COEFFICIENTS BOUNDS FOR THE TRANSFORMATIONS, OF SOME SUBCLASSES OF UNIFORMLY TYPE FUNCTIONS, BY USING AN INTEGRAL OPERATOR

Acu Mugur Alexandru and Diaconu Radu

ABSTRACT. In this paper we define an integral operator and study the coefficients bounds for the subclasses of k-uniformly convex and starlike functions.

2000 Mathematics Subject Classification: 30C45

Key words and Phrases. k-uniformly convex and starlike functions, integral operator, Sălăgean differential operator.

1. INTRODUCTION

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U, A = \{f \in \mathcal{H}(U) : f(0) = f'(0) - 1 = 0\}, \mathcal{H}_u(U) = \{f \in \mathcal{H}(U) : f \text{ is univalent in } U\}$ and $S = \{f \in A : f \text{ is univalent in } U\}.$

Let D^n be the Sălăgean differential operator (see [4]) defined as:

$$D^n: A \to A$$
, $n \in \mathbb{N}$ and $D^0 f(z) = f(z)$
 $D^1 f(z) = Df(z) = zf'(z)$, $D^n f(z) = D(D^{n-1}f(z))$.

Remark 0.1. If $f \in S$, $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, $z \in U$ then $D^n f(z) = z + \sum_{j=2}^{\infty} j^n a_j z^j$.

We recall here the analytically definitions of the well - known classes of starlike and convex functions

$$S^* = \left\{ f \in A : Re\frac{zf'(z)}{f(z)} > 0 , \ z \in U \right\}.$$
$$S^c = \left\{ f \in A : \left\{ \frac{zf''(z)}{f'(z)} + 1 \right\} > 0 , \ z \in U \right\}.$$

2. Preliminary results

Definition 0.1. A function $f \in S$ is called uniformly convex of type α , $\alpha \geq 0$ if:

$$Re\left\{1 + \frac{zf''(z)}{f'(z)}\right\} \ge \alpha \left|\frac{zf''(z)}{f'(z)}\right|, \ z \in U.$$
(1)

We denote by $US^{c}(\alpha)$ the class of all this functions.

Remark 0.2. The class $US^{c}(\alpha)$ it was defined by Kanas and Wisniowska in [1], by using the following geometrical interpretation:

Let $0 \le k < \infty$. A function $f \in S$ is called k-uniformly convex in U if the image of any circle arc γ contained in U, with the center ζ , where $|\zeta| \le k$, is convex.

Geometrical interpretation: $f \in US^{c}(\alpha)$ if and only if 1 + zf''(z)/f'(z) take all values in D_{α} , where D_{α} is:

i) a elliptic region:
$$\frac{\left(u - \frac{\alpha^2}{\alpha^2 - 1}\right)^2}{\left(\frac{\alpha}{\alpha^2 - 1}\right)^2} + \frac{v^2}{\left(\frac{1}{\sqrt{\alpha^2 - 1}}\right)^2} < 1, \text{ for } \alpha > 1$$

ii) a parabolic region: $v^2 < 2u - 1$, for $\alpha = 1$

iii) a hyperbolic region:
$$\frac{\left(u + \frac{\alpha^2}{1 - \alpha^2}\right)^2}{\left(\frac{\alpha}{1 - \alpha^2}\right)^2} - \frac{v^2}{\left(\frac{1}{\sqrt{1 - \alpha^2}}\right)^2} > 1, \text{ and } u > 0, \text{ for } 0 < \alpha < 1$$

iv) the half plane u > 0, for $\alpha = 0$.

Remark 0.3. From the geometrical interpretation it is easy to see that $US^{c}(\alpha) \subset S^{c}\left(\frac{\alpha}{\alpha+1}\right)$.

Theorem 0.1. [2] Let $\alpha \geq 0$ and $f \in US^c(\alpha)$, $f(z) = z + \sum_{n=2}^{\infty} a_n z^n$. Then $|a_n| \leq \frac{(P_1)_{n-1}}{(1)_n}$, $n = 2, 3, \ldots$, where $(\lambda)_n$ is the Pochhammer symbol, defined by $(\lambda)_0 = 1$, $(\lambda)_n = \lambda(\lambda+1)...(\lambda+n-1)$, $n \in \mathbb{N}$,

$$P_{1} \equiv P_{1}(\alpha) = \begin{cases} \frac{8(\arccos \alpha)^{2}}{\pi^{2}(1-\alpha^{2})}, & 0 \leq \alpha < 1, \\ \frac{8}{\pi^{2}}, & \alpha = 1, \\ \frac{\pi^{2}}{4\sqrt{k}(\alpha^{2}-1)K^{2}(k)(1+k)}, & \alpha > 1. \end{cases}$$

and K(k) is the Legendre elliptic integral

$$K(k) = \int_0^1 \frac{dt}{\sqrt{1 - t^2}\sqrt{1 - k^2 t^2}}, \ k \in (0, 1)$$

such that $\alpha = \cosh[\pi K'(k)]/[4K(k)]$ where $K'(k) = K(\sqrt{1-k^2})$ is the complementary integral of K(k).

Remark 0.4. In connection with the class $US^{c}(\alpha)$ Kanas and Wisniowska define and study, in [3], the class $\alpha - ST$ by

$$\alpha - ST := \left\{ f \in S : f(z) = zg'(z), g \in US^c(\alpha) \right\}, \alpha \ge 0$$

Definition 0.2. [5] A function $f \in S$ is said to be in the class $SH(\alpha)$ if it satisfies

$$\left|\frac{zf'(z)}{f(z)} - 2\alpha\left(\sqrt{2} - 1\right)\right| < Re\left\{\sqrt{2}\frac{zf'(z)}{f(z)}\right\} + 2\alpha\left(\sqrt{2} - 1\right),$$

for some α ($\alpha > 0$) and for all $z \in U$.

Remark 0.5. Geometric interpretation: Let $\Omega(\alpha) = \left\{ \frac{zf'(z)}{f(z)} : z \in U, f \in SH(\alpha) \right\}$. Then $\Omega(\alpha) = \left\{ w = u + i \cdot v : v^2 < 4\alpha u + u^2, u > 0 \right\}$. Note that $\Omega(\alpha)$ is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin.

Theorem 0.2. [5] Let $f(z) \in SH(\alpha)$ and $f(z) = z + a_2 z^2 + a_3 z^3 + \dots$. Then

$$|a_2| \le \frac{1+4\alpha}{1+2\alpha} ,$$

$$|a_3| \le \frac{(1+4\alpha)(3+16\alpha+24\alpha^2)}{4(1+2\alpha)^3} .$$

The estimations are sharp.

Remark 0.6. For the extremal functions, of the inequalities from the above theorem, see [5].

3. MAIN RESULTS

Definition 0.3. Let $F(z) \in A$, $F(z) = z + b_2 z^2 + \cdots + b_n z^n + \ldots$, and $a \in \mathbb{R}^*$. We define the integral operator $L : A \to A$ by

$$f(z) = L(F)(z) = \frac{1+a}{z^a} \int_0^z F(t) \left(t^{a-1} + t^{a+1}\right) dt .$$
 (2)

Theorem 0.3. Let $\alpha \geq 0$, $a \in \mathbb{R}^*$, and $F(z) \in US^c(\alpha)$. For f(z) = L(F)(z), $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, $z \in U$, where the integral operator L it is defined by (2), we

have

$$|a_2| \le \left|\frac{a+1}{a+2}\right| \cdot \frac{P_1}{2} ,$$
$$|a_3| \le \left|\frac{a+1}{a+3}\right| \cdot \left[\frac{P_1(P_1+1)}{6} + 1\right]$$

and

$$|a_j| \le \left|\frac{a+1}{a+j}\right| \cdot \frac{(P_1)_{j-3}}{(j-2)!} \cdot (P_1^*(j)+1) , j=4,5,\dots ,$$

where $P_1^*(j) = \frac{(P_1 + j - 2)(P_1 + j - 3)}{j(j - 1)}$, $(\lambda)_n$ is the Pochhammer symbol and P_1 it is given in Theorem 0.1.

Proof. By differentiating in (2) we obtain

$$(1+a) \cdot F(z)(1+z^2) = a \cdot f(z) + zf'(z)$$

From the above equation, for $F(z) = z + \sum_{j=2}^{\infty} b_j z^j$ and $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, we have

$$a_2 = b_2 \cdot \frac{a+1}{a+2}$$
,
 $a_3 = (b_3 + 1) \cdot \frac{a+1}{a+3}$

and

$$a_j = (b_j + b_{j-2}) \cdot \frac{a+1}{a+j}, \ j \ge 4.$$

From Theorem 0.1 we have

$$|b_j| \le \frac{(P_1)_{j-1}}{(1)_j}$$
, $j = 2, 3, \dots$

and thus we obtain $|a_2| \le \left|\frac{a+1}{a+2}\right| \cdot \frac{P_1}{2}, \ |a_3| \le \left|\frac{a+1}{a+3}\right| \cdot \left[\frac{P_1(P_1+1)}{6} + 1\right]$ and $|a_j| \le \left|\frac{a+1}{a+j}\right| \cdot \frac{(P_1)_{j-3}}{(j-2)!} \cdot (P_1^*(j)+1) \ j = 4, 5, \dots$ where $P_1^*(j) = \frac{(P_1+j-2)(P_1+j-3)}{j(j-1)}$. In a similarly way with the proof of the above Theorem, by using the Remark

0.4 and the Theorem 0.1, we obtain:

Corollary 0.1. Let $\alpha \geq 0$, $a \in \mathbb{R}^*$, and $F(z) \in \alpha - ST$. For f(z) = L(F)(z), $f(z) = z + \sum_{j=2}^{\infty} a_j z^j$, $z \in U$, where the integral operator L is defined by (2), we have:

$$|a_2| \le \left|\frac{a+1}{a+2}\right| \cdot P_1 \quad ,$$

$$|a_3| \le \left|\frac{a+1}{a+3}\right| \cdot \left[\frac{P_1(P_1+1)}{2} + 1\right]$$

and

$$|a_j| \le \left|\frac{a+1}{a+j}\right| \cdot \frac{(P_1)_{j-3}}{(j-3)!} \cdot [P_1^{**}(j)+1] , \ j=4,5,\dots,$$

where $P_1^{**}(j) = \frac{(P_1 + j - 2)(P_1 + j - 3)}{(j - 1)(j - 2)}$, $(\lambda)_j$ it is the Pochhammer symbol and P_1 it is given in the Theorem 0.1.

Theorem 0.4. Let $\alpha \geq 0$, $a \in \mathbb{R}^*$, and $F(z) \in SH(\alpha)$. For f(z) = L(F)(z), $f(z) = z + a_2 z^2 + a_3 z^3 + \ldots$, $z \in U$, where the integral operator L it is defined by (2), we have

$$|a_2| \le \left|\frac{a+1}{a+2}\right| \cdot \frac{1+4\alpha}{1+2\alpha} \text{ and } |a_3| \le \left|\frac{a+1}{a+3}\right| \cdot \frac{7+52\alpha+136\alpha^2+128\alpha^3}{4(1+2\alpha)^3}$$

Proof. By using the Theorem 0.2 for $F(z) \in SH(\alpha)$, $F(z) = z + b_2 z^2 + b_3 z^3 + \dots$, we have:

$$|b_2| \le \frac{1+4\alpha}{1+2\alpha}, \ |b_3| \le \frac{(1+4\alpha)(3+16\alpha+24\alpha^2)}{4(1+2\alpha)^3}$$

In the proof of the Theorem 0.3 we obtain, for f(z) = L(F)(z), $f(z) = z + a_2 z^2 + a_3 z^3 + ...$, the following relations between the coefficients:

$$a_2 = b_2 \cdot \frac{a+1}{a+2}, \ a_3 = (b_3+1) \cdot \frac{a+1}{a+3}.$$

By using the estimations for the coefficients b_2 and b_3 , into the above relations, we complete the proof.

References

- S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity, Journal of Comp. and Appl. Mathematics, 105(1999), 327-336.
- [2] S. Kanas, A. Wisniowska, Conic regions and k-uniform convexity II, Folia Scient. Univ. Tehn. Resoviensis, Zeszyty Naukove Pol. Rzeszowskiej, Mathematika 22, 170(1998), 65-78.
- [3] S. Kanas, A. Wisniowska, *Conic domains and starlike functions*, Revue Roumaine, (1999).
- [4] Gr. Sălăgean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
- J. Stankiewicz, A. Wisniowska, Starlike functions associated with some hyperbola, Folia Scientiarum Universitatis Tehnicae Resoviensis 147, Matematyka 19(1996), 117-126.

Mugur Alexandru Acu University "Lucian Blaga" of Sibiu Department of Mathematics and Informatics Str. Dr. I. Rațiu, No. 5-7 550012 - Sibiu, Romania E-mail address: acu_mugur@yahoo.com

Radu Diaconu Unibersity of Pitești Department of Mathematics Argeș, Romania E-mail address:*radudyaconu@yahoo.com*