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Abstract.We present a geometric way to generate Blundon type inequalities.
Theorem 3.1 gives the formula for cos P̂OQ in terms of the barycentric coordinates
of the points P and Q with respect to a given triangle. This formula implies Blundon
type inequalities generated by the points P and Q . Some applications are given in
the last section by choosing special points P and Q.
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1. Introduction

Consider O the circumcenter, I the incenter , G the centroid, N the Nagel point,
s the semiperimeter, R the circumradius, and r the inradius of triangle ABC.

Blundon’s inequalities express the necessary and sufficient conditions for the
existence of a triangle with elements s, R and r:

2R2+10Rr−r2−2(R−2r)
√
R2 − 2Rr ≤ s2 ≤ 2R2+10Rr−r2+2(R−2r)

√
R2 − 2Rr.

(1)
Clearly these two inequalities can be written in the following equivalent form

|s2 − 2R2 − 10Rr + r2| ≤ 2(R− 2r)
√
R2 − 2Rr, (2)

and in many references this relation is called the fundamental inequality of triangle
ABC.
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The standard proof is an algebraic one, it was first time given by W.J.Blundon [5]
and it is based on the characterization of cubic equations with the roots the length
sides of a triangle. For more details we refer to the monograph of D. Mitrinović, J.
Pečarić, V. Volenec [16], and to the papers of C.Niculescu [17],[18]. R.A.Satnoianu
[20], and S.Wu [22] have obtained some improvements of this important inequality.

The following result was obtained by D.Andrica and C.Barbu in the paper [3]
and it contains a simple geometric proof of (1). Assume that the triangle ABC is
not equilateral. The following relation holds :

cos ÎON =
2R2 + 10Rr − r2 − s2

2(R− 2r)
√
R2 − 2Rr

. (3)

If we have R = 2r, then the triangle must be equilateral and we have equality
in (1) and (2). If we assume that R − 2r 6= 0, then inequalities (1) are direct

consequences of the fact that −1 ≤ cos ÎON ≤ 1.
In this geometric argument the main idea is to consider the points O, I and N ,

and then to get the formula (3). It is a natural question to see what is a similar
formula when we kip the circumcenter O and we replace the points I and N by other
two points P and Q. In this way we obtain Blundon type inequalities generated by
the points P and Q. Section 2 contains the basic facts about the main ingredient
helping us to do all the computations, that is the barycentric coordinates. In Section
3 we present the analogous formula to (3), for the triangle POQ, and the we derive
the Blundon type inequalities generated in this way. The last section contains some
applications of the results in Section 3 as follows: the classical Blundon’s inequalities,
the dual Blundon’s inequalities obtained in the paper [3], the Blundon’s inequalities
generated by two Cevian points of rank (k; l;m).

2. Some basic results about barycentric coordinates

Let P be a point situated in the plane of the triangle ABC. The Cevian triangle
DEF is defined by the intersection of the Cevian lines though the point P and the
sides BC,CA,AB of triangle. If the point P has barycentric coordinates t1 : t2 : t3,
then the vertices of the Cevian triangle DEF have barycentric coordinates given
by: D(0 : t2 : t3), E(t1 : 0 : t3) and F (t1 : t2 : 0). The barycentric coordinates
were introduced in 1827 by Möbius (see [10]). The using of barycentric coordinates
defines a distinct part of Geometry called Barycentric Geometry. More details can
be found in the monographs of C. Bradley [10], C. Coandă[11], C. Coşniţă [12], C.
Kimberling [14], and in the papers of O. Bottema [9], J. Scott [21], and P. Yiu [23].
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It is well-known ([11],[12]) that for every point M in the plane of triangle ABC,
then the following relation holds:

(t1 + t2 + t3)
−−→
MP = t1

−−→
MA+ t2

−−→
MB + t3

−−→
MC. (4)

In the particular case when M ≡ P, we obtain

t1
−→
PA+ t2

−−→
PB + t3

−−→
PC =

−→
0 .

This last relation shows that the point P is the barycenter of the system {A,B,C}
with the weights {t1, t2, t3}. The following well-known result is very useful in com-
puting distances from the point M to the barycenter P of the system {A,B,C} with
the weights {t1, t2, t3}.

Theorem 2.1. If M is a point situated in the plane of triangle ABC, then

(t1+t2+t3)
2MP 2= (t1MA2+t2MB2+t3MC2)(t1+t2+t3)− (t2t3a

2+t3t1b
2+t1t2c

2).
(5)

Proof. Using the scalar product of two vectors, from (4) we obtain:

(t1 + t2 + t3)
2MP 2 = t21MA2 + t22MB2 + t23MC2+

2t1t2
−−→
MA ·

−−→
MB + 2t1t3

−−→
MA ·

−−→
MC + 2t2t3

−−→
MB ·

−−→
MC,

that is
(t1 + t2 + t3)

2MP 2 = t21MA2 + t22MB2 + t23MC2+

t1t2(MA2+MB2−AB2) + t1t3(MA2+MC2−AC2) + t2t3(MB2+MC2−BC2),

hence,

(t1+t2+t3)
2MP 2= (t1MA2+t2MB2+t3MC2)(t1+t2+t3)− (t2t3a

2+t3t1b
2+t1t2c

2).

To get the last relation we have used the definition of the scalar product and the
Cosine Law as follows

2
−−→
MA ·

−−→
MB = 2MA ·MB cos ÂMB =

2MA ·MB · MA2 +MB2 −AB2

2MA ·MB
= MA2 +MB2 −AB2.

If we consider that t1, t2, t3, and t1 + t2 + t3 are nonzero real numbers, then the
relation (5) becomes the Lagrange’s relation

MP 2 =
t1MA2 + t2MB2 + t3MC2

t1 + t2 + t3
− t1t2t3

(t1 + t2 + t3)2

(
a2

t1
+
b2

t2
+
c2

t3

)
. (6)
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If we consider in (6) M ≡ O, the circumcenter of the triangle, then it follows

R2 −OP 2 =
t1t2t3

(t1 + t2 + t3)2

(
a2

t1
+
b2

t2
+
c2

t3

)
. (7)

The following version of Cauchy-Schwarz inequality is also known in the literature
as Bergström’s inequality (see [6], [7], [8], [19]): If xk, ak ∈ R and ak > 0, k =
1, 2, ..., n, then

x21
a1

+
x22
a2

+ ...+
x2n
an
≥ (x1 + x2 + ...+ xn)2

a1 + a2 + ...+ an
,

with equality if and only if
x1
a1

=
x2
a2

= ... =
xn
an
.

Using Bergström’s inequality and relation (4), we obtain

R2 −OP 2 ≥ t1t2t3
(t1 + t2 + t3)2

· (a+ b+ c)2

t1 + t2 + t3
,

that is in any triangle with semiperimeter s the following inequality holds:

R2 −OP 2 ≥ 4s2t1t2t3
(t1 + t2 + t3)3

,

where t1 : t2 : t3 are the barycentric coordinates of P and t1, t2, t3 > 0. Equality
holds if an only if t1 = a, t2 = b, t3 = c, that is P ≡ I, the incenter of the triangle
ABC.

Theorem 2.2. ([11], [12]). If the points P and Q have barycentric coordinates
t1 : t2 : t3, and u1 : u2 : u3, respectively, with respect to the triangle ABC, and
u = u1 + u2 + u3, t = t1 + t2 + t3, then

PQ2 = −αβγ
(
a2

α
+
b2

β
+
c2

γ

)
(8)

where the numbers α, β, γ are defined by

α =
u1
u
− t1

t
;β =

u2
u
− t2

t
; γ =

u3
u
− t3

t
.
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3. Blundon type inequalities generated by two points

Theorem 3.1. Let P and Q be two points diferent from the circumcircle O,
having the barycentric coordinates t1 : t2 : t3, and u1 : u2 : u3 with respect to the
triangle ABC and let u = u1 + u2 + u3, t = t1 + t2 + t3. If u1, u2, u3, t1, t2, t3 6= 0,
then the following relation holds

cos P̂OQ=
2R2 − t1t2t3

t2

(
a2

t1
+ b2

t2
+ c2

t3

)
− u1u2u3

t2

(
a2

u1
+ b2

u2
+ c2

u3

)
+ αβγ

(
a2

α + b2

β + c2

γ

)
2

√[
R2 − t1t2t3

t2

(
a2

t1
+ b2

t2
+ c2

t3

)]
·
[
R2 − u1u2u3

u2

(
a2

u1
+ b2

u2
+ c2

u3

)]
(9)

where a, b, c are the length sides of the triangle and

α =
u1
u
− t1

t
;β =

u2
u
− t2

t
; γ =

u3
u
− t3

t
. (10)

Proof. Applying the relation (7) for the points P and Q, we have

OP 2 = R2 − t1t2t3
t2

(
a2

t1
+
b2

t2
+
c2

t3

)
(11)

and

OQ2 = R2 − u1u2u3
u2

(
a2

u1
+
b2

u2
+
c2

u3

)
(12)

We use the Law of Cosines in the triangle POQ to obtain

cos P̂OQ =
OP 2 +OQ2 − PQ2

2OP ·OQ
, (13)

and from relations (8), (11), (12) and (13) we obtain the relation (9).
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Theorem 3.2. Let P and Q be two points diferent from the circumcircle O,
having the barycentric coordinates t1 : t2 : t3, and u1 : u2 : u3 with respect to the
triangle ABC and let u = u1 + u2 + u3, t = t1 + t2 + t3. If u1, u2, u3, t1, t2, t3 6= 0,
then the following relation holds

−2

√[
R2 − t1t2t3

t2

(
a2

t1
+
b2

t2
+
c2

t3

)]
·
[
R2 − u1u2u3

u2

(
a2

u1
+
b2

u2
+
c2

u3

)]
≤

αβγ

(
a2

α
+
b2

β
+
c2

γ

)
+2R2−

[
t1t2t3
t2

(
a2

t1
+
b2

t2
+
c2

t3

)
+
u1u2u3
u2

(
a2

u1
+
b2

u2
+
c2

u3

)]
≤

2

√[
R2 − t1t2t3

t2

(
a2

t1
+
b2

t2
+
c2

t3

)]
·
[
R2 − u1u2u3

u2

(
a2

u1
+
b2

u2
+
c2

u3

)]
(14)

where a, b, c are the length sides of the triangle and the numbers α, β, γ are defined
by (10).

Proof. The inequalities (14) are simple direct consequences of the fact that −1 ≤
cos P̂OQ ≤ 1. The equality in the right inequality holds if and only if P̂OQ = 0,
that is the points O,P,Q are collinear in the order O,P,Q or O,Q, P . The equality
in the left inequality holds if and only if P̂OQ = π, that is the points O,P,Q are
collinear in the order P,O,Q or Q,O, P .

From Theorem 3.1. it follows that it is a natural and important problem to
construct the triangle ABC from the points O,P,Q, when we know their barycentric
coordinates. In the special case when P ≡ I and Q ≡ N we know that that points
I,G,N are collinear, determining the Nagel line of triangle, and the centroid G lies
on the segment IN such that IG = 1

3IN . Then, using the Euler’s line of the triangle,
we get the orthocenter H on the ray (OG such that OH = 3OG. In this case the
problem is reduced to the famous Euler’s determination problem i.e. to construct
a triangle from its incenter I, circumcenter O, and orthocenter H (see the paper of
P.Yiu [24] for details and results). This is a reason to call the problem as the general
determination problem.

4. Applications

The formula (3) and the classical Blundon’s inequalities (1) can be obtained from
(9) and (14) by considering P = I, the incenter, and Q = N , the Nagel point of the
triangle. Indeed, the barycentric coordinates of incenter I and of Nagel’s point N
are (t1, t2, t3) = (a, b, c), and (u1, u2, u3) = (s− a, s− b, s− c), respectively. We have

u = u1 + u2 + u3 = s, u1u2u3 = r2s, (15)
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and
t = t1 + t2 + t3 = 2s, t1t2t3 = abc = 4Rrs. (16)

We obtain

α =
s− a
s
− a

2s
=

2s− 3a

2s
, β =

2s− 3b

2s
, γ =

2s− 3c

2s
. (17)

Therefore

αβγ

(
a2

α
+
b2

β
+
c2

γ

)
=
∑
cyc

βγa2 =
∑
cyc

(
1− 3b

2s

)(
1− 3c

2s

)
a2 =

∑
cyc

a2 − 3

2s

∑
cyc

[
a2(a+ b+ c)− a3

]
+

9abc

4s2

∑
cyc

a =

∑
cyc

a2 − 3
∑
cyc

a2 +
3

2s

∑
cyc

a3 +
9abc

2s
=

−2(2s2 − 2r2 − 8Rr) + 3(s2 − 3r2 − 6Rr) + 18Rr

that is

αβγ

(
a2

α
+
b2

β
+
c2

γ

)
= −s2 − 5r2 + 16Rr. (18)

Now, using (16) and (17) we get

t1t2t3
t

(
a2

t1
+
b2

t2
+
c2

t3

)
=

4Rrs

4s2
· 2s = 2Rr, (19)

and
u1u2u3
u

(
a2

u1
+
b2

u2
+
c2

u3

)
=
r2s

s2

(
a2

s− a
+

b2

s− b
+

c2

s− c

)
=

r2

s
·

∑
cyc
a2(s− b)(s− c)

r2s
=

1

s2

{
s2
∑
cyc

a2 − s
∑
cyc

[
a2(a+ b+ c)− a3

]
+ abc

∑
cyc

a

}
=

1

s2

(
s
∑
cyc

a3 − s2
∑
cyc

a2 + 8Rrs2

)
=

1

s2
[
2s2(s2 − 3r2 − 6Rr)− s2(2s2 − 2r2 − 8Rr) + 8Rrs2

]
= 4Rr − 4r2 (20)
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Using the relations (18)-(20) in (9) we obtain the relation (3). These computations
are similar to those given by complex numbers in [1].

Now, consider the excenters Ia, Ib, Ic, and Na, Nb, Nc the adjoint points to the
Nagel pointN . For the definition and some properties of the adjoint pointsNa, Nb, Nc

we refer to the paper of D.Andrica and K.L.Nguyen [2]. Let s,R, r, ra, rb, rc be the
semiperimeter, circumradius, inradius, and exradii of triangle ABC, respectively.
Considering the triangle IaONa, D.Andrica and C.Barbu [3] have proved the follow-
ing formula

cos ÎaONa =
R2 − 3Rra − r2a − α

(R+ 2ra)
√
R2 + 2Rra

, (21)

where α = a2+b2+c2

4 .
Using formula (21),we get the dual form of Blundon’s inequalities given in the

paper [3]

0 ≤ a2 + b2 + c2

4
≤ R2 − 3Rra − r2a + (R+ 2ra)

√
R2 + 2Rra. (22)

There are similar inequalities involving the exradii rb and rc.
We known that the barycentric coordinates of the excenter Ia are (t1, t2, t3) =

(−a, b, c), and of the adjoint Nagel point Na are (u1, u2, u3) = (s, c− s, b− s). Using
formula (9) we can obtain the relation (21) and then the dual form of the classical
Blundon’s inequalities (22).

We have

u = u1 + u2 + u3 = s− a, u1u2u3 = s(s− b)(s− c)

and
t = t1 + t2 + t3 = 2(s− a), t1t2t3 = −abc = −4Rrs.

We obtain

α =
2s+ a

2(s− a)
= 1 +

3a

2(s− a)
,

β =
2c− 2s− b

2(s− a)
= 1− 3b

2(s− a)
,

γ =
2b− 2s− c

2(s− a)
= 1− 3c

2(s− a)
.

Therefore,

t1t2t3
t2

(
a2

t1
+
b2

t2
+
c2

t3

)
=
−4Rrs

4(s− a)2
· 2(s− a) = −2Rra, (23)
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and

u1u2u3
u2

(
a2

u1
+
b2

u2
+
c2

u3

)
=
s(s− c)(s− b)

(s− a)2

(
a2

s
− b2

s− c
− c2

s− b

)
=

−
(
−a2 · s− b

s− a
· s− c
s− a

+ b2 · s

s− a
· s− b
s− a

+ c2 · s

s− a
· s− c
s− a

)
=

−
(
−a2 · ra

rb
· ra
rc

+ b2 · ra
r
· ra
rb

+ c2 · ra
r
· ra
rc

)
=

−r2a
(
−a2

rbrc
+

b2

rrb
+

c2

rrc

)
= −r2a

(
4R

ra
+ 4

)
= −4Rra − 4r2a, (24)

where we have used the relation −a2
rbrc

+ b2

rrb
+ c2

rrc
= 4R

ra
+ 4 (see [2], p. 134).

Now, we will calculate the expression:

E = αβγ

(
a2

α
+
b2

β
+
c2

γ

)
+
a2 + b2 + c2

2
=

a2βγ +
a2

2
+ b2αγ +

b2

2
+ c2αβ +

c2

2
=

a2
[
1− 3(b+ c)

2(s− a)
+

9bc

4(s− a)2

]
+
a2

2
+

b2
[
1 +

3(a− c)
2(s− a)

− 9ca

4(s− a)2

]
+
b2

2
+

c2
[
1 +

3(a− b)
2(s− a)

− 9ab

4(s− a)2

]
+
c2

2
,

that is

E = a2
[
−3s

2(s− a)
+

9bc

4(s− a)2

]
+b2

[
3(s− c)
2(s− a)

− 9ca

4(s− a)2

]
+

c2
[

3(s− b)
2(s− a)

− 9ab

4(s− a)2

]
=

3

2(s− a)
[−a2s+ b2(s− c) + c2(s− b)] +

9abc

4(s− a)2
(a− b− c) =

3

2(s− a)
[s(−a2 + b2 + c2)− bc(b+ c)]− 18Rra. (25)

We have
s(−a2 + b2 + c2)− bc(b+ c) = 2sbc cosA− 2bcs+ abc =
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2sbc(cosA− 1) + abc = abc− 4sbc sin2 A

2
=

abc− 4s(p− b)(p− c) = abc− 4Sra = 4S(R− ra), (26)

where S denotes the area of triangle ABC. From relations (25) and (26) we get

E =
3

2(s− a)
· 4S(R− ra)− 18Rra = 6ra(R− ra)− 18Rra = −12Rra − 6r2a,

therefore

αβγ

(
a2

α
+
b2

β
+
c2

γ

)
= −12Rra − 6r2a −

a2 + b2 + c2

2
(27)

Using formulas (23), (24) and (27) in the general formula (9) we obtain the relation
(21).

In the paper [13], N. Minculete and C. Barbu have introduced the Cevians of
rank (k; l;m). The line AD is called ex-Cevian of rank (k ; l ; m) or exterior Cevian
of rank (k ; l ; m), if the point D is situated on side (BC) of the non-isosceles triangle
ABC and the following relation holds:

BD

DC
=
(c
b

)k
·
(
s− c
s− b

)l
·
(
a+ b

a+ c

)m
.

In the paper [13] it is proved that the Cevians of rank (k; l;m) are concurrent in
the point I(k, l,m) called the Cevian point of rank (k ; l ; m) and the barycentric
coordinates of I(k, l,m) are:

ak(s− a)l(b+ c)m : bk(s− b)l(a+ c)m : ck(s− c)l(a+ b)m.

In the case l = m = 0, we obtain the Cevian point of rank k.
Let I1, I2 be two Cevian points with barycentric coordinates:

Ii[a
ki(s− a)li(b+ c)mi : bki(s− b)li(a+ c)mi : cki(s− c)li(a+ b)mi ], i = 1, 2.

Denote t1i = aki(s− a)li(b+ c)mi ,t2i = bki(s− b)li(a+ c)mi , t3i = cki(s− c)li(a+ b)mi ,
i = 1, 2. From formula (9) we obtain

cos Î1OI2=
2R2 − t11t

2
1t

3
1

(T1)2

(
a2

t11
+ b2

t21
+ c2

t31

)
− t12t

2
2t

3
2

(T2)2

(
a2

t12
+ b2

t22
+ c2

t32

)
+ αβγ

(
a2

α + b2

β + c2

γ

)
2

√[
R2 − t11t

2
1t

3
1

(T1)2

(
a2

t11
+ b2

t21
+ c2

t31

)]
·
[
R2 − t12t

2
2t

3
2

(T2)2

(
a2

t12
+ b2

t22
+ c2

t32

)] ,

(28)
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where T1 = t11 + t21 + t31, T2 = t12 + t22 + t32, and for i = 1, 2, we have

t1i t
2
i t

3
i

(Ti)2

(
a2

t1i
+
b2

t2i
+
c2

t3i

)
=

∏
cyc
aki(s− a)li(b+ c)mi∑

cyc
aki(s− a)li(b+ c)mi

·
∑
cyc

a2

aki(s− a)li(b+ c)mi
,

and

α =
ak1(s− a)l1(b+ c)m1∑

cyc
ak1(s− a)l1(b+ c)m1

− ak2(s− a)l2(b+ c)m2∑
cyc
ak2(s− a)l2(b+ c)m2

,

β =
bk1(s− b)l1(a+ c)m1∑

cyc
ak1(s− a)l1(b+ c)m1

− bk2(s− b)l2(a+ c)m2∑
cyc
ak2(s− a)l2(b+ c)m2

,

γ =
ck1(s− c)l1(a+ b)m1∑

cyc
ak1(s− a)l1(b+ c)m1

− ck2(s− c)l2(a+ b)m2∑
cyc
ak2(s− a)l2(b+ c)m2

.

If I1, I2 are Cevian points of rank k1, k2, then formula (28) becomes

cos Î1OI2=

2R2 − (abc)k1
S2−k1
(Sk1

)2
− (abc)k2

S2−k2
(Sk2

)2
+
∑
cyc

( b
k1

Sk1
− bk2

Sk2
)( c

k1

Sk1
− ck2

Sk2
)a2

2

√
[R2 − (abc)k1

S2−k1
(Sk1

)2
][R2 − (abc)k2

S2−k2
(Sk2

)2
]

, (29)

where Sl = al + bl + cl.
Here are few special cases of formula (29). For k1 = 0 and k2 = 1 we get

the centroid G and the incenter I of barycentric coordinates (1; 1; 1) and (a; b; c),
respectively. Formula (29) becomes

cos ĜOI =
6R2 − s2 − r2 + 2Rr

2
√

9R2 − 2s2 + 2r2 + 8Rr ·
√
R2 − 2Rr

, (30)

where abc = 4sRr, S0 = 3, S1 = 2s, S2 = 2(s2 − r2 − 4Rr).
For k2 = 2 we obtain the Lemoine point L of triangle ABC, of barycentric

coordinates (a2; b2; c2), and other two formulas are generated

cos ĜOL =
6R2S2 − S2

2 + S4

2
√

9R2 − S2 ·
√
R2S2

2 − 48(Rrs)2
, (31)

where S4 = S2
2 − 2[(s2 + r2 + 4Rr)2 − 16Rrs2], and

cos ÎOL =
RS2 + rS2 − 4rs2

2
√
R2 − 2Rr ·

√
S2
2 − 48r2s2

. (32)
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Each of the formulas (30), (31), (32) generates a Blundon type inequality, but these
inequalities have not nice geometric interpretations.

Let I1, I2, I3 be three Cevian points of rank (k ; l ; m) with barycentric coordinates
as follows:

aki(s− a)li(b+ c)mi : bki(s− b)li(a+ c)mi : cki(s− c)li(a+ b)mi , i = 1, 2, 3,

and let t1i = aki(s− a)li(b+ c)mi , t2i = bki(s− b)li(a+ c)mi , t3i = cki(s− c)li(a+ b)mi .
Now, consider the numbers

αij =
t1j

t1j + t2j + t3j
− t1i
t1i + t2i + t3i

,

and

βij =
t2j

t1j + t2j + t3j
− t2i
t1i + t2i + t3i

,

and

γij =
t3j

t1j + t2j + t3j
− t3i
t1i + t2i + t3i

,

for all i, j ∈ {1, 2, 3}. Applying the relation (5) we obtain

IiI
2
j = −αij · βij · γij ·

(
a2

αij
+
b2

βij
+
c2

γij

)
,

for all i, j ∈ {1, 2, 3}. Using the Cosine Law in triangle I1I2I3 it follows

cos Î1I2I3 =
I1I

2
2 + I2I

2
3 − I3I21

2I1I2 · I2I3
=

−a2(β12γ12 + β23γ23 − β31γ31)− b2(γ12α12 + γ23α23 − γ31α31) + c2(α12β12 + α23β23 − α31β31)

2
√
−β12γ12a2 − γ12α12b2 − α12β12c2 ·

√
−β23γ23a2 − γ23α23b2 − α23β23c2

(33)
Theorem 4.1. The following inequalities hold

−2
√
−β12γ12a2 − γ12α12b2 − α12β12c2 ·

√
−β23γ23a2 − γ23α23b2 − α23β23c2 ≤

−a2(β12γ12+β23γ23−β31γ31)− b
2(γ12α12+γ23α23−γ31α31) + c2(α12β12+α23β23−α31β31) ≤

2
√
−β12γ12a2 − γ12α12b2 − α12β12c2 ·

√
−β23γ23a2 − γ23α23b2 − α23β23c2 (34)

Proof. The inequalities (34) are simple direct consequences of the inequalities −1 ≤
cos Î1I2I3 ≤ 1.
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