ON A CLASS OF ANALYTIC FUNCTION DEFINED USING DIFFERENTIAL OPERATOR

K. R. Karthikeyan, A. Selvam and P. Sooriya Kala

AbStract. In this paper we introduce a new class of analytic functions of complex order involving a family of generalized differential operators and we discuss the sufficient conditions, estimation of coefficients and certain subordination results. Using this one can derive numerous known results as special cases.

2000 Mathematics Subject Classification: 30C45.

1. Introduction

Let \mathcal{A} denote the class of functions of the form

$$
\begin{equation*}
f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \quad a_{k} \geq 0 \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc $U=\{z \in \mathbb{C}:|z|<1\}$ and \mathcal{P} be the class of functions $f(z)$ in \mathcal{A} which are univalent in U. The Hadamard product of two functions $f(z)$ given by (1) and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k}$ is defined as

$$
(f * g)(z)=(g * f)(z)=z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k} .
$$

Let $f(z)$ and $g(z)$ be analytic in the unit disc U. Then $f(z)$ is said to be subordinate to $g(z)$ in U, if there exists a Schwartz function $w(z)$, analytic in U with $w(0)=0$ and $|w(z)|<1$ for all $z \in U$, such that $f(z)=g(w(z))$. Further if $g(z)$ is univalent if $f(0)=g(0)$ and if $f(U) \subset g(U)$, then we write $f \prec g$.

For complex numbers $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q}$ and $\beta_{1}, \beta_{2}, \ldots, \beta_{s} ;\left(\beta_{j} \in \mathbb{C} \backslash \mathcal{Z}_{0}^{-} ; \mathcal{Z}_{0}^{-}=\right.$ $\{0,-1,-2, \ldots\}$ for $j=1,2, . ., s)$, we define the generalized hypergeometric function ${ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)$ as

$$
{ }_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)=\sum_{k=0}^{\infty} \frac{\left(\alpha_{1}\right)_{k}\left(\alpha_{2}\right)_{k} \ldots\left(\alpha_{q}\right)_{k} z^{k}}{\left(\beta_{1}\right)_{k}\left(\beta_{2}\right)_{k} \ldots\left(\beta_{s}\right)_{k} k!},
$$

$$
\left(q \leq s+1 ; q, s \in \mathbb{N}_{0}:=\mathbb{N} \cup\{0\} ; z \in U\right)
$$

where \mathbb{N} denotes the set of all positive integers and $(x)_{k}$ is the Pochhammer symbol defined in terms of gamma functions, as

$$
(x)_{k}=\frac{\Gamma(x+k)}{\Gamma(x)}= \begin{cases}1 & \text { if } \quad k=0 \\ x(x+1) \ldots(x+k-1) & \text { if } k \in \mathbb{N}\end{cases}
$$

Corresponding to the function $g_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)$ defined by

$$
g_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)=z_{q} F_{s}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{q} ; \beta_{1}, \beta_{2}, \ldots, \beta_{s} ; z\right)
$$

Recently in $[9,14]$ an operator $\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z): \mathcal{A} \rightarrow \mathcal{A}$ is defined by

$$
\begin{aligned}
& \mathcal{D}_{\lambda, \mu}^{0}\left(\alpha_{1}, \beta_{1}\right) f(z)=f(z) * g_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right) \\
& \begin{aligned}
\mathcal{D}_{\lambda, \mu}^{1}\left(\alpha_{1}, \beta_{1}\right) f(z)= & (1-\lambda+\mu)\left(f(z) * g_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)\right)+(\lambda-\mu) z\left(f(z) * g_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)\right)^{\prime} \\
& \quad+\lambda \mu z^{2}\left(f(z) * g_{q, s}\left(\alpha_{1}, \beta_{1} ; z\right)^{\prime \prime}\right.
\end{aligned} \\
& \begin{array}{c}
\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)=\mathcal{D}_{\lambda, \mu}^{1}\left(\mathcal{D}_{\lambda, \mu}^{m-1}\left(\alpha_{1}, \beta_{1}\right) f(z)\right)
\end{array}
\end{aligned}
$$

where $0 \leq \mu \leq \lambda \leq 1$ and $m \in \mathbb{N}_{0}$. By the above definition, it is easy to note that
$\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)=z+\sum_{k=2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m} \frac{\left(\alpha_{1}\right)_{k-1}\left(\alpha_{2}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1}\left(\beta_{2}\right)_{k-1} \ldots\left(\beta_{s}\right)_{k-1}(k-1)!} a_{k} z^{k}$.
For brevity, let us take

$$
B_{k}=\frac{\left(\alpha_{1}\right)_{k-1}\left(\alpha_{2}\right)_{k-1} \ldots\left(\alpha_{q}\right)_{k-1}}{\left(\beta_{1}\right)_{k-1}\left(\beta_{2}\right)_{k-1} \ldots\left(\beta_{s}\right)_{k-1}(k-1)!}
$$

Hence we have

$$
\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)=z+\sum_{k=2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m} B_{k} a_{k} z^{k}
$$

For suitable values of $\alpha_{i^{\prime} s}, \beta_{j^{\prime} s}, q, s, \lambda$ and μ we can deduce several operators as a special case of this operator. For example see $[1,5,12]$.

Using this operator $\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)$, we define a class M of functions $f \in \mathcal{A}$ which satisfies the inequality

$$
\begin{equation*}
1+\frac{1}{b}\left(\frac{\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)}{\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)}-1\right) \prec \frac{1+A z}{1+B z} \tag{2}
\end{equation*}
$$

for $z \in U, b \in \mathbb{C} \backslash\{0\}$ and A and B are arbitrary fixed numbers such that $-1 \leq$ $B \leq A \leq 1$.

We note that by specializing $b, m, \lambda, q, s, \alpha_{i^{\prime} s}, \beta_{i^{\prime} s}, A$, and B in the function class M, we obtain several well-known as well as new subclasses of analytic functions. Here we list a few of them:

1. If we let $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$, then the class M reduces to the well- known class

$$
\mathcal{H}^{m}(b ; A, B):=\left\{f: f \in \mathcal{A}, 1+\frac{1}{b}\left(\frac{\mathscr{D}^{m+1} f(z)}{\mathscr{D}^{m} f(z)}-1\right) \prec \frac{1+A z}{1+B z}, z \in \mathcal{U}\right\}
$$

where $\mathscr{D}^{m} f$ is the well- known Sălăgean operator. The class $\mathcal{H}^{m}(\delta ; A, B)$ has been introduced and studied by Attiya in [4].
2. For a choice of the parameter $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}, \alpha_{2}=1$, $A=1$ and $B=-K$, the class M reduces to the class

$$
\mathcal{H}^{m}(b ; K):=\left\{f: f \in \mathcal{A},\left|\frac{b-1+\frac{\mathscr{D}^{m+1} f(z)}{\mathscr{D}^{m} f(z)}}{b}-K\right|<K, z \in \mathcal{U}\right\}
$$

where $K>\frac{1}{2}$. The class $\mathcal{H}^{m}(b ; K)$ has been introduced and studied by Aouf, Darwish and Attiya in [3].
3. If we take $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}, \alpha_{2}=1, b=1-\alpha(0 \leq \alpha<1)$, $A=1$ and $B=-1$ then the class M reduces to the class

$$
\mathcal{S}_{m}^{*}(\alpha):=\left\{f: f \in \mathcal{A}, \operatorname{Re}\left\{\frac{\mathscr{D}^{m+1} f(z)}{\mathscr{D}^{m} f(z)}\right\}>\alpha, z \in \mathcal{U}\right\}
$$

The class $\mathcal{S}_{m}^{*}(\alpha)$ has been introduced and studied by E. Kadioğlu in [8].
Apart from the these, several other well known as well as new classes of analytic functions can be obtained by specializing the parameters involved in the class M. For example, see $[2,3,10,11,13,15,16]$.

Let Ω denote the class of bounded analytic functions $w(z)$ in U which satisfy the condition $w(0)=1$ and $|w(z)|<1$ for $z \in U$.

2. A SUFFICIENT CONDITION FOR A FUNCTION TO BE IN M

Theorem 1. Let the function $f(z)$ be defined by (1) and let

$$
\begin{align*}
& \sum_{k=2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}\{(k-1)(\lambda-\mu+k \mu \lambda)+ \tag{3}\\
& |(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|\} B_{k}\left|a_{k}\right| \leq(A-B)|b|
\end{align*}
$$

hold, then $f(z)$ belongs to M.
Proof. Suppose that the inequality holds, then we have for $z \in U$,

$$
\begin{aligned}
& \begin{array}{c}
\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)-\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)|-|(A-B) b \mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z) \\
-B\left[\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)-\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)\right] \mid \\
=\left|\sum_{k=2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}[(k-1)(\lambda-\mu+k \mu \lambda)] B_{k} a_{k} z^{k}\right| \\
-\mid(A-B) b z+\sum_{k=2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m} \\
{[(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)] B_{k} a_{k} z^{k} \mid}
\end{array} \\
& \quad \leq \sum_{k=2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}\{(k-1)(\lambda-\mu+k \mu \lambda) \\
& \quad+|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|\} B_{k}\left|a_{k}\right| r^{k}-(A-B)|b| r .
\end{aligned}
$$

Letting $r \rightarrow 1^{-}$, we have

$$
\begin{gathered}
\left|\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)-\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)\right|-\mid(A-B) b \mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)- \\
B\left[\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)-\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)\right] \mid \\
\leq \sum_{k=2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}\{(k-1)(\lambda-\mu+k \mu \lambda)+ \\
|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|\} B_{k}\left|a_{k}\right| r^{k}-(A-B)|b| r \leq 0
\end{gathered}
$$

Hence it follows that

$$
\frac{\left|\frac{\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)}{\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)}-1\right|}{\left|B\left[\frac{\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)}{\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)}-1\right]-(A-B) b\right|}<1
$$

Letting

$$
w(z)=\frac{\frac{\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)}{\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)}-1}{B\left[\frac{\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)}{\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)}-1\right]-(A-B) b}
$$

then $w(0)=0, w(z)$ is analytic in $|z|<1$ and $|w(z)|<1$. Hence we have

$$
\frac{\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)}{\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)}=\frac{1+[B+b(A-B)] w(z)}{1+B w(z)}
$$

which shows $f(z) \in M$.
If we let $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$ in Theorem 1, we have the following result.

Corollary 1. Let $f \in \mathcal{A}$ and let

$$
\begin{equation*}
\sum_{k=2}^{\infty} k^{m}\{(k-1)+|(A-B) b-B(k-1)|\}\left|a_{n}\right| \leq(A-B)|b| \tag{4}
\end{equation*}
$$

holds, then $f(z)$ belongs to $\mathcal{H}^{m}(\delta ; A, B)$.
If we let $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}, \alpha_{2}=1, A=1$ and $B=-K$ in Theorem 1, we get the following interesting result.

Corollary 2. [3] Let the function $f(z)$ defined by (1) and let

$$
\begin{equation*}
\sum_{k=2}^{\infty}\{(k-1)+|b(1+u)+u(k-1)|\} k^{m}\left|a_{k}\right| \leq|b(1+u)| \tag{5}
\end{equation*}
$$

holds, then $f(z)$ belongs to $\mathcal{H}^{m}(b ; K)$, where $u=1-\frac{1}{K}\left(K>\frac{1}{2}\right)$.

3. Estimation of Coefficients

Theorem 2. Let the function $f(z)$ defined by (1) be in the class M. (a)If $(A-B)^{2}|b|^{2}>\left[2(A-B) B \Re b+\left(1-B^{2}\right)(k-1)(\lambda-\mu+\lambda k \mu)\right](k-1)(\lambda-\mu+\lambda k \mu)$, let

$$
G=\frac{(A-B)^{2}|b|^{2}}{\left[2(A-B) B \Re\{b\}+\left(1-B^{2}\right)(k-1)(\lambda-\mu+\lambda k \mu)\right](k-1)(\lambda-\mu+\lambda k \mu)}
$$

where $k=2,3, \ldots, m-1$. Let $N=\lfloor G\rfloor$ (Gauss symbol), the greatest integer not greater than G, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{\prod_{k=2}^{j}|(A-B) b-(k-2) B|}{[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{m}(\lambda-\mu+j \mu \lambda)^{j-1}(j-1)!B_{j}} \tag{6}
\end{equation*}
$$

for $j=2,3, \ldots, N+2$ and

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{\prod_{k=2}^{N+3}|(A-B) b-(k-2) B|}{[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{m}(\lambda-\mu+j \mu \lambda)^{j-1}(j-1)(N+1)!B_{j}} \tag{7}
\end{equation*}
$$

for $j>N+2$.
(b) If $(A-B)^{2}|b|^{2} \leq\left[2(A-B) B \Re b+\left(1-B^{2}\right)(k-1)(\lambda-\mu+\lambda k \mu)\right](k-1)(\lambda-\mu+$ $\lambda k \mu)$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{(A-B)|b|}{[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{m}(\lambda-\mu+j \mu \lambda)(j-1) B_{j}} \tag{8}
\end{equation*}
$$

for $j \geq 2$. The bounds (6) and (8)are sharp for all admissible $A, B, b \in \mathbb{C} \backslash\{0\}$ and for each j.

Proof. Since $f(z) \in M$, the inequality (2)gives

$$
\begin{align*}
& \left|\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)-\mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)\right|= \tag{9}\\
& \quad\left\{[(A-B) b+B] \mathcal{D}_{\lambda, \mu}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)-B\left[\mathcal{D}_{\lambda, \mu}^{m+1}\left(\alpha_{1}, \beta_{1}\right) f(z)\right\} w(z) .\right.
\end{align*}
$$

Equation (9) may be rewritten as

$$
\begin{gathered}
\sum_{k+2}^{\infty}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}(k-1)(\lambda-\mu+\lambda k \mu) B_{k} a_{k} z^{k} \\
=\left\{(A-B) b z+\sum_{k=2}^{\infty}[(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)][1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m} B_{k} a_{k} z^{k}\right\} w(z) .
\end{gathered}
$$

Or equivalently,

$$
\begin{aligned}
& \sum_{k=2}^{j}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}(k-1)(\lambda-\mu+k \mu \lambda) B_{k} a_{k} z^{k}+\sum_{k=j+1}^{\infty} c_{k} z^{k} \\
= & \left\{(A-B) b z+\sum_{k=2}^{j-1}[(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)][1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m} B_{k} a_{k} z^{k}\right\} w(z)
\end{aligned}
$$

for certain coefficients c_{k}. Since $|w(z)|<1$, we have

$$
\left|\sum_{k=2}^{j}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}(k-1)(\lambda-\mu+k \mu \lambda) B_{k} a_{k} z^{k}+\sum_{k=j+1}^{\infty} c_{k} z^{k}\right|
$$

$$
\begin{aligned}
& \leq \mid(A-B) b z+\sum_{k=2}^{j-1}[(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)] \\
& {[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m} B_{k} a_{k} z^{k} \mid . }
\end{aligned}
$$

Let $z=r e^{i \theta}, r<1$. Applying the Parseval's formula on both sides of the above inequality and a simple computation we get

$$
\begin{aligned}
& \sum_{k=2}^{j}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{2 m}(k-1)^{2}(\lambda-\mu+k \mu \lambda)^{2} B_{k}^{2}\left|a_{k}\right|^{2} r^{2 k}+\sum_{k=j+1}^{\infty}\left|c_{k}\right|^{2} r^{2 k} \mid \\
& \leq(A-B)^{2}|b|^{2} r^{2}+\sum_{k=2}^{j-1}|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|^{2}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{2 m} B_{k}^{2} a_{k}^{2} \mu^{2 k} .
\end{aligned}
$$

Let $r \rightarrow 1^{-}$. Then on simplification we get

$$
\begin{gather*}
{[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{2 m}(j-1)^{2}(\lambda-\mu+j \mu \lambda)^{2} B_{j}^{2}\left|a_{j}\right|^{2}} \tag{10}\\
\leq(A-B)^{2}|b|^{2}+\sum_{k=2}^{j-1}\left\{|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|^{2}-(k-1)^{2}(\lambda-\mu+k \mu \lambda)^{2}\right\} \\
\times[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{2 m} B_{k}^{2}\left|a_{k}\right|^{2}
\end{gather*}
$$

for $j \geq 2$.
Now the following two cases arise
(a) $(A-B)^{2}|b|^{2}>\left[2(A-B) B \Re b+\left(1-B^{2}\right)(k-1)(\lambda-\mu+k \mu \lambda)\right](k-1)(\lambda-\mu+k \mu \lambda)$ suppose that $j \leq N+2$. Then

$$
\left|a_{2}\right| \leq \frac{(A-B)|b|}{(1+\lambda-\mu+2 \mu \lambda)(\lambda-\mu+2 \mu \lambda) B_{2}}
$$

which gives (6) for $j=2$. We establish (6) for $j<N+2$ from (10) by mathematical induction. Suppose (6) is valid for $j=2,3, \ldots,(k-1)$. Then it follows from (10) that

$$
\begin{gathered}
{[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{2 m}(j-1)^{2}(\lambda-\mu+j \mu \lambda)^{2} B_{j}^{2}\left|a_{j}\right|^{2}} \\
\leq(A-B)^{2}|b|^{2}+\sum_{k=2}^{j-1}\left\{|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|^{2}-(k-1)^{2}(\lambda-\mu+k \mu \lambda)^{2}\right\}
\end{gathered}
$$

$$
\left.\begin{array}{c}
\times[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{2 m} B_{k}^{2}\left|a_{k}\right|^{2} \\
\leq(A-B)^{2}|b|^{2}+\sum_{k=2}^{j-1}\left\{|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|^{2}-(k-1)^{2}(\lambda-\mu+k \mu \lambda)^{2}\right\} \\
\times[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{2 m} B_{k}^{2} \\
\times \frac{\prod_{n=2}^{k}|(A-B) b-(n-2) B|^{2}}{[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{2 m} B_{k}^{2}}\left\{(\lambda-\mu+k \mu \lambda)^{k-1}(k-1)!\right\}^{2} \\
=(A-B)^{2}|b|^{2}+\left[|(A-B) b-B(\lambda-\mu+2 \mu \lambda)|^{2}-(\lambda-\mu+2 \mu \lambda)^{2}\right] \frac{(A-B)^{2} b^{2}}{(\lambda-\mu+2 \mu \lambda)^{2}(1!)^{2}} \\
+\left\{|(A-B) b-2 B(\lambda-\mu+3 \mu \lambda)|^{2}-4(\lambda-\mu+3 \mu \lambda)^{2}\right\} \\
\frac{1}{(\lambda-\mu+3 \mu \lambda)^{4}(2!)^{2}}(A-B)^{2} b^{2}|(A-B) b-B|^{2}+\ldots
\end{array}\right] \begin{aligned}
& =\frac{\prod_{k=2}^{j}|(A-B) b-(k-2) B|^{2}}{\left\{(\lambda-\mu+j \mu \lambda)^{j-2}(j-2)!\right.} .
\end{aligned}
$$

Thus we get

$$
\left|a_{j}\right| \leq \frac{\prod_{k=2}^{j}|(A-B) b-(k-2) B|^{2}}{[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{m}(j-1)!(\lambda-\mu+j \mu \lambda)^{j-1} B_{j}} .
$$

Next we suppose that $j>N+2$. Then (10) gives that

$$
\begin{gathered}
{[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{2 m}(j-1)^{2}(\lambda-\mu+j \mu \lambda)^{2} B_{j}^{2}\left|a_{j}\right|^{2}} \\
\leq(A-B)^{2}|b|^{2}+\sum_{k=2}^{N+2}\left\{|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|^{2}-(k-1)^{2}(\lambda-\mu+k \mu \lambda)^{2}\right\} \\
\times[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{2 m} B_{k}^{2}\left|a_{k}\right|^{2} \\
+\sum_{k=3}^{j-1}\left\{|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|^{2}-(k-1)^{2}(\lambda-\mu+k \mu \lambda)^{2}\right\}[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{2 m} B_{k}^{2}\left|a_{k}\right|^{2}
\end{gathered}
$$

on substituting the upper estimates of $a_{2}, a_{3}, \ldots, a_{N+2}$ obtained above and simplifying we get (7).
(b) Let $(A-B)^{2}|b|^{2} \leq\left[2(A-B) B \Re b+\left(1-B^{2}\right)(k-1)(\lambda-\mu+\lambda k \mu)\right](k-1)(\lambda-\mu+\lambda k \mu)$.

It follows from (10) that

$$
[1+(j-1)(\lambda-\mu+j \mu \lambda)]^{2 m}(j-1)^{2}(\lambda-\mu+j \mu \lambda)^{2} B_{j}^{2}\left|a_{j}\right|^{2} \leq(A-B)^{2}|b|^{2}
$$

which proves (8).
The bounds in (6) are sharp for the functions $f(z)$ given by

$$
D_{\lambda}^{m}\left(\alpha_{1}, \beta_{1}\right) f(z)= \begin{cases}z(1+B z)^{\frac{(A-B) b}{B}} & \text { if } B \neq 0 \\ z \exp (A b z) & \text { if } B=0\end{cases}
$$

Also, the bounds in (8) are sharp for the functions $f_{k}(z)$ given by

$$
D_{\lambda}^{m}\left(\alpha_{1}, \beta_{1}\right) f_{k}(z)= \begin{cases}z(1+B z)^{\frac{(A-B) b}{B \lambda(k-1)}} & \text { if } B \neq 0 \\ z \exp \left(\frac{A b}{\lambda(k-1)} z^{k-1}\right) & \text { if } B=0\end{cases}
$$

We remark here that by specializing the parameters, the above result reduces to various other results obtained by several authors.

If we let $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1$ in Theorem 2, we get the result due to Attiya [4].

Corollary 3. [4] Let the function $f(z)$ defined by (1) be in the class $\mathcal{H}^{m}(\delta ; A, B)$.
(a) If $(A-B)^{2}|b|^{2}>(n-1)\left\{2 B(A-B) \operatorname{Re}\{b\}+\left(1-B^{2}\right)(n-1)\right\}$, let

$$
\begin{gathered}
G=\frac{(A-B)^{2}|b|^{2}}{(n-1)\left\{2 B(A-B) \operatorname{Re}\{b\}+\left(1-B^{2}\right)(k-1)\right\}} \\
(\text { for } n=2,3, \ldots, m-1)
\end{gathered}
$$

$M=[G]$ (Gauss symbol) and $[G]$ is the greatest integer not greater than G. Then, for $j=2,3, \ldots, M+2$

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{1}{j^{m}(j-1)!} \prod_{n=2}^{j}|(A-B) b-(n-2) B| \tag{11}
\end{equation*}
$$

and for $j>M+2$

$$
\left|a_{j}\right| \leq \frac{1}{j^{m}(j-1)(M+1)!} \prod_{n=2}^{M+3}|(A-B) b-(n-2) B|
$$

(b) If $(A-B)^{2}|b|^{2} \leq(n-1)\left\{2 B(A-B) \operatorname{Re}\{b\}+\left(1-B^{2}\right)(n-1)\right\}$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{(A-B)|b|}{(j-1) j^{m}}, \quad j \geq 2 \tag{12}
\end{equation*}
$$

The bounds in (11) and (12) are sharp for all admissible $A, B, b \in \mathbb{C} \backslash\{0\}$ and for each j.

If we let $\lambda=1, \mu=0, q=2, s=1, \alpha_{1}=\beta_{1}$ and $\alpha_{2}=1, A=1$ and $B=-K$ in Theorem 2, we have

Corollary 4. [3] Let the function $f(z)$ defined by (1) be in the class $\mathcal{H}^{m}(b ; K)$.
(a) If $2 u(n-1) R e\{b\}>(n-1)^{2}(1-u)-|b|^{2}(1+u)$, let

$$
G=\left[\frac{2 u(n-1) \operatorname{Re}(b)}{(n-1)^{2}(1-u)-|b|^{2}(1+u)}\right] . \quad \quad \text { forn }=1,3, \ldots, j-1
$$

Then, for $j=2,3, \ldots, G+2$,

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{1}{j^{m}(j-1)!} \prod_{n=2}^{j}|(1+u) b+(n-2) u| \tag{13}
\end{equation*}
$$

and for $j>G+2$,

$$
\left|a_{j}\right| \leq \frac{1}{j^{m}(j-1)(G+1)!} \prod_{n=2}^{G+3}|(1+u) b+(n-2) u|
$$

(b) If $2 u(n-1) \operatorname{Re}\{b\} \leq(n-1)^{2}(1-u)-|b|^{2}(1+u)$, then

$$
\begin{equation*}
\left|a_{j}\right| \leq \frac{(1+u)|b|}{(j-1) j^{m}} \quad j \geq 2 \tag{14}
\end{equation*}
$$

where $u=1-\frac{1}{K}$ and $\left(K>-\frac{1}{2}\right)$.
Note that the inequalities (13) and (14) are sharp.

4. Subordination results for the class M

Definition 1. A sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ of complex numbers is called a subordinating factor sequence, if whenever $f(z)$ is analytic, univalent and convex in U, we have the subordination given by

$$
\begin{equation*}
\sum_{k=1}^{\infty} b_{k} a_{k} z^{k} \prec f(z) \tag{15}
\end{equation*}
$$

where $z \in U$ and $a_{1}=1$.
Lemma 1. [17] The sequence $\left\{b_{k}\right\}_{k=1}^{\infty}$ is a subordinating factor sequence if and only if

$$
\begin{equation*}
\Re\left\{1+2 \sum_{k=1}^{\infty} b_{k} z^{k}\right\}>0 \quad(z \in U) \tag{16}
\end{equation*}
$$

For brevity, let us denote

$$
\begin{aligned}
& \sigma_{k}(\lambda, \mu, m, A, B)=[1+(k-1)(\lambda-\mu+k \mu \lambda)]^{m}\{(k-1)(\lambda-\mu+k \mu \lambda)+ \\
&|(A-B) b-B(k-1)(\lambda-\mu+k \mu \lambda)|\} B_{k}
\end{aligned}
$$

Let \bar{M} be the class of functions $f(z) \in \mathcal{A}$ whose coefficients satisfy the condition (3). Note that $\bar{M} \subseteq M$.

Theorem 3. Let the function $f(z)$ defined by (1), be in the class \bar{M}, where $-1 \leq A<B \leq 1$. Also let ζ denote the familiar class of functions $f(z) \in \mathcal{A}$ which are also univalent and convex in U. Then

$$
\begin{equation*}
\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}(f * g)(z) \prec g(z) \quad(z \in U, g \in \zeta) \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re(f(z))>-\frac{(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)}{\sigma_{2}(\lambda, \mu, m, A, B)} \quad(z \in U) \tag{18}
\end{equation*}
$$

In fact, the constant $\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}$ is the best estimate.
Proof. Let $f(z) \in \bar{M}$ and $g(z)=z+\sum_{k=2}^{\infty} b_{k} z^{k} \in \zeta$. Then

$$
\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}(f * g)(z)=\frac{\sigma_{2}(\lambda, \mu, m, A, B)\left(z+\sum_{k=2}^{\infty} a_{k} b_{k} z^{k}\right)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}
$$

Thus by the definition (15), the assertion of the theorem will hold if the sequence $\left\{\frac{\sigma_{2}(\lambda, \mu, m, A, B) a_{k}}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}\right\}_{k=1}^{\infty}$ is a subordinating sequence with $a_{1}=1$. In view of Lemma 1 this will be true if and only if

$$
\begin{equation*}
\Re\left\{1+2 \sum_{k=1}^{\infty} \frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} a_{k} z^{k}\right\}>0 \quad(z \in U) \tag{19}
\end{equation*}
$$

Now

$$
\begin{aligned}
& \Re\left\{1+\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} \sum_{k=1}^{\infty} a_{k} z^{k}\right\}= \\
& \Re\left\{1+\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} a_{1} z+\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} \sum_{k=2}^{\infty} a_{k} z^{k}\right\} \\
& \geq \\
& \\
& \left.{(\lambda, \mu, m, A, B)}{\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} \left\lvert\, r+\frac{\sum_{k=2}^{\infty} \sigma_{k}(\lambda, \mu, m, A, B)\left|a_{k}\right| r^{k}}{\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}\right.\right\} }
\end{aligned}
$$

Since $\sigma_{k}(\lambda, \mu, m, A, B)$ is a real increasing function of $k \quad(k \geq 2)$,

$$
\begin{aligned}
& \quad 1-\Re\left\{\left|\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}\right| r+\frac{\sum_{k=2}^{\infty} \sigma_{k}(\lambda, \mu, m, A, B)\left|a_{k}\right| r^{k}}{\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}\right\} \\
& \quad \geq 1-\left\{\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} r+\frac{(A-B)|b|}{(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)} r\right\} \\
& =1-r>0
\end{aligned}
$$

Thus (19) holds in U. This proves the inequality (17). The inequality (18) follows by taking the convex function $g(z)=\frac{z}{1-z}=z+\sum_{k=2}^{\infty} z^{k}$ in (17). To prove the sharpness of the constant $\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}$, we consider $f_{0} z \in \bar{M}$ given by

$$
f_{0}(z)=z-\frac{(A-B) b}{\sigma_{2}(\lambda, \mu, m, A, B)} z^{2}
$$

Thus from (17) we have

$$
\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} f_{0}(z) \prec \frac{z}{1-z}
$$

It can be easily verified that

$$
\min \left\{\Re\left(\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]} f_{0}(z)\right)\right\}=-\frac{1}{2}
$$

This shows that the constant $\frac{\sigma_{2}(\lambda, \mu, m, A, B)}{2\left[(A-B)|b|+\sigma_{2}(\lambda, \mu, m, A, B)\right]}$ is the best possible.
For the sake of completeness, we state some of the new and various other known results by specializing the parameters involved in Theorem 3 .

Corollary 5 Let the function $f \in \mathcal{H}^{m}(b ; A, B)$ satisfy the condition (4). Then

$$
\begin{gather*}
\frac{2^{m-1}\{1+|(A-B) b-B|\}}{(A-B)|b|+2^{m}\{1+|(A-B) b-B|\}}(f * g)(z) \prec g(z) \tag{20}\\
\left(z \in \mathcal{U} ; m \in \mathbb{N}_{0} ; g \in \mathcal{C}\right)
\end{gather*}
$$

and

$$
\operatorname{Re} f(z)>-\frac{(A-B)|b|+2^{m}\{1+|(A-B) b-B|\}}{2^{m}\{1+|(A-B) b-B|\}}, \quad(z \in \mathcal{U}) .
$$

In addition, the constant factor

$$
\frac{2^{m-1}\{1+|(A-B) b-B|\}}{(A-B)|b|+2^{m}\{1+|(A-B) b-B|\}}
$$

in the subordination result (20) cannot be replaced by a larger one.
Corollary 6[7] Let the function $f \in \mathcal{A}$ belong to $\mathcal{S}_{m}^{*}(\alpha)$ satisfy the condition

$$
\sum_{n=2}^{\infty}\left(n^{m+1}-\alpha n^{m}\right)\left|a_{n}\right| \leq 1-\alpha, \quad 0 \leq \alpha<1
$$

Then

$$
\begin{gather*}
\frac{2^{m}-\alpha 2^{m-1}}{(1-\alpha)+\left(2^{m+1}-\alpha 2^{m}\right)}(f * g)(z) \prec g(z) \tag{21}\\
\left(z \in \mathcal{U} ; m \in \mathbb{N}_{0} ; g \in \mathcal{C}\right)
\end{gather*}
$$

and

$$
\operatorname{Re} f(z)>-\frac{(1-\alpha)+\left(2^{m+1}-\alpha 2^{m}\right)}{2^{m+1}-\alpha 2^{m}} \quad(z \in \mathcal{U})
$$

The constant factor

$$
\frac{2^{m}-\alpha 2^{m-1}}{(1-\alpha)+\left(2^{m+1}-\alpha 2^{m}\right)}
$$

in the subordination result (21) cannot be replaced by a larger one.
Corollary 7 [7] Let the function $f \in \mathcal{A}$ belong to $\mathcal{C}(\alpha)$ satisfy the condition

$$
\sum_{n=2}^{\infty} n(n-\alpha)\left|a_{n}\right| \leq 1-\alpha, \quad 0 \leq \alpha<1
$$

Then

$$
\begin{equation*}
\frac{2-\alpha}{5-3 \alpha}(f * g)(z) \prec g(z) \tag{22}
\end{equation*}
$$

$$
\left(z \in \mathcal{U} ; m \in \mathbb{N}_{0} ; g \in \mathcal{C}\right)
$$

and

$$
\operatorname{Re} f(z)>-\frac{5-3 \alpha}{2(2-\alpha)} \quad(z \in \mathcal{U})
$$

The constant factor $\frac{2-\alpha}{5-3 \alpha}$ in the subordination result (22) cannot be replaced by a larger one.

Corollary 8 [7] it Let the function $f \in \mathcal{A}$ belong to $\mathcal{S}^{*}(\alpha)$ satisfy the condition

$$
\sum_{n=2}^{\infty}(n-\alpha)\left|a_{k}\right| \leq 1-\alpha, \quad 0 \leq \alpha<1
$$

Then

$$
\begin{align*}
& \frac{2-\alpha}{2(3-2 \alpha)}(f * g)(z) \prec g(z) \tag{23}\\
& \quad\left(z \in \mathcal{U} ; m \in \mathbb{N}_{0} ; g \in \mathcal{C}\right)
\end{align*}
$$

and $\operatorname{Re} f(z)>-\frac{3-2 \alpha}{(2-\alpha)} \quad(z \in \mathcal{U})$. The constant factor $\frac{2-\alpha}{2(3-2 \alpha)}$ in the subordination result (23) cannot be replaced by a larger one.

References

[1] F. M. Al-Oboudi, it On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci., no. 25-28, (2004), 1429-1436.
[2] M. K. Aouf, S. Owa and M. Obradović, Certain classes of analytic functions of complex order and type beta, Rend. Mat. Appl., 7 (11), no. 4, (1991), 691-714.
[3] M. K. Aouf, H. E. Darwish and A. A. Attiya, On a class of certain analytic functions of complex order, Indian J. Pure Appl. Math, 32,no. 10,(2001), 1443-1452.
[4] A. A. Attiya, On a generalization class of bounded starlike functions of complex order, Appl. Math. Comput., 187,no. 1, (2007), 62-67.
[5] J. Dziok and H. M. Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl. Math. Comput., 103,no. 1, (1999), 1-13.
[6] P. L. Duren, Univalent functions, Springer New York, 1983.
[7] S. Sümer Eker, B. Şeker and S. Owa, On subordination result associated with certain subclass of analytic functions involving Salagean operator, J. Inequal. Appl., (2007), Art. ID 48294, 6 pp.
[8] E. Kadioğlu, On subclass of univalent functions with negative coefficients, Appl. Math. Comput. , 146, no. 2-3, (2003), 351-358.
[9] N Marikkannan, A subclass of analytic functions and a generalised differential operator, communicated
[10] G. Murugusundaramoorthy and N. Magesh, Starlike and convex functions of complex order involving the Dziok-Srivastava operator, Integral Transforms Spec. Funct., 18, no. 5-6,(2007), 419-425.
[11] M. A. Nasr and M. K. Aouf, Starlike function of complex order, J. Natur. Sci. Math., 25, no. 1, (1985), 1-12.
[12] G. Ş. Sălăgean, Subclasses of univalent functions, in Complex analysis-fifth Romanian-Finnish seminar, Part 1 (Bucharest, 1981), 362-372, Lecture Notes in Math., 1013 Springer, Berlin.
[13] N. S. Sohi and L. P. Singh, A class of bounded starlike functions of complex order, Indian J. Math.,33, no. 1,(1991), 29-35
[14.] C. Selvaraj and K. A. Selvakumaran,Subordination results for certain classes of analytic functions defined by a generalized differential operator, Acta Univ. Sapientiae Math., 2, no. 2, (2010), 195-205.
[15] C. Selvaraj and K. R. Karthikeyan, Differential subordination and superordination for certain subclasses of analytic functions, Far East J. Math. Sci. (FJMS), 29, no. 2, (2008),419-430.
[16] C. Selvaraj and K. R. Karthikeyan, Certain classes of analytic functions of complex order involving a family of generalized differential operators, J. Math. Inequal., 2 ,no. 4,(2008),449-458.
[17] H. S. Wilf, Subordinating factor sequences for convex maps of the unit circle, Proc. Amer. Math. Soc., 12, (1961), 689-693.
K. R. Karthikeyan

Mathematics Section, Department Of Information Technology,
Salalah College Of Technology,
Salalah, Sultanate Of Oman. email:kr_karthikeyan1979@yahoo.com
A. Selvam

Department of Mathematics, VHNSN College,Virudhunagar-626001, India. email:selvam_avadayappan@yahoo.co.in
P. Sooriya Kala

Department of Mathematics, VHNSN College,
Virudhunagar 626001, India. email:sooriyamarikkannan@gmail.com

