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Abstract. In this paper, we drive several interesting subordination results for
subclasses of analytic functions defined by convolution. Also number of interesting
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1. Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑
k=2

akz
k, (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}. Let φ ∈ A be given
by

φ(z) = z +
∞∑
k=2

ckz
k. (1.2)

Definition 1 (Hadamard product or convolution). Given two functions f and φ in
the class A, where f(z) is given by (1.1) and φ(z) is given by (1.2), the Hadamard
product (or convolution) f∗ φ of f and φ is defined (as usual) by

(f ∗ φ)(z) = z +

∞∑
k=2

akckz
k = (φ ∗ f)(z). (it1.3)

We also denote by K the class of functions f(z) ∈ A that are convex in U.
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Following Goodman ( [10] and [11]), Ronning ( [18] and [19]) introduced and studied
the following subclasses:
(i) A function f(z) of the form (1.1) is said to be in the class Sp(α, β) of β−uniformly
starlike functions if it satisfies the condition:

Re

{
zf ′ (z)

f (z)
− α

}
> β

∣∣∣∣zf ′ (z)f (z)
− 1

∣∣∣∣ (z ∈ U) , (1.4)

where −1 ≤ α < 1 and β ≥ 0.

(ii) A function f(z) of the form (1.1) is said to be in the class UCV (α, β) of
β−uniformly convex functions if it satisfies the condition:

Re

{
1 +

zf ′′ (z)

f ′ (z)
− α

}
> β

∣∣∣∣zf ′′ (z)f ′ (z)

∣∣∣∣ (z ∈ U) , (1.5)

where −1 ≤ α < 1 and β ≥ 0.
It follows from (1.4) and (1.5) that

f(z) ∈ UCV (α, β)⇔ zf ′ (z) ∈ Sp(α, β). (it1.6)

For −1 ≤ α < 1, 0 ≤ λ ≤ 1 and β ≥ 0, let S(g, λ;α, β) be the subclass of A consisting
of functions f(z) of the form (1.1), functions g (z) given by

g(z) = z +
∞∑
k=2

bkz
k (bk > 0) , (1.7)

and satisfying the analytic criterion:

Re
{

z(f∗g)′(z)
(1−λ)(f∗g)(z)+λz(f∗g)′(z) − α

}
> β

∣∣∣ z(f∗g)′(z)
(1−λ)(f∗g)(z)+λz(f∗g)′(z) − 1

∣∣∣ . (1.8)

We note that:
(i) S( z

(1−z) , 0;α, 0) =S∗(α) and S( z
(1−z)2 , 0;α, 0) = C(α) (see Robertson [17]);

(ii) S( z
(1−z) , 0;α, 1) =Sp(α) and S( z

(1−z)2 , 0;α, 1) = UCV (α) (see Bharati et al. [4]);

(iii) S( z
(1−z) , 0;α, β) =Sp(α, β) and S( z

(1−z)2 , 0;α, β) = UCV (α, β) (see Goodman

[10], [11] and Ronning [18], [19] );
(iv) S( z

(1−z) , λ;α, β) =Sp(λ, α, β) and S( z
(1−z)2 , λ;α, β) = UCV (λ, α, β) (see Muru-

gusundaramoorthy and Magesh [16]);

(v) S(z+
∞∑
k=2

(a)k−1

(c)k−1
zk, 0;α, β) =S(α, β) (c 6= 0,−1,−2, ...) (see Murugusundaramoor-

thy and Magesh [14] and [15]);
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(vi) S(z+
∞∑
k=2

knzk, 0;α, β) =S(n, α, β) (n ∈ N0 = N∪ {0},where N = {1, 2, ...}) (see

Rosy and Murugusundaramoorthy [20]);

(vii) S(z +
∞∑
k=2

[1 + δ (k − 1)]n zk, 0;α, β) =Sδ(n, α, β) (δ ≥ 0, n ∈ N0) (see Aouf and

Mostafa [2]).

Also we note that:
(i) S(g , λ;α, 0) =S(g, λ, α)

=
{
f ∈ A : Re

{
z(f∗g)′(z)

(1−λ)(f∗g)(z)+λz(f∗g)′(z)

}
> α (−1 ≤ α < 1, 0 ≤ λ ≤ 1, z ∈ U)

}
;

(ii) S(z +
∞∑
k=2

Γk(α1)zk, λ;α, β) =Sq,s(αi, βj ;λ, α, β)

= {f ∈ A : Re

{
z (Hq,s(α1, β1)f(z))′

(1− λ)Hq,s(α1, β1)f(z) + λz (Hq,s(α1, β1)f(z))′
− α

}
> β

∣∣∣∣ z (Hq,s(α1, β1)f(z))′

(1− λ)Hq,s(α1, β1)f(z) + λz (Hq,s(α1, β1)f(z))′
− 1

∣∣∣∣},
where Γk(α1) is defined by

Γk(α1) =
(α1)k−1....(αq)k−1

(β1)k−1....(βs)k−1(1)k−1
(1.9)

(αi > 0, i = 1, .., q;βj > 0, j = 1, .., s; q ≤ s+ 1, q, s ∈ N0,N0 = N ∪ {0},N = {1, 2, ..}) ,

and the operator Hq,s(α1, β1) was introduced and studied by Dziok and Srivastava
( see [7] and [8]), and contains many other operators;

(iii) S(z +
∞∑
k=2

[
`+1+µ(k−1)

`+1

]m
zk, λ;α, β) =S(m,µ, `;α, β)

=
{
f ∈ A : Re

{
z(Im(µ,`)f(z))′

(1−λ)Im(µ,`)f(z)+λz(Im(µ,`)f(z))′
− α

}
> β

∣∣∣ z(Im(µ,`)f(z))′

(1−λ)Im(µ,`)f(z)+λz(Im(µ,`)f(z))′
− 1
∣∣∣} ,

where m ∈ N0, µ, ` ≥ 0, z ∈ U and the operator Im (µ, `) was defined by Cătaş et
al. ( see [6] ), and contains many other operators;

(iv) S(z +
∞∑
k=2

Ck(b, µ)zk, λ;α, β) =Sµb (λ;α, β)
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=

{
f ∈ A : Re

{
z(Jµb f (z))

′

(1−λ)Jµb f (z)+λz(Jµb f (z))
′ − α

}
> β

∣∣∣∣ z(Jµb f (z))
′

(1−λ)Jµb f (z)+λz(Jµb f (z))
′ − 1

∣∣∣∣} ,
where Ck(b, µ) is defined by

Ck(b, µ) =

(
1 + b

k + b

)µ
(µ ∈ C, b ∈ C \{Z−0 }; Z−0 = Z \ N), (1.10)

and the operator Jµb was introduced by Srivastava and Attiya [23], and contains
many other operators.

Remark 1. By taking λ = 0 in the class Sµb (λ;α, β), we get the class Sµb (α, β),

which was defined by Murugusundaramoorthy [13].

Definition 2 (Subordination Principle). For two functions f and φ, analytic in
U, we say that the function f(z) is subordinate to φ(z) in U,written f(z) ≺ φ(z),
if there exists a Schwarz function w(z), which (by definition) is analytic in U with
w(0) = 0 and |w(z)| < 1, such that f(z) = φ (w(z)). Indeed it is known that

f(z) ≺ φ(z)⇒ f(0) = φ(0) and f(U) ⊂ φ(U ).

Furthermore, if the function φ is univalent in U, then we have the following equiv-
alence ( see [5] and [12]):

f (z) ≺ φ (z)⇔ f(0) = φ(0) and f(U) ⊂ g(U). (it1.11)

Definition 3 ( Subordinating Factor Sequence ) [24]. A sequence {ck}∞k=1 of complex
numbers is said to be a subordinating factor sequence if, whenever f of the form (1.1)
is analytic, univalent and convex in U, we have

∞∑
k=2

ckakz
k ≺ f(z) (a1 = 1; z ∈ U ). (it1.12)

2. Main Results

Unless otherwise mentioned, we shall assume in the reminder of this paper that,
−1 ≤ α < 1, 0 ≤ λ ≤ 1, β ≥ 0, z ∈ U and g(z) is given by (1.7) with bk+1 ≥ bk > 0
(k ≥ 2).
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To prove our main result we need the following lemmas.
Lemma 1 [24]. The sequence {ck}∞k=1is a subordinating factor sequence if and only
if

Re

{
1 + 2

∞∑
k=1

dkz
k

}
> 0. (it2.1)

Now, we prove the following lemma which gives a sufficient condition for functions
belonging to the class S(g, λ;α, β).

Lemma 2. A function f(z) of the form (1.1) is said to be in the class S (g, λ;α, β)
if

∞∑
k=2

{k (1 + β)− (α+ β) [1 + λ (k − 1)]} bk |ak| ≤ 1− α. (it2.2)

Proof. Assume that, the inequality (2.2) holds true. Then it suffices to show that

β
∣∣∣ z (f∗g) ′(z)

(1−λ)(f∗g)(z)+λz (f∗g) ′(z) − 1
∣∣∣−Re{ z (f∗g) ′(z)

(1−λ)(f∗g)(z)+λz (f∗g) ′(z) − 1
}
≤ 1− α. (2.3)

We have

β
∣∣∣ z (f∗g) ′(z)

(1−λ)(f∗g)(z)+λz (f∗g) ′(z) − 1
∣∣∣−Re{ z (f∗g) ′(z)

(1−λ)(f∗g)(z)+λz (f∗g) ′(z) − 1
}

≤ (1 + β)

∣∣∣∣ z (f ∗ g) ′(z)

(1− λ) (f ∗ g)(z) + λz (f ∗ g) ′(z)
− 1

∣∣∣∣
≤

(1 + β)
∞∑
k=2

(1− λ) (k − 1) bk |ak|

1− ∞
k=2

[1 + λ (k − 1)] bk |ak|
≤ 1− α.

This completes the proof of Lemma 2.

Let S∗(g, λ;α, β) denote the class of f(z) ∈ A whose coefficients satisfy the condition
(2.2). We note that S∗(g, λ;α, β) ⊆ S(g, λ;α, β).
Employing the technique used earlier by Attiya [3] and Srivastava and Attiya [22],
we prove:

Thereom 1. Let f(z) ∈ S ∗(g, λ;α, β). Then
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[2 + β − α− λ (α+ β)] b2
2 {1− α+ [2 + β − α− λ (α+ β)] b2}

(f ∗ h) (z) ≺ h(z), (it2.4)

for every function h ∈ K, and

Re {f(z)} > −{1− α+ [2 + β − α− λ (α+ β)] b2}
[2 + β − α− λ (α+ β)] b2

. (it2.5)

The constant factor [2+β−α−λ(α+β)]b2
2{1−α+[2+β−α−λ(α+β)]b2} in the subordination result (2.4) can

not be replaced by a larger one.

Proof. Let f(z) ∈ S∗(g, λ;α, β) and suppose that h(z) = z +
∞∑
k=2

ckz
k, then

[2 + β − α− λ (α+ β)] b2
2 {1− α+ [2 + β − α− λ (α+ β)] b2}

(f ∗ h) (z)

=
[2 + β − α− λ (α+ β)] b2

2 {1− α+ [2 + β − α− λ (α+ β)] b2}

(
z +

∞∑
k=2

ckakz
k

)
. (2.6)

Thus, by using Definition 3, the subordination result holds true if{
[2 + β − α− λ (α+ β)] b2

2 {1− α+ [2 + β − α− λ (α+ β)] b2}
ak

}∞
k=1

is a subordinating factor sequence, with a1 = 1. In view of Lemma 1, this is equiva-
lent to the following inequality:

Re

{
1 +

∞∑
n=1

[2 + β − α− λ (α+ β)] b2
{1− α+ [2 + β − α− λ (α+ β)] b2}

akz
k

}
> 0. (2.7)

Now, since

Ψ(k) = {k (1 + β)− (α+ β) [1 + λ (k − 1)]} bk
is an increasing function of k (k ≥ 2), we have:

Re

{
1 +

[2 + β − α− λ (α+ β)] b2
{1− α+ [2 + β − α− λ (α+ β)] b2}

∞∑
k=1

akz
k

}

= Re

1 + [2+β−α−λ(α+β)]b2
{1−α+[2+β−α−λ(α+β)]b2}z +

∞∑
k=2

[2+β−α−λ(α+β)]b2akz
k

{1−α+[2+β−α−λ(α+β)]b2}



134



M. K. Aouf, A. A. Shamandy, A. O. Mostafa and A. K. Wagdy -Subordination...

≥ 1− [2 + β − α− λ (α+ β)] b2
{1− α+ [2 + β − α− λ (α+ β)] b2}

r

− 1

{1− α+ [2 + β − α− λ (α+ β)] b2}

∞

k=2

[2 + β − α− λ (α+ β)] bk |ak| rk

≥ 1− [2 + β − α− λ (α+ β)] b2
{1− α+ [2 + β − α− λ (α+ β)] b2}

r

− 1

{1− α+ [2 + β − α− λ (α+ β)] b2}

∞

k=2

{k (1 + β)− (α+ β) [1 + λ (k − 1)]} bk |ak| rk

≥ 1− [2 + β − α− λ (α+ β)] b2
{1− α+ [2 + β − α− λ (α+ β)] b2}

r− 1− α
{1− α+ [2 + β − α− λ (α+ β)] b2}

r

≥ 1− [2 + β − α− λ (α+ β)] b2
{1− α+ [2 + β − α− λ (α+ β)] b2}

− 1− α
{1− α+ [2 + β − α− λ (α+ β)] b2}

> 0 (|z| = r < 1) ,

where we have also made use of assertion (2.2) of Lemma 2. Thus (2.7) holds true
in U. This proves the inequality (2.4). The inequality (2.5) follows from (2.4) by
taking the convex function

h(z) =
z

1− z
= z +

∞∑
k=2

zk ∈ K. (2.8)

To prove the sharpness of the constant

[2 + β − α− λ (α+ β)] b2
2 {1− α+ [2 + β − α− λ (α+ β)] b2}

,

we consider the function f0(z) ∈ S∗(g, λ;α, β) given by

f0(z) = z − 1− α
[2 + β − α− λ (α+ β)] b2

z2.

Thus from (2.4), we have

[2 + β − α− λ (α+ β)] b2
2 {1− α+ [2 + β − α− λ (α+ β)] b2}

f0(z) ≺ z

1− z
.
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It is easily verified that

min
|z|≤r

{
Re

(
[2 + β − α− λ (α+ β)] b2

2 {1− α+ [2 + β − α− λ (α+ β)] b2}
f0(z)

)}
= −1

2
. (2.9)

This show that the constant [2+β−α−λ(α+β)]b2
2{1−α+[2+β−α−λ(α+β)]b2} is the best possible. This

completes the proof of Theorem 1.

Remark 2. (i) Taking λ = 0 and g(z) = z +
∞∑
k=2

(a)k−1

(c)k−1
zk(c 6= 0,−1,−2, ...) in

Theorem 1, we obtain the result obtained by Frasin [9,Theorem 2.1];
(ii) Taking g(z) = z

(1−z) and g(z) = z
(1−z)2 , respectively, in Theorem 1, we obtain

the results obtained by Murugusundaramoorthy and Magesh [16, Theorem 2.1 and
Theorem 2.3, respectively];
(iii) Taking λ = 0, g(z) = z

(1−z) and g(z) = z
(1−z)2 , respectively, in Theorem 1, we ob-

tain the results obtained by Frasin [9, Corollary 2.2 and Corollary 2.5, respectively];
(iv) Taking β = λ = 0, g(z) = z

(1−z) and g(z) = z
(1−z)2 , respectively, in Theorem

1, we obtain the results obtained by Frasin [9, Corollary 2.3 and Corollary 2.6,
respectively];
(v) Taking α = β = λ = 0 and g(z) = z

(1−z) in Theorem 1, we obtain the result

obtained by Singh [21, Corollary 2.2];
(vi) Taking α = β = λ = 0 and g(z) = z

(1−z)2 in Theorem 1, we obtain the result

obtained by Frasin [9, Corollary 2.7];
(vii) Taking λ = 0, β = 1, g(z) = z

(1−z) and g(z) = z
(1−z)2 , respectively, in Theorem

1, we obtain the results obtained by Aouf et al. [1, Corollary 1 and Corollary 2,
respectively];

(viii) Taking λ = 0, g(z) = z+
∞∑
k=2

knzk(n ∈ N0) and g(z) = z+
∞∑
k=2

[1 + δ (k − 1)]n zk

(δ ≥ 0, n ∈ N0), respectively, in Theorem 1, we obtain the results obtained by Aouf
et al. [1, Corollary 4 and Corollary 6, respectively];

Also, we establish subordination results for the associated subclasses, S∗(g, λ, α),
S∗q,s(αi, βj ;λ, α, β), S∗(m,µ, `;α, β), S*µb (λ;α, β) and S*µb (α, β), whose coefficients
satisfy the condition (2.2) in the special cases as mentioned in the introduction.

By taking β = 0 in Lemma 2 and Theorem 1, we obtain the following corollary:
Corollary 1. Let the function f(z) defined by (1.1) be in the class S ∗(g, λ, α) and
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satisfy the condition

∞∑
k=2

{k − α [1 + λ (k − 1)]} bk |ak| ≤ 1− α. (it2.10)

Then for every function h ∈ K, we have

(2− α− λα) b2
2 [1− α+ (2− α− λα) b2]

(f ∗ h) (z) ≺ h(z), (it2.11)

and

Re {f(z)} > − [1− α+ (2− α− λα) b2]

(2− α− λα) b2
. (it2.12)

The constant factor (2−α−λα)b2
2[1−α+(2−α−λα)b2] in the subordination result (2.11) can not be

replaced by a larger one.

By taking bk = Γk(α1), where Γk(α1) is defined by (1.9), in Lemma 2 and Theorem
1, we obtain the following corollary:
Corollary 2. Let the function f(z) defined by (1.1) be in the class S ∗q,s(αi, βj ;λ, α, β)
and satisfy the condition

∞∑
k=2

{k (1 + β)− (α+ β) [1 + λ (k − 1)]}Γk(α1) |ak| ≤ 1− α. (it2.13)

Then for every function h ∈ K, we have

[2 + β − α− λ (α+ β)] Γ2(α1)

2 {1− α+ [2 + β − α− λ (α+ β)] Γ2(α1)}
(f ∗ h) (z) ≺ h(z), (it2.14)

and

Re {f(z)} > −{1− α+ [2 + β − α− λ (α+ β)] Γ2(α1)}
[2 + β − α− λ (α+ β)] Γ2(α1)

. (it2.15)

The constant factor [2+β−α−λ(α+β)]Γ2(α1)
2{1−α+[2+β−α−λ(α+β)]Γ2(α1)} in the subordination result (2.14)

can not be replaced by a larger one.

By taking bk =
[
`+1+µ(k−1)

`+1

]m
(m ∈ N0, µ, ` ≥ 0) in Lemma 2 and Theorem 1, we

obtain the following corollary:
Corollary 3. Let the function f(z) defined by (1.1) be in the class S ∗(m,µ, `;α, β)
and satisfy the condition

∞∑
k=2

{k (1 + β)− (α+ β) [1 + λ (k − 1)]}
[
`+ 1 + µ(k − 1)

`+ 1

]m
|ak| ≤ 1− α. (it2.16)
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Then for every function h ∈ K, we have

[2 + β − α− λ (α+ β)] (`+ 1 + µ)m

2 {(`+ 1)m (1− α) + [2 + β − α− λ (α+ β)] (`+ 1 + µ)m}
(f ∗ h) (z) ≺ h(z),

(it2.17)
and

Re {f(z)} > −{(`+ 1)m (1− α) + [2 + β − α− λ (α+ β)] (`+ 1 + µ)m}
[2 + β − α− λ (α+ β)] (`+ 1 + µ)m

. (it2.18)

The constant factor [2+β−α−λ(α+β)](`+1+µ)m

2{(`+1)m(1−α)+[2+β−α−λ(α+β)](`+1+µ)m} in the subordination re-

sult (2.17) can not be replaced by a larger one.

By taking bk = Ck(b, µ), where Ck(b, µ) is defined by (1.10), in Lemma 2 and
Theorem 1, we obtain the following corollary:
Corollary 4. Let the function f(z) defined by (1.1) be in the class S*µb (λ;α, β) and
satisfy the condition

∞∑
k=2

{k (1 + β)− (α+ β) [1 + λ (k − 1)]} |Ck(b, µ)| |ak| ≤ 1− α. (it2.19)

Then for every function h ∈ K, we have

[2 + β − α− λ (α+ β)] |C2(b, µ)|
2 {(1− α) + [2 + β − α− λ (α+ β)] |C2(b, µ)|}

(f ∗ h) (z) ≺ h(z), (it2.20)

and

Re {f(z)} > −{(1− α) + [2 + β − α− λ (α+ β)] |C2(b, µ)|}
[2 + β − α− λ (α+ β)] |C2(b, µ)|

. (it2.21)

The constant factor [2+β−α−λ(α+β)]|C2(b,µ)|
2{(1−α)+[2+β−α−λ(α+β)]|C2(b,µ)|} in the subordination result (2.20)

can not be replaced by a larger one.

By taking λ = 0 in Corollary 4, we obtain the following corollary:
Corollary 5. Let the function f(z) defined by (1.1) be in the class S* µb (α, β) and
satisfy the condition

∞∑
k=2

[k (1 + β)− (α+ β)] |Ck(b, µ)| |ak| ≤ 1− α. (it2.22)

Then for every function h ∈ K, we have

(2 + β − α) |C2(b, µ)|
2 [1− α+ (2 + β − α) |C2(b, µ)|]

(f ∗ h) (z) ≺ h(z), (it2.23)
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and

Re {f(z)} > − [1− α+ (2 + β − α) |C2(b, µ)|]
(2 + β − α) |C2(b, µ)|

. (it2.24)

The constant factor (2+β−α)|C2(b,µ)|
2[1−α+(2+β−α)|C2(b,µ)|] in the subordination result (2.23) can not

be replaced by a larger one.

Remark 3. Corollary 5, corrects the result obtained by Murugusundaramoorthy
[13, Theorem 2.1].
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