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1. Introduction

Let H(U) be the set of functions which are regular in the unit disc U , A = {f ∈
H(U) : f(0) = f ′(0) − 1 = 0}, Hu(U) = {f ∈ H(U) : f is univalent in U} and
S = {f ∈ A : f is univalent in U}.

Let Dn be the Sălăgean differential operator (see [4]) defined as:

Dn : A→ A , n ∈ N and D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z) , Dnf(z) = D(Dn−1f(z)).

Remark 0.1. If f ∈ S , f(z) = z +
∞∑
j=2

ajz
j, z ∈ U then Dnf(z) = z +

∞∑
j=2

jnajz
j.

We recall here the analytically definitions of the well - known classes of starlike
and convex functions

S∗ =

{
f ∈ A : Re

zf ′(z)

f(z)
> 0 , z ∈ U

}
.

Sc =

{
f ∈ A :

{
zf ′′(z)

f ′(z)
+ 1

}
> 0 , z ∈ U

}
.
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2. Preliminary results

Definition 0.1. A function f ∈ S is called uniformly convex of type α, α ≥ 0 if:

Re

{
1 +

zf ′′(z)

f ′(z)

}
≥ α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ , z ∈ U. (1)

We denote by USc(α) the class of all this functions.

Remark 0.2. The class USc(α) it was defined by Kanas and Wisniowska in [1], by
using the following geometrical interpretation:

Let 0 ≤ k <∞. A function f ∈ S is called k-uniformly convex in U if the image
of any circle arc γ contained in U , with the center ζ, where |ζ| ≤ k, is convex.

Geometrical interpretation: f ∈ USc(α) if and only if 1 + zf ′′(z)/f ′(z) take all
values in Dα, where Dα is:

i) a elliptic region:

(
u− α2

α2−1

)2
(

α
α2−1

)2 +
v2(
1√
α2−1

)2 < 1, for α > 1

ii) a parabolic region: v2 < 2u− 1, for α = 1

iii) a hyperbolic region:

(
u+ α2

1−α2

)2
(

α
1−α2

)2 − v2(
1√

1−α2

)2 > 1, and u > 0, for 0 < α < 1

iv) the half plane u > 0, for α = 0.

Remark 0.3. From the geometrical interpretation it is easy to see that USc(α) ⊂
Sc
(

α
α+1

)
.
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Theorem 0.1. [2] Let α ≥ 0 and f ∈ USc(α), f(z) = z +
∞∑
n=2

anz
n. Then |an| ≤

(P1)n−1
(1)n

,

n = 2, 3, ... , where (λ)n is the Pochhammer symbol, defined by (λ)0 = 1, (λ)n =
λ(λ+ 1)...(λ+ n− 1) , n ∈ N ,

P1 ≡ P1(α) =



8(arccosα)2

π2(1− α2)
, 0 ≤ α < 1 ,

8

π2
, α = 1 ,

π2

4
√
k(α2 − 1)K2(k)(1 + k)

, α > 1 .

and K(k) is the Legendre elliptic integral

K(k) =

∫ 1

0

dt√
1− t2

√
1− k2t2

, k ∈ (0, 1)

such that α = cosh[πK ′(k)]/[4K(k)] where K ′(k) = K(
√

1− k2) is the complemen-
tary integral of K(k).

Remark 0.4. In connection with the class USc(α) Kanas and Wisniowska define
and study, in [3], the class α− ST by

α− ST :=
{
f ∈ S : f(z) = zg′(z) , g ∈ USc(α)

}
, α ≥ 0

.

Definition 0.2. [5] A function f ∈ S is said to be in the class SH(α) if it satisfies∣∣∣∣zf ′(z)f(z)
− 2α

(√
2− 1

)∣∣∣∣ < Re

{√
2
zf ′(z)

f(z)

}
+ 2α

(√
2− 1

)
,

for some α (α > 0) and for all z ∈ U .

Remark 0.5. Geometric interpretation: Let Ω(α) =

{
zf ′(z)

f(z)
: z ∈ U , f ∈ SH(α)

}
.

Then Ω(α) =
{
w = u+ i · v : v2 < 4αu+ u2 , u > 0

}
. Note that Ω(α) is the inte-

rior of a hyperbola in the right half-plane which is symmetric about the real axis and
has vertex at the origin.

Theorem 0.2. [5] Let f(z) ∈ SH(α) and f(z) = z + a2z
2 + a3z

3 + . . . . Then

|a2| ≤
1 + 4α

1 + 2α
,

|a3| ≤
(1 + 4α)(3 + 16α+ 24α2)

4(1 + 2α)3
.

The estimations are sharp.
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Remark 0.6. For the extremal functions, of the inequalities from the above theorem,
see [5].

3. Main results

Definition 0.3. Let F (z) ∈ A, F (z) = z + b2z
2 + · · ·+ bnz

n + . . ., and a ∈ R∗. We
define the integral operator L : A→ A by

f(z) = L(F )(z) =
1 + a

za

∫ z

0
F (t)

(
ta−1 + ta+1

)
dt . (2)

Theorem 0.3. Let α ≥ 0, a ∈ R∗, and F (z) ∈ USc(α). For f(z) = L(F )(z),

f(z) = z +
∞∑
j=2

ajz
j , z ∈ U , where the integral operator L it is defined by (2), we

have

|a2| ≤
∣∣∣∣a+ 1

a+ 2

∣∣∣∣ · P1

2
,

|a3| ≤
∣∣∣∣a+ 1

a+ 3

∣∣∣∣ · [P1(P1 + 1)

6
+ 1

]
and

|aj | ≤
∣∣∣∣a+ 1

a+ j

∣∣∣∣ · (P1)j−3
(j − 2)!

· (P ∗1 (j) + 1) , j = 4, 5, . . . ,

where P ∗1 (j) =
(P1 + j − 2)(P1 + j − 3)

j(j − 1)
, (λ)n is the Pochhammer symbol and P1 it

is given in Theorem 0.1.

Proof. By differentiating in (2) we obtain

(1 + a) · F (z)(1 + z2) = a · f(z) + zf ′(z) .

From the above equation, for F (z) = z +
∞∑
j=2

bjz
j and f(z) = z +

∞∑
j=2

ajz
j , we have

a2 = b2 ·
a+ 1

a+ 2
,

a3 = (b3 + 1) · a+ 1

a+ 3

and

aj = (bj + bj−2) ·
a+ 1

a+ j
, j ≥ 4 .
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From Theorem 0.1 we have

|bj | ≤
(P1)j−1

(1)j
, j = 2, 3, . . .

and thus we obtain |a2| ≤
∣∣∣∣a+ 1

a+ 2

∣∣∣∣ · P1

2
, |a3| ≤

∣∣∣∣a+ 1

a+ 3

∣∣∣∣ · [P1(P1 + 1)

6
+ 1

]
and |aj | ≤

∣∣∣∣a+ 1

a+ j

∣∣∣∣ · (P1)j−3
(j − 2)!

· (P ∗1 (j) + 1) j = 4, 5, . . . whereP ∗1 (j) =
(P1 + j − 2)(P1 + j − 3)

j(j − 1)
.

In a similarly way with the proof of the above Theorem, by using the Remark
0.4 and the Theorem 0.1, we obtain:

Corollary 0.1. Let α ≥ 0, a ∈ R∗, and F (z) ∈ α − ST . For f(z) = L(F )(z),

f(z) = z +

∞∑
j=2

ajz
j, z ∈ U , where the integral operator L is defined by (2), we have:

|a2| ≤
∣∣∣∣a+ 1

a+ 2

∣∣∣∣ · P1 ,

|a3| ≤
∣∣∣∣a+ 1

a+ 3

∣∣∣∣ · [P1(P1 + 1)

2
+ 1

]
and

|aj | ≤
∣∣∣∣a+ 1

a+ j

∣∣∣∣ · (P1)j−3
(j − 3)!

· [P ∗∗1 (j) + 1] , j = 4, 5, . . . ,

where P ∗∗1 (j) =
(P1 + j − 2)(P1 + j − 3)

(j − 1)(j − 2)
, (λ)j it is the Pochhammer symbol and P1

it is given in the Theorem 0.1.

Theorem 0.4. Let α ≥ 0, a ∈ R∗, and F (z) ∈ SH(α). For f(z) = L(F )(z),
f(z) = z + a2z

2 + a3z
3 + . . ., z ∈ U , where the integral operator L it is defined by

(2), we have

|a2| ≤
∣∣∣∣a+ 1

a+ 2

∣∣∣∣ · 1 + 4α

1 + 2α
and |a3| ≤

∣∣∣∣a+ 1

a+ 3

∣∣∣∣ · 7 + 52α+ 136α2 + 128α3

4(1 + 2α)3
.

Proof. By using the Theorem 0.2 for F (z) ∈ SH(α), F (z) = z+ b2z
2 + b3z

3 + . . . ,
we have:

|b2| ≤
1 + 4α

1 + 2α
, |b3| ≤

(1 + 4α)(3 + 16α+ 24α2)

4(1 + 2α)3
.

In the proof of the Theorem 0.3 we obtain, for f(z) = L(F )(z), f(z) = z + a2z
2 + a3z

3 + . . .,
the following relations between the coefficients:

a2 = b2 ·
a+ 1

a+ 2
, a3 = (b3 + 1) · a+ 1

a+ 3
.
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By using the estimations for the coefficients b2 and b3, into the above relations,
we complete the proof.
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