ON CERTAIN SUBCLASS OF ANALYTIC FUNCTIONS DEFINED BY GENERALIZED DERIVATIVE OPERATOR

Serap BULUT

Abstract. In this paper, we define a general derivative operator and by means of this operator, introduce a new class $\mathcal{B}_{p, n}^{m}(\alpha, \delta, \lambda, l, \mu)$ of functions and obtain its relations with some well-known subclasses of analytic multivalent functions. Furthermore, we provide the sufficient conditions for functions to be in the class $\mathcal{B}_{p, n}^{m}(\alpha, \delta, \lambda, l, \mu)$.

2000 Mathematics Subject Classification: 30C45.
Keywords and phrases: Analytic function, Multivalent function, Starlike function, Convex function, Derivative operator.

1.Introduction and definitions

Let \mathcal{H} be the subclass of analytic functions in the open unit disc

$$
\mathbb{U}=\{z \in \mathbb{C}:|z|<1\}
$$

and $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} consisting of the functions of the form

$$
f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots .
$$

Let $\mathcal{A}(p, n)$ denote the class of all functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=p+n}^{\infty} a_{k} z^{k} \quad(p, n \in \mathbb{N}=\{1,2, \ldots\}) \tag{1}
\end{equation*}
$$

which are analytic in the open unit disc \mathbb{U}.
In particular, we set

$$
\mathcal{A}(p, 1):=\mathcal{A}_{p} \quad \text { and } \quad \mathcal{A}(1,1)=\mathcal{A}_{1}:=\mathcal{A}
$$

A function $f \in \mathcal{A}(p, n)$ is said to be p-valently starlike of order $\alpha(0 \leq \alpha<p)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\alpha \tag{2}
\end{equation*}
$$

S. Bulut - On certain subclass of analytic functions defined by generalized...
for all $z \in \mathbb{U}$. We say that f is in the class $\mathcal{S}_{n}^{*}(p, \alpha)$ for such functions. In particular, we set $\mathcal{S}_{1}^{*}(1, \alpha)=\mathcal{S}^{*}(\alpha)$.

A function $f \in \mathcal{A}(p, n)$ is said to be p-valently convex of order $\alpha(0 \leq \alpha<p)$ if it satisfies

$$
\begin{equation*}
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\alpha \tag{3}
\end{equation*}
$$

for all $z \in \mathbb{U}$. We say that f is in the class $\mathcal{K}_{n}(p, \alpha)$ for such functions. In particular, we set $\mathcal{K}_{1}(1, \alpha)=\mathcal{K}(\alpha)$.

We denote by $\mathcal{R}_{n}(p, \alpha)$ the class of functions in $\mathcal{A}(p, n)$ which satisfy

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{f^{\prime}(z)}{z^{p-1}}\right\}>\alpha \tag{4}
\end{equation*}
$$

for all $z \in \mathbb{U}$. In particular, we set $\mathcal{R}_{1}(1, \alpha)=\mathcal{R}(\alpha)$.
For a function $f \in \mathcal{A}(p, n)$, we define the general differential operator $D_{\lambda, l, p}^{m, \delta}$ as follows:

$$
\begin{align*}
D_{\lambda, l, p}^{0, \delta} f(z)= & f(z), \\
D_{\lambda, l, p}^{1, \delta} f(z)= & \left(\delta-\frac{\lambda p}{p+l}\right) f(z)+\left(\frac{\lambda}{p+l}-\frac{\delta-1}{p}\right) z f^{\prime}(z) \\
= & D_{\lambda, l, p}^{\delta} f(z), \quad \delta, \lambda, l \geq 0 \tag{5}\\
D_{\lambda, l, p}^{2, \delta} f(z)= & D_{\lambda, l, p}^{\delta}\left(D_{\lambda, l, p}^{1, \delta} f(z)\right) \\
& \vdots \tag{6}\\
D_{\lambda, l, p}^{m, \delta} f(z)= & D_{\lambda, l, p}^{\delta}\left(D_{\lambda, l, p}^{m-1, \delta} f(z)\right), \quad m \in \mathbb{N}
\end{align*}
$$

If f is given by (1), then by (5) and (6), we see that

$$
\begin{equation*}
D_{\lambda, l, p}^{m, \delta} f(z)=z^{p}+\sum_{k=p+n}^{\infty}\left[\frac{k}{p}+(k-p)\left(\frac{\lambda}{p+l}-\frac{\delta}{p}\right)\right]^{m} a_{k} z^{k}, \quad m \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\} \tag{7}
\end{equation*}
$$

Remark 1. If we set $n=1$ in (7), then we have following operators.
(i) $D_{\lambda, l, p}^{m, 1}=I_{p}(m, \lambda, l)$ defined by Cătaş [2].
(ii) $D_{\lambda, 0,1}^{m, \delta}=D_{\delta, \lambda}^{m}$ defined and studied by Darus and Ibrahim [4].
(iii) $D_{\lambda, 0,1}^{m, 1}=D_{\lambda}^{m}$ which is Al-Oboudi (generalized Sălăgean) differential operator [1].
(iv) $D_{1,0,1}^{m, 1}=D^{m}$ which is Sălăgean differential operator [8].
S. Bulut - On certain subclass of analytic functions defined by generalized...

Remark 2. It follows from the (7) that

$$
\begin{align*}
p(p+l) D_{\lambda, l, p}^{m+1, \delta} f(z)= & p[\delta(p+l)-\lambda p] D_{\lambda, l, p}^{m, \delta} f(z) \\
& +[\lambda p+(1-\delta)(p+l)] z\left(D_{\lambda, l, p}^{m, \delta} f(z)\right)^{\prime} \tag{8}
\end{align*}
$$

for $m \in \mathbb{N}_{0}$ and $z \in \mathbb{U}$.

In order to prove our main results, we shall require the following lemma.
Lemma 1.1. [6] Let h be analytic in \mathbb{U} with $h(0)=1$ and suppose that

$$
\operatorname{Re}\left\{1+\frac{z h^{\prime}(z)}{h(z)}\right\}>\frac{3 \alpha-1}{2 \alpha} \quad(z \in \mathbb{U})
$$

Then

$$
\operatorname{Re}\{h(z)\}>\alpha
$$

for $z \in \mathbb{U}$ and $\frac{1}{2} \leq \alpha<1$.

2.MAIN RESULTS

Definition 1. We say that a function $f \in \mathcal{A}(p, n)$ is in the class $\mathcal{B}_{p, n}^{m}(\alpha, \delta, \lambda, l, \mu)$ $\left(p, n \in \mathbb{N} ; m \in \mathbb{N}_{0} ; \delta, \lambda, l \geq 0 ; \mu \geq 0 ; 0 \leq \alpha<1\right)$ if

$$
\left|\frac{D_{\lambda, l, p}^{m+1, \delta} f(z)}{z^{p}}\left(\frac{z^{p}}{D_{\lambda, l, p}^{m, \delta} f(z)}\right)^{\mu}-p\right|<p-\alpha \quad(z \in \mathbb{U})
$$

Remark 3. The family $\mathcal{B}_{p, n}^{m}(\alpha, \delta, \lambda, l, \mu)$ is a new comprehensive class of analytic functions which includes various new classes of analytic functions as well as some very well known ones. For example,
(i) For $m=0$ and $\mu=1$, we have the class

$$
\mathcal{B}_{p, n}^{0}(\alpha, \delta, \lambda, l, 1) \equiv \mathcal{S}_{n}^{*}(p, \alpha)
$$

(ii) For $m=1, \delta=\lambda=0$ and $\mu=1$, we have the class

$$
\mathcal{B}_{p, n}^{1}(\alpha, 0,0, l, 1) \equiv \mathcal{K}_{n}(p, \alpha)
$$

(iii) For $m=0$ and $\mu=0$, we have the class

$$
\mathcal{B}_{p, n}^{0}(\alpha, \delta, \lambda, l, 0) \equiv \mathcal{R}_{n}(p, \alpha)
$$

S. Bulut - On certain subclass of analytic functions defined by generalized...
(iv) For $p=1$ and $\delta=1$, we have the class

$$
\mathcal{B}_{1, n}^{m}(\alpha, 1, \lambda, l, \mu) \equiv \mathcal{B} \mathcal{I}(m, n, \mu, \alpha, \lambda, l)
$$

introduced by Lupas [7].
(v) For $p=n=1, \delta=1$ and $\lambda=1$, we have the class

$$
\mathcal{B}_{1,1}^{m}(\alpha, 1,1, l, \mu) \equiv \mathcal{B}(m, \mu, \alpha, \lambda)
$$

introduced and studied by Stanciu and Breaz [9].
(vi) For $p=1, \delta=1, \lambda=1$ and $l=0$, we have the class

$$
\mathcal{B}_{1, n}^{m}(\alpha, 1,1,0, \mu) \equiv \mathcal{B} \mathcal{S}_{n}(m, \mu, \alpha)
$$

introduced by Cătaş and Lupaş [3].
(vii) For $m=0$ and $p=n=1$, the class

$$
\mathcal{B}(\mu, \alpha)=\left\{f \in \mathcal{A}:\left|f^{\prime}(z)\left(\frac{z}{f(z)}\right)^{\mu}-1\right|<1-\alpha ; \mu \geq 0,0 \leq \alpha<1, z \in \mathbb{U}\right\}
$$

introduced by Frasin and Jahangiri [6].
(viii) For $m=0, p=n=1$ and $\mu=2$, the class

$$
\mathcal{B}(\alpha)=\left\{f \in \mathcal{A}:\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1-\alpha ; 0 \leq \alpha<1, z \in \mathbb{U}\right\}
$$

introduced by Frasin and Darus [5].
The object of the present paper is to investigate the sufficient condition for functions to be in the class $\mathcal{B}_{p, n}^{m}(\alpha, \delta, \lambda, l, \mu)$.

Theorem 2.1. Let $f \in \mathcal{A}(p, n)$ be the function of the form (1), $\mu \geq 0$ and $\frac{1}{2} \leq \alpha<1$. If

$$
\begin{gather*}
\operatorname{Re}\left\{\frac{p(p+l)}{\lambda p+(1-\delta)(p+l)} \frac{D_{\lambda, l, p}^{m+2, \delta} f(z)}{D_{\lambda, l, p}^{m+1, \delta} f(z)}-\frac{\mu p(p+l)}{\lambda p+(1-\delta)(p+l)} \frac{D_{\lambda, l, p}^{m+1, \delta} f(z)}{D_{\lambda, l, p}^{m, \delta} f(z)}\right. \\
\left.+\frac{p(p+l)(\mu-1)}{\lambda p+(1-\delta)(p+l)}+1\right\}>\frac{3 \alpha-1}{2 \alpha}, \tag{9}
\end{gather*}
$$

then $f \in \mathcal{B}_{p, n}^{m}(\alpha, \delta, \lambda, l, \mu)$.

Proof. Define the function $h(z)$ by

$$
\begin{equation*}
h(z)=\frac{D_{\lambda, l, p}^{m+1, \delta} f(z)}{z^{p}}\left(\frac{z^{p}}{D_{\lambda, l, p}^{m, \delta} f(z)}\right)^{\mu} . \tag{10}
\end{equation*}
$$

Then the function $h(z)$ is analytic in \mathbb{U} and $h(0)=1$. Therefore, differentiating (10) logarithmically and using (8), the simple computation yields

$$
\begin{aligned}
\frac{z h^{\prime}(z)}{h(z)}= & \frac{p(p+l)}{\lambda p+(1-\delta)(p+l)} \frac{D_{\lambda, l, p}^{m+2, \delta} f(z)}{D_{\lambda, l, p}^{m+1, \delta} f(z)}-\frac{\mu p(p+l)}{\lambda p+(1-\delta)(p+l)} \frac{D_{\lambda, l, p}^{m+1, \delta} f(z)}{D_{\lambda, l, p}^{m, \delta} f(z)} \\
& +\frac{p(p+l)(\mu-1)}{\lambda p+(1-\delta)(p+l)} .
\end{aligned}
$$

By the hypothesis of the theorem, we have

$$
\operatorname{Re}\left\{1+\frac{z h^{\prime}(z)}{h(z)}\right\}>\frac{3 \alpha-1}{2 \alpha} .
$$

Hence, by Lemma 1.1, we have

$$
\operatorname{Re}\left\{\frac{D_{\lambda, l, p}^{m+1, \delta} f(z)}{z^{p}}\left(\frac{z^{p}}{D_{\lambda, l, p}^{m, \delta} f(z)}\right)^{\mu}\right\}>\alpha .
$$

Therefore, in view of Definition 1, $f \in \mathcal{B}_{p, n}^{m}(\alpha, \delta, \lambda, l, \mu)$.
As consequences of the above theorem we have the following corollaries.
Choosing $m=1, \mu=1, \alpha=\frac{1}{2}, p=n=1, \delta=\lambda=1$ and $l=0$, we have
Corollary 2.2. If $f \in \mathcal{A}$ and

$$
\operatorname{Re}\left\{\frac{z^{2} f^{\prime \prime \prime}(z)+2 z f^{\prime \prime}(z)}{z f^{\prime \prime}(z)+f^{\prime}(z)}-\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>-\frac{1}{2},
$$

then

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{1}{2}
$$

That is, $f \in \mathcal{K}\left(\frac{1}{2}\right)$.
Choosing $m=1, \mu=0, \alpha=\frac{1}{2}, p=n=1, \delta=\lambda=1$ and $l=0$, we have
S. Bulut - On certain subclass of analytic functions defined by generalized...

Corollary 2.3. If $f \in \mathcal{A}$ and

$$
\operatorname{Re}\left\{\frac{z^{2} f^{\prime \prime \prime}(z)+2 z f^{\prime \prime}(z)}{z f^{\prime \prime}(z)+f^{\prime}(z)}\right\}>-\frac{1}{2}
$$

then

$$
\operatorname{Re}\left\{f^{\prime}(z)+z f^{\prime \prime}(z)\right\}>\frac{1}{2}
$$

Choosing $m=0, \mu=1, \alpha=\frac{1}{2}, p=n=1, \delta=\lambda=1$ and $l=0$, we have
Corollary 2.4. If $f \in \mathcal{A}$ and

$$
\operatorname{Re}\left\{\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-\frac{z f^{\prime}(z)}{f(z)}\right\}>-\frac{3}{2}
$$

then

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\frac{1}{2}
$$

That is, $f \in \mathcal{S}^{*}\left(\frac{1}{2}\right)$.
Choosing $m=0, \mu=0, \alpha=\frac{1}{2}, p=n=1, \delta=\lambda=1$ and $l=0$, we have
Corollary 2.5. If $f \in \mathcal{A}$ and

$$
\operatorname{Re}\left\{1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}>\frac{1}{2}
$$

then

$$
\operatorname{Re}\left\{f^{\prime}(z)\right\}>\frac{1}{2}
$$

That is, $f \in \mathcal{R}\left(\frac{1}{2}\right)$.

References

[1] F.M. Al-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[2] A. Cătaş, On certain classes of p-valent functions defined by multiplier transformations, in: Proceedings of the International Symposium on Geometric Function Theory and Applications, İstanbul, Turkey, August 2007.
S. Bulut - On certain subclass of analytic functions defined by generalized...
[3] A. Cătaş and A.A. Lupaş, On sufficient conditions for certain subclass of analytic functions defined by differential Sălăgean operator, Int. J. Open Problems Complex Analysis 1 (2009), no. 2, 14-18.
[4] M. Darus and R.W. Ibrahim, On new subclasses of analytic functions involving generalized differential and integral operators, Eur. J. Pure Appl. Math. 4 (2011), no. 1, 59-66.
[5] B.A. Frasin and M. Darus, On certain analytic univalent functions, Int. J. Math. Math. Sci. 25 (2001), no. 5, 305-310.
[6] B.A. Frasin and Jay M. Jahangiri, A new and comprehensive class of analytic functions, An. Univ. Oradea Fasc. Mat. 15 (2008), 59-62.
[7] A.A. Lupaş, A note on a subclass of analytic functions defined by multiplier transformations, Int. J. Open Problems Complex Analysis 2 (2010), no. 2, 154159.
[8] G.S. Sălăgean, Subclasses of univalent functions, in: Lecture Notes in Math., vol. 1013, Springer-Verlag, Berlin, Heidelberg and New York, 1983, pp. 362-372.
[9] L. Stanciu and D. Breaz, A subclass of analytic functions defined by multiplier transformation, Acta Univ. Apulensis 27 (2011), 225-228.

Serap BULUT

Kocaeli University
Civil Aviation College
Arslanbey Campus
Kartepe, Kocaeli / Turkey
email: serap.bulut@kocaeli.edu.tr

