_{i}(z) \in \Sigma_{p}(i=1,2)$ satisfy the following inequality:

$$
\begin{equation*}
\operatorname{Re}\left\{(1+\tau p) z^{p} J_{p, \alpha}^{\lambda} f_{i}(z)+\tau z^{p+1}\left(J_{p, \alpha}^{\lambda} f_{i}(z)\right)^{\prime}\right\}>\alpha_{i}\left(\alpha_{i}<1, i=1,2 ; z \in U\right) \tag{3.10}
\end{equation*}
$$

then

$$
\left.\operatorname{Re}\left\{(1+\tau p) z^{p}\left(J_{p, \alpha}^{\lambda} f_{1} * J_{p, \alpha}^{\lambda} f_{2}\right)(z)+\tau z^{p+1}\left(J_{p, \alpha}^{\lambda} f_{1} * J_{p, \alpha}^{\lambda} f_{2}\right)(z)\right)^{\prime}\right\}>\gamma(z \in U),
$$

where

$$
\gamma=1-4\left(1-\alpha_{1}\right)\left(1-\alpha_{2}\right)\left[1-\frac{1}{2}{ }_{2} F_{1}\left(1,1, \frac{1}{\tau}+1 ; \frac{1}{2}\right)\right] .
$$

The result is the best possible.
Remark 4. (i) Putting $p=1$ in Corollary 4, we obtain the result obtained by Lashin [3, Corollary 4];
(ii) Putting $\lambda=0$ in Corollary 4, we obtain the result obtained by Yang [10, Theorem 4].

References

[1] E. Aqlan, J. M. Jahangiri and S. R. Kulkarni, Certain integral operators applied to meromorphic p-valent functions, J. Nat. Geom., 24(2003), 111-120.
[2] D. J. Hallenbeck and St. Ruscheweyh, Subordinations by convex functions, Proc. Amer. Math. Soc., 52(1975), 191-195.
[3] A. Y. Lashin, On certain subclass of meromorphic functions associated with certain integral operators, Comput. Math Appl., 59(2010), no.1, 524-531.
[4] T. H. MacGregor, Functions whose derivative has a positive real part, Trans. Amer. Math. Soc., 104(1962), 532-537.
[5] S. S. Miller and P. T. Mocanu, Differential subordinations : Theory and Applications, Series on Monographs and Textbooks in Pure and Appl. Math. No. 225 Marcel Dekker, Inc., New York, 2000.
[6] J. Patel and P. Sahoo, On certain subclass of meromorphically univalent functions, Kyungpook Math. J., 42(2002), 121-132.
[7] J. Stankiewicz and Z. Stankiewicz, Some applications of the Hadamard convolution in the theory of functions, Ann. Univ. Mariae Curie-Sklodwska Sect. A, 40 (1986), 251-265
[8] B. A. Uralegaddi and C. Somanatha, New criteria for memorphic starlike univalent functions, Bull. Austral. Math. Soc., 43(1991), 137-140.
[9]E. T. Whittaker and G. N. Watson, A Course on Modern Analysis : An Introduction to the General Theory of Infinite Processes and of Analytic Functions; With an Account of the Principal Transcendental Functions, Fourth Edition, Cambridige Univ. Press, Cambridge ,1927.
[10] D.-G. Yang, Certain convolution operators for meromorphic functions, Southeast Asian Bull. Math., 25(2001), 175-186.
R. M. El-Ashwah

Department of Mathematics
Faculty of Science
Damietta University
New Damietta 34517, Egypt

E-mail: r_elashwah@yahoo.com
M. K. Aouf

Department of Mathematics
Faculty of Science
Mansoura University
Mansoura 35516, Egypt
E-mail: mkaouf127@yahoo.com

