FIXED POINT THEOREMS BY ALTERING DISTANCES FOR OCCASIONALLY WEAKLY COMPATIBLE HYBRID *D*-MAPPINGS AND APPLICATIONS

VALERIU POPA AND ALINA-MIHAELA PATRICIU

ABSTRACT. The purpose of this paper is to prove a general fixed point theorem by altering distance for two owc pairs hybrid mappings and to reduce the study of fixed points of pairs of mappings satisfying a contractive condition of integral type at the study of fixed point in metric spaces by altering distances satisfying an implicit relation, which generalize some results from [1], [6], [9], [21], [27] and other papers.

2000 Mathematics Subject Classification: 54H25, 47H10.

1. INTRODUCTION AND PRELIMINARIES

Let (X, d) be a metric space and B(X) the set of all nonempty bounded subsets of X. As in [11] and [12] we define the functions $\delta(A, B)$ and D(A, B), where $A, B \in B(X)$ by

$$\delta(A, B) = \sup\{d(a, b) : a \in A, b \in B\}, \\ D(A, B) = \inf\{d(a, b) : a \in A, b \in B\}, A, B \in B(X).$$

If A consists of a single point a, we write $\delta(A, B) = \delta(a, B)$. If B consists also of a single point b, we write $\delta(A, B) = d(a, b)$.

It follows immediately from definition of δ that

$$\begin{split} \delta(A,B) &= \delta(B,A),\\ \delta(A,C) &\leq \delta(A,B) + \delta(B,C),\\ \delta(A,B) &= 0 \ then \ A = B = \{a\}, \ for \ A,B,C \in B(X). \end{split}$$

Definition 1.1 A sequence $\{A_n\}$ of a nonempty subset of X is said to be convergent to a set A of X [11], [12] if

(i) each point $a \in A$ is the limit of a convergent sequence $\{a_n\}$ where $a_n \in A_n$ for all $n \in N$.

(ii) for arbitrary $\varepsilon > 0$, there exists an integer m > 0 such that $\{A_n\} \subset A_{\varepsilon}$ for n > m, where A_{ε} denote the set of all points $x \in X$ for which there exists a point $a \in A$, depending on x, such that $d(x, a) < \varepsilon$.

A is said to be the limit of the sequence $\{A_n\}$.

Lemma 1.1 (Fisher, [11]) If $\{A_n\}$ and $\{B_n\}$ are sequences in B(X) converging to A and B, respectively, in B(X), then the sequence $\delta(A_n, B_n)$ converges to $\delta(A, B)$.

Lemma 1.2 (Fisher and Sessa, [12]) Let $\{A_n\}$ be a sequence in B(X) and $y \in X$ such that $\delta(A_n, y) \to 0$, then the sequence $\{A_n\}$ converges to the set $\{y\}$ in X.

Let A and S be self mappings of a metric space (X, d). Jungck [14] defined A and S to be compatible if $\lim d(ASx_n, SAx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim Sx_n = \lim Tx_n = t$ for some $t \in X$.

A point $x \in X$ is a coincidence point of A and S if Ax = Sx. We denote C(A, S) the set of all coincidence points of A and S.

In [24], Pant defined A and S to be pointwise R-weakly commuting mappings if for all $x \in X$, there exists R > 0 such that $d(SAx, ASx) \leq R \cdot d(Ax, Sx)$. It is proved in [25] that pointwise R-weakly commuting is equivalent to the commuting at coincidence points.

Definition 1.2 A and S is said to be weakly compatible [15] if ASu = SAu for $u \in C(A, S)$.

Definition 1.3 A and S is said to be occasionally weakly compatible [5] if ASu = SAu for some $u \in C(A, S)$.

Remark 1.1 If A and S are weakly compatible and $C(A, S) \neq 0$ then A and S are owc, but the converse is not true (Example [5]).

Some fixed point theorems for owc mappings are proved in [2], [3], [18] and other papers.

Definition 1.4 Let $f : X \to X$ and $F : X \to B(X)$ be. Then:

1) a point $x \in X$ is said to be a coincidence point of f and F if $fx \in Fx$. We denote C(f, F) the set of all coincidence points of f and F.

2) a point $x \in X$ is said to be a strict coincidence point of f and F if $\{fx\} = Fx$.

3) a point $x \in X$ is a fixed point of F if $x \in Fx$.

4) a point $x \in X$ is a strict fixed point of F if $\{x\} = Fx$.

Definition 1.5 The mappings $f : X \to X$ and $F : X \to B(X)$ is said to be δ - compatible [16] if $\lim \delta(Ffx_n, fFx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $fFx_n \in B(X), fx_n \to t, Fx_n \to \{t\}$ for some $t \in X$.

Definition 1.6 The pair $f : X \to X$ and $F : X \to B(X)$ is weakly compatible [17] if for each $x \in C(f, F)$, fFx = Ffx.

If the pair (f, F) is δ - compatible, then (f, F) is weakly compatible but the converse is not true, in general [17].

Definition 1.7 Let S and T be two single valued self mappings of a metric space (X, d). We say that S and T satisfy property (E.A) [1] if there exists a sequence $\{x_n\}$ in X such that $\lim Tx_n = \lim Sx_n = t$ for some $t \in X$.

Remark 1.2 It is obvious that two self mappings T and S of a metric space (X, d) will be noncompatible if there exists at least one sequence $\{x_n\}$ such that either $\lim Sx_n = \lim Tx_n = t$ for some $t \in X$ but $\lim d(STx_n, TSx_n)$ is either nonzero or does not exists. Therefore, two noncompatible mappings of a metric space (X, d) satisfy property (E.A).

Recently, Djoudi and Khemis [9] introduced a generalization of pair of mappings satisfying property (E.A).

Definition 1.8 The mappings $I : X \to X$ are $F : X \to B(X)$ are said to be D - mappings if there exists a sequence $\{x_n\}$ in X such that $\lim Ix_n = t$ and $\lim Fx_n = \{t\}$ for some $t \in X$.

Obvious, two mappings which are not δ - compatible are D - mappings.

Some fixed point theorems for D - mappings are proved in [6], [7] and in other papers.

Definition 1.9 The hybrid pair $f : X \to X$ are $F : X \to B(X)$ are strict occasionally weakly compatible (sowc) if there exists $x \in X$ such that $\{fx\} = Fx$ implies fFx = Ffx.

Remark 1.3 If the pair (f, F) is weakly compatible and $C(f, F) \neq \phi$, then the pair (f, F) is sowc. There exists sowc pairs which are not weakly compatible ([4], Example 1.12).

Let $\varphi: R_+ \to R_+$ satisfying the following conditions:

 (φ_1) : φ is continuous,

 (φ_2) : φ is nondecreasing on R_+ ,

 (φ_3) : $0 < \varphi(t) < t$ for t > 0.

The following theorem is proved in [1].

Theorem 1.1 Let A, B, S and T self mappings of a metric space (X, d) such that:

(1.1) $A(X) \subset T(X)$ and $B(X) \subset S(X)$,

 $(1.2) \quad d(Ax, By) \le \varphi(\max\{d(Sx, Ty), d(Ty, By), d(Sx, By)\}),$

(1.3) (A, S) and (B, T) are weakly compatible,

(1.4) (A, S) or (B, T) satisfy property (E.A).

If one A(X), B(X), S(X), T(X) is closed in X, then A, B, S, T have a unique common fixed point.

For D - mappings the following theorems are recently proved.

Theorem 1.2 ([9]) Let $F, G: X \to B(X)$ and $I, J: X \to X$ such that (1.5) $F(X) \subset J(X)$ and $G(X) \subset I(X)$, (1.6) $\delta(Fx, Gy) < \max\{cd(Ix, Jy), c\delta(Ix, Fx), c\delta(Jy, Fx), aD(Ix, Gy) + bD(Jy, Fx)\},\$

for all $x, y \in X$ where $0 \leq c < 1$, $0 \leq a + b < 1$, holds whenever the right side of (1.6) is positive. If the pairs (F, I) and (G, J) are weak compatible and D mappings and either F(X) or G(X) (respectively, I(X) or J(X)) is closed, then I, J, F and G have a unique common fixed point in X.

Theorem 1.3 ([6]) Let (X, d) be a metric space, $F, G : X \to B(X)$ and $I, J : X \to X$ satisfying the following conditions:

(1.7) $F(X) \subset J(X)$ and $G(X) \subset I(X)$,

(1.8) $\delta(Fx, Gy) < \alpha \max\{d(Ix, Jy), \delta(Ix, Fx), \delta(Jy, Fx)\} + (1-\alpha)(aD(Ix, Gy) + bD(Jy, Fx)), \text{ for all } x, y \in X, \text{ where } 0 \le \alpha < 1, a \ge 0, b \ge 0, a + b < 1 \text{ holds}$ whenever the right side of (1.8) is positive. If either

(1.9) F and J are weakly compatible D- mappings and (G, J) are weakly compatible and F(X) or J(X) is closed, or

(1.10) G and J are weakly compatible D- mappings and (F, I) are weakly compatible and G(X) or I(X) is closed,

then there exists an unique fixed point t in X such that $Ft = Gt = \{t\} = \{It\} = \{Jt\}.$

2. Contractive conditions of integral type

In [8], Branciari established the following result

Theorem 2.1 Let (X, d) be a complete metric space, $c \in (0, 1)$ and $f : X \to X$ be a mapping such that

$$\int_{0}^{d(fx,fy)} h(t)dt \le c \int_{0}^{d(x,y)} h(t)dt,$$
(1)

where $h : [0, \infty) \to [0, \infty)$ is a Lebesgue measurable mapping which is summable (i.e. with a finite integral) on each compact subset of $[0, \infty)$, such that for $\varepsilon > 0$, $\int_0^{\varepsilon} h(t)dt > 0$. Then f has a unique fixed point $z \in X$ such that for each $x \in X$, $\lim f^n x = z$.

Quite recently, Kumar et al. [21] extended Theorem 2.1 for two compatible mappings satisfying the following conditions:

Theorem 2.2 Let $f, g: (X, d) \to (X, d)$ compatible mappings such that (i) $f(X) \subset g(X)$,

(ii) g is continuous, and

$$\int_{0}^{d(fx,fy)} h(t)dt \le c \int_{0}^{d(gx,gy)} h(t)dt,$$
(2)

for all $x, y \in X$, $c \in (0, 1)$,

where h is as in Theorem 2.1. Then f and g have a unique common fixed point.

Definition 2.1 Let X be a nonempty set. A symmetric on X is a non-negative real valued function D on $X \times X$ such that

(i) D(x, y) = 0 if and only if x = y,

(ii) D(x,y) = D(y,x) for all $x, y \in X$.

Some fixed point theorems in metric and symmetric spaces for compatible, weak compatible and occasionally compatible mappings satisfying a contractive condition of integral type are studied in [2], [3], [20], [23], [33] and other papers.

Let (X, d) be a metric space and $D(x, y) = \int_0^{d(x,y)} h(t)dt$, where h(t) is as in Theorem 2.1. It is proved in [23], [29] that the study of the fixed points for mappings satisfying a contractive condition of integral type is reduced to the study of fixed points in symmetric spaces. The method is not applicable for hybrid pair of mappings.

Definition 2.2 An altering distance is a mapping $\psi : [0, \infty) \to [0, \infty)$ which satisfies the following conditions:

- (i) ψ is increasing and continuous,
- (ii) $\psi(t) = 0$ if and only if t = 0.

Fixed point problem involving altering distances have been studied in [10], [19], [22], [27], [31], [32] and other papers. In [22], the following theorem is proved.

Theorem 2.3 Let (X,d) be a metric space and $T: X \to B(X)$ a multivalued mapping satisfying the following inequality

$$\begin{split} \psi(\delta(Tx,Ty)) &\leq a\psi(d(x,y)) + b[\psi(\delta(x,Tx)) + \psi(\delta(y,Ty))] + \\ &+ c\min\{\psi(D(x,Ty)),\psi(D(y,Tx))\}, \end{split}$$

for all $x, y \in X$, where a > 0, $b, c \ge 0$ such that a + 2b < 1 and a + c < 1, then T has a unique fixed point.

In [10], Theorem 2.3 is generalized for two pairs of hybrid weakly compatible mappings.

Theorem 2.4 Let (X, d) be a metric space, $I, J : X \to X, T, S : X \to B(X)$ such that:

$$\psi(\delta(Tx, Sy)) \le a\psi(d(Ix, Jy)) + b[\psi(\delta(Ix, Tx)) + \psi(\delta(Jy, Sy))] + c\min\{\psi(D(Ix, Sy)), \psi(D(Jy, Tx))\},$$
(3)

for all $x, y \in X$, $x \neq y$, where a + 2b + c < 1, $a, b, c \ge 0$.

Suppose in addition that either

I) (T, I) is compatible, I is continuous and (J, S) is weakly compatible, II) (S, J) is compatible, J is continuous and (I, T) is weakly compatible. Then I, J, S and T have a unique common fixed point.

Lemma 2.1 The function $\psi(x) = \int_0^x h(t)dt$, where h is as in Theorem 2.1, is an altering distance.

Proof. By definitions of ψ and h it follows that $\psi(x)$ is increasing and $\psi(x) = 0$ if and only if x = 0.

By Lemma 2.5 [23], $\psi(t)$ is continuous.

In [27] a general fixed point theorem for compatible mappings satisfying an implicit relation is proved. In [13], the results from [27] are improved relaxing compatibility to weak compatibility.

The purpose of this paper is to prove a general fixed point theorem by altering distance for two D - mappings pairs and to reduce the study of fixed point of pairs of mappings satisfying a contractive condition of integral type at the study of fixed points in metric spaces by altering distance satisfying an implicit relation, which generalize some results from [1], [6], [9], [21], [27].

3. Implicit relations

Let \mathcal{F}_D be the set of all real continuous mappings $\phi(t_1, ..., t_6) : \mathbb{R}^6_+ \to \mathbb{R}$ satisfying the following conditions:

 (ϕ_1) : ϕ is nonincreasing in variables t_5 and t_6 ,

 $(\phi_2): \phi(t, 0, 0, t, t, 0) \le 0 \text{ or } \phi(t, 0, t, 0, 0, t) \le 0 \text{ implies } t = 0,$

 $(\phi_3): \phi(t, t, 0, 0, t, t) \ge 0, \forall t > 0.$

Example 3.1 $\phi(t_1, ..., t_6) = t_1 - \max\{ct_2, ct_3, ct_4, at_5 + bt_6\}$, where $0 \le c < 1$, $a \ge 0, b \ge 0$ and a + b < 1. (ϕ_1) : Obviously. (ϕ_2) : $\phi(t, 0, 0, t, t, 0) = t(1 - \max\{a, c\}) \le 0$ implies t = 0. Similarly, $\phi(t, 0, t, 0, 0, t) = t(1 - \max\{b, c\}) \le 0$ implies t = 0,

 $(\phi_3): \phi(t, t, 0, 0, t, t) = t(1 - \max\{c, a + b\}) \ge 0, \forall t > 0.$

Example 3.2 $\phi(t_1, ..., t_6) = t_1 - \alpha \max\{t_2, t_3, t_4\} - (1 - \alpha)(at_5 + bt_6)$, where $0 \le \alpha < 1, a \ge 0, b \ge 0$ and a + b < 1.

 (ϕ_1) : Obviously.

 $(\phi_2): \phi(t,0,0,t,t,0) = (1-\alpha)(1-a)t \le 0$ implies t = 0. $\phi(t,0,t,0,0,t) = t(1-\alpha)(1-b) \le 0$ implies t = 0,

 $(\phi_3): \quad \phi(t, t, 0, 0, t, t) = t(1 - (a + b)) \ge 0, \, \forall t > 0.$

Example 3.3 $\phi(t_1, ..., t_6) = t_1 - at_2 - b(t_3 + t_4) - c \min\{t_5, t_6\}$, where $a \ge 0$, $b \ge 0$, $c \ge 0$, b < 1 and a + c < 1.

Example 3.4 $\phi(t_1, ..., t_6) = t_1 - at_2 - b(t_3 + t_4) - c(t_5 + t_6)$, where $a \ge 0, b \ge 0$, $c \ge 0, b + c < 1$ and a + 2c < 1.

Example 3.5 $\phi(t_1, ..., t_6) = t_1 - \max\left\{t_2, \frac{1}{2}(t_3 + t_4), \frac{1}{2}[(t_5 + t_6)k]\right\}$, where $0 \le k < 1$.

Example 3.6 $\phi(t_1, ..., t_6) = t_1 - \max\left\{k_1 t_2, \frac{k_2}{2}(t_3 + t_4), \frac{t_5 + t_6}{2}\right\}$, where $0 \le k_1 < 1$, $1 \le k_2 < 2$.

Example 3.7 $\phi(t_1, ..., t_6) = t_1 - \max\left\{k_1(t_2 + t_3 + t_4), \frac{k_2}{2}(t_5 + t_6)\right\}$, where $0 \le k_1 < 1, 0 \le k_2 < 1$.

Example 3.8 $\phi(t_1, ..., t_6) = t_1 - h \max\{t_2, t_3, t_4, t_5, t_6\}$, where $0 \le h < 1$.

Example 3.9 $\phi(t_1, ..., t_6) = t_1^2 - at_2^2 - t_3t_4 - bt_5^2 - ct_6^2$, where $a, b, c \ge 0$ and a + b + c < 1.

Example 3.10 $\phi(t_1, ..., t_6) = t_1^3 - k(t_2^3 + t_3^3 + t_4^3 + t_5^3 + t_6^3)$, where $0 \le k < \frac{1}{3}$.

Example 3.11 $\phi(t_1, ..., t_6) = t_1^3 - at_1^2 t_2 - bt_1 t_3 t_4 - ct_5^2 t_6 - dt_5 t_6^2$, where $a, b, c, d \ge 0$ and a + c + d < 1.

Example 3.12 $\phi(t_1, ..., t_6) = t_1^3 - \frac{t_3^2 t_4^2 + t_5^2 t_6^2}{1 + t_2 + t_3 + t_4}$.

Example 3.13 $\phi(t_1, ..., t_6) = t_1 - \varphi(\max\{t_2, t_3, t_4, t_5, \frac{t_6}{2}\}).$

Example 3.14 $\phi(t_1, ..., t_6) = t_1 - \varphi(\max\{t_2, \frac{t_3+t_4}{2}, \frac{t_5+t_6}{2}\}).$

Example 3.15 $\phi(t_1, ..., t_6) = t_1 - \varphi\left(\max\left\{t_2, t_3, t_4, \frac{k}{2}(t_5 + t_6)\right\}\right)$, where $0 \le k < 1$.

4. Main results

Theorem 4.1 Let $I : X \to X$ and $F : X \to B(X)$ sowe mappings. If I and F have a unique point of strict coincidence $\{z\} = \{Ix\} = Fx$, then z is the unique common fixed point of I and F which is a strict fixed point for F.

Proof. Since I and F are sowe, there exists $x \in X$ such that $\{z\} = \{Ix\} = Fx$ implies IFx = FIx. Then $\{Iz\} = \{IIx\} = IFx = FIx = Fz = \{u\}$. Hence, u is a point of strict coincidence of I and F. By hypothesis z = u, hence, $\{z\} = \{Iz\} = Fz$ and z is a common fixed point of I and F which is a strict fixed point for F. Suppose that $v \neq z$ is another common fixed point of I and F which is a strict fixed point of F. Hence $\{v\} = \{Iv\} = Fv$. Therefore, v is a point of strict coincidence of I and F and by hypothesis, v = z.

Theorem 4.2 Let $I, J: X \to X, F, G: X \to B(X)$ such that

$$\phi(\psi(\delta(Fx,Gy)),\psi(d(Ix,Jy)),\psi(\delta(Ix,Fx)), \\
\psi(\delta(Jy,Gy)),\psi(D(Ix,Gy)),\psi(D(Jy,Fx))) < 0$$
(4)

for all $x, y \in X$, where ψ is an altering distance and ϕ satisfies property (ϕ_3) . Suppose that there exist $x, y \in X$ such that $\{u\} = \{Ix\} = Fx$ and $\{v\} = \{Jy\} = Gy$. Then, u is the unique point of strict coincidence of I and F and v is the unique point of strict coincidence of J and G.

Proof. First we prove that Ix = Jy. Suppose that $Ix \neq Jy$. By (4) we obtain

$$\phi(\psi(d(Ix, Jy)), \psi(d(Ix, Jy)), 0, 0, \psi(d(Ix, Jy)), \psi(d(Ix, Jy))) < 0,$$

a contradiction of (ϕ_3) . Hence Ix = Jy and $\{u\} = \{Ix\} = \{Jy\} = Fx = Gy$.

Suppose that there exists $z \in X$ such that $\{w\} = \{Iz\} = Fz$. Then by (4) we obtain

$$\phi(\psi(d(Iz, Jy)), \psi(d(Iz, Jy)), 0, 0, \psi(d(Iz, Jy)), \psi(d(Iz, Jy))) < 0,$$

a contradiction of (ϕ_3) . Hence Iz = Jy. Therefore $\{w\} = \{Iz\} = \{Jy\} = Gy = Fx = \{Ix\} = \{u\}$. Hence u is the unique point of strict coincidence of I and F. Similarly, v is the unique point of strict coincidence of J and G.

Theorem 4.3 Let (X, d) be a metric space, $I, J : X \to X$ and $F, G : X \to B(X)$ satisfying the following conditions:

(4.1) the inequality (4) holds for all $x, y \in X$, where ψ is an altering distance and $\phi \in \mathcal{F}_D$;

(4.2) $F(X) \subset J(X)$ and $G(X) \subset I(X)$.

If the pairs (F, I) and (G, J) are D - mappings and F(X) (resp. J(X)) or G(X) (resp. I(X)), is a closed set of X, then

(4.3) I and F have a strict coincidence point,

(4.4) J and G have a strict coincidence point.

Moreover, if the pairs (I, F) and (J, G) are sowc, then I, J, F, G have a unique common fixed point which is a strict fixed point for F and G.

Proof. Since the pairs (F, I) are D - mappings then there exists a sequence $\{x_n\}$ in X such that $\lim Ix_n = \lim Fx_n = \{t\}$ for some $t \in X$. Since F(X) is closed and $F(X) \subset J(X)$, there exists $u \in X$ such that t = Ju. By (4) we have

$$\phi(\psi(\delta(Fx_n, Gu)), \psi(d(Ix_n, Ju)), \psi(\delta(Ix_n, Fx_n)), \psi(\delta(Ju, Gu)), \psi(D(Ix_n, Gu)), \psi(D(Ju, Fx_n))) < 0.$$

Letting n tend to infinity we obtain

$$\phi(\psi(\delta(Ju,Gu)),0,0,\psi(\delta(Ju,Gu)),\psi(D(Ju,Gu)),0) \leq 0.$$

By (ϕ_2) it follows that $\psi(\delta(Ju, Gu)) = 0$ which implies $\{Ju\} = Gu$. Hence J and G have a strict coincidence point. Since $G(X) \subset I(X)$, there exists a point $v \in X$ such that $\{Iv\} = Gu$. Then by (4) and (ϕ_1) we have successively:

$$\begin{aligned} &\phi(\psi(\delta(Fv,Gu)),\psi(d(Iv,Ju)),\psi(\delta(Iv,Fv)),\\ &\psi(\delta(Ju,Gu)),\psi(\delta(Iv,Gu)),\psi(\delta(Ju,Fv))) < 0, \end{aligned}$$

$$\phi(\psi(\delta(Fv,Gu)),0,\psi(d(Fv,Gu)),0,0,\psi(\delta(Fv,Gu))) < 0. \end{aligned}$$

By (ϕ_2) we obtain $\psi(\delta(Fv, Gu)) = 0$ which implies $Fv = Gu = \{Iv\}$. Hence Fand I have a strict coincidence point. Therefore, $\{t\} = \{Ju\} = Gu = Fv = \{Iv\}$. By Theorem 4.2, t is the unique point of strict coincidence of I and F, also t is the unique point of strict coincidence of J and G. If the pairs (I, F) and (J, G) are sowc then by Theorem 4.1 t is the unique fixed point of I and F and for J and G which is a strict fixed point for F and G.

If I = J and F = G we obtain

Theorem 4.4 Let (X,d) be a metric space, $I: X \to X$ and $F: X \to B(X)$ satisfying the following conditions:

a) $F(X) \subset I(X),$

b) $\phi(\psi(\delta(Fx, Fy)), \psi(d(Ix, Iy)), \psi(\delta(Ix, Fx))), \psi(\delta(Ix, Fx)))$

 $\psi(\delta(Iy, Fy)), \psi(D(Ix, Fy)), \psi(D(Iy, Fx))) < 0,$

for all $x, y \in X$, where ψ is an altering distance and $\phi \in \mathcal{F}_D$.

If (I, F) are D - mappings and F(X) (or I(X)) is a closed set of X, then

c) I and F have a strict coincidence point.

Moreover, if the pair (I, F) is sowc, then I and F have a unique common fixed point which is a strict fixed point for F.

If f, g, I, J are single valued mappings we obtain

Theorem 4.5 Let (X, d) be a metric space, $I, J, f, g : X \to X$ satisfying the following conditions:

a) $f(X) \subset J(X), g(X) \subset I(X),$

b) $\phi(\psi(d(fx,gy)),\psi(d(Ix,Jy)),\psi(d(Ix,fx))),\psi(d(Ix,fx)$

 $\psi(d(Jy,gy)),\psi(d(Ix,gy)),\psi(d(Jy,fx))) < 0$

for all $x, y \in X$, where ψ is an altering distance and $\phi \in \mathcal{F}_D$.

If the pair (f, I) or (g, J) have property (E.A) and f(X) (resp. J(X)) or g(X) (resp. I(X)) are closed sets of X, then

c) I and f have a coincidence point,

d) J and g have a coincidence point.

Moreover, if the pairs (I, f) and (J, g) are owc, then I, J, f and g have a unique common fixed point.

If $\psi(t) = t$, then by Theorem 4.3 we obtain the following theorem

Theorem 4.6 (Theorem 3.3 [27]) Let (X, d) be a metric space, $I, J : X \to X$ and $F, G : X \to B(X)$ satisfying the following conditions:

a) $F(X) \subset J(X)$ and $G(X) \subset I(X)$,

b) $\phi(\delta(Fx, Gy), d(Ix, Jy), \delta(Ix, Fx), \delta(Jy, Gy), D(Ix, Gy), D(Jy, Fx)) < 0$ for all $x, y \in X$, where $\phi \in \mathcal{F}_D$.

If the pairs (I, F) or (J, G) are D - mappings and F(X) (resp. J(X)) or G(X) (resp. I(X)) are closed sets in X, then

c) I and F have a strict coincidence point,

d) J and G have a strict coincidence point.

Moreover, if the pairs (F, I) and (G, J) are sowc, then I, J, F and G have a unique common fixed point which is a strict fixed point for F and G.

Remark 4.1 a) By Theorem 4.6 and Example 3.1 we obtain a generalization of Theorem 1.2.

b) By Theorem 4.6 and Example 3.2 we obtain a generalization of Theorem 1.3.

c) By Theorem 4.6 and Examples 3.3 - 3.15 we obtain new results.

If $\psi(t) = t$, then by Theorem 4.4 we obtain

Theorem 4.7 Let (X, d) be a metric space, $I : X \to X$ and $F : X \to B(X)$ satisfying the following conditions:

a) $F(X) \subset I(X)$,

b) $\phi(\delta(Fx, Fy), d(Ix, Iy), \delta(Ix, Fx), \delta(Iy, Fy), D(Ix, Fy), D(Iy, Fx)) < 0$ for all $x, y \in X$ and $\phi \in \mathcal{F}_D$.

If (I, F) are D - mappings and F(X) or I(X) is a closed set of X, then

c) I and F have a strict coincidence point.

Moreover, if the pair (F, I) is sowc, then I and F have a unique common fixed point which is a strict fixed point for F.

Remark 4.2 a) By Theorem 4.7 and Example 3.2 we obtain a generalization of Corollary 3.1 [6].

b) By Theorem 4.7 and Example 3.1, 3.3 - 3.15 we obtain new results.

If $\psi(t) = t$, by Theorem 4.5 we obtain

Theorem 4.8 Let (X,d) be a metric space and $I, J, f, g : X \to X$ single valued mappings satisfying the following conditions:

a) $f(X) \subset J(X)$ and $g(X) \subset I(X)$,

b) $\phi(d(fx, gy), d(Ix, Jy), d(Ix, fx), d(Jy, gy), d(Ix, gy), d(Jy, fx)) < 0$

for all $x, y \in X$ and $\phi \in \mathcal{F}_D$.

If the pair (f, I) or (g, J) have property (E.A) and f(X) (resp. J(X)) or g(X) (resp. I(X)) are closed subsets of X, then

c) I and f have a coincidence point,

d) J and g have a coincidence point.

Moreover, if the pairs (I, f) and (J, g) are owc, then I, J, f and g have a unique common fixed point.

Remark 4.3 By Theorem 4.8 and Example 3.13 we obtain a generalization of Theorem 1.1 because

$$\begin{split} &\varphi(\max\{d(Sx,Ty),d(Sx,By),d(Ty,By)\} < \\ &< \varphi\left(\max\left\{d(Sx,Ty),d(Ax,Sx),d(Ty,By),d(Sx,By),d(Sy,By),\frac{d(Ty,Ax)}{2}\right\}\right). \end{split}$$

We denote $Fix(f) = \{x \in X : x = fx\}$ and $sFix(F) = \{x \in X : \{x\} = Fx\}.$

Theorem 4.9 Let $I, J : X \to X$ and $F, G : X \to B(X)$ be single valued, respectively multivalued mapping. If the inequality (4) holds for all $x, y \in X$ and $\phi \in \mathcal{F}_D$, then:

 $[Fix(I) \cap Fix(J)] \cap sFix(F) = [Fix(I) \cap Fix(J)] \cap sFix(G).$

Proof. Let $u \in [Fix(I) \cap Fix(J)] \cap sFix(F)$. Then $\{u\} = \{Iu\} = \{Ju\} = Fu$. Then by (4) we have

$$\phi(\psi(\delta(u,Gu)),0,0,\psi(\delta(u,Gu)),\psi(\delta(u,Gu),0)<0$$

which implies by (ϕ_2) that $\delta(u, Gu) = 0$ i.e. $\{u\} = Gu$, hence $u \in sFix(G)$, hence

$$[Fix(I) \cap Fix(J)] \cap sFix(F) \subset [Fix(I) \cap Fix(J)] \cap sFix(G).$$

Similarly,

$$[Fix(I) \cap Fix(J)] \cap sFix(G) \subset [Fix(I) \cap Fix(J)] \cap sFix(F).$$

Theorem 4.3 and Theorem 4.9 imply the next one

Theorem 4.10 Let $I, J: X \to X$ be self mappings of a metric space (X, d) and $F_n: X \to B(X), n \in N^*$ be a sequence of set valued mappings such that

a) $F_2(X) \subset I(X)$ and $F_1(X) \subset J(X)$,

b) the pairs (F_1, I) or (F_2, J) are D - mappings and either $F_2(X)$ or $F_1(X)$ (resp. I(X) and J(X)) is a closed set of X,

c) the inequality

$$\phi(\psi(\delta(F_nx, F_{n+1}y)), \psi(d(Ix, Jy)), \psi(\delta(Ix, F_nx)), \\ \psi(\delta(Jy, F_{n+1}y)), \psi(D(Ix, F_{n+1}y), \psi(D(Jy, F_nx))) < 0$$

holds for all $x, y \in X$ and $n \in N^*$,

d) (I, F_1) are sowc D - mappings and (F_2, J) are sowc, or

e) (J, F_2) are sowe D - mappings and (F_1, I) are sowe.

Then, there exists a unique common fixed point of I, J, $\{F_n\}_{n\in N^*}$ which is a strict fixed point for $\{F_n\}, n \in N^*$.

Remark 4.4 1. By Theorem 4.10 and Example 3.2 we obtain a generalization of Theorem 3.5 [6].

2. If $\psi(t) = t$ then by Theorem 4.10 we obtain Theorem 3.6 [27].

5. Applications

Theorem 5.1 Let (X, d) be a metric space, $I, J : X \to X$ and $F, G : X \to B(X)$ such that:

- a)
- $$\begin{split} F(X) &\subset J(X) \ and \ G(X) \subset I(X), \\ \phi(\int_0^{\delta(Fx,Gy)} h(t)dt, \int_0^{d(Ix,Jy)} h(t)dt, \int_0^{\delta(Ix,Fx)} h(t)dt, \\ \int_0^{\delta(Jy,Gy)} h(t)dt, \int_0^{D(Ix,Gy)} h(t)dt, \int_0^{D(Jy,Fx)} h(t)dt) < 0 \end{split}$$
 b)

for all $x, y \in X$, where $\phi \in \mathcal{F}_D$ and h(t) is as in Theorem 2.1. If the pair (I, F) (or (J, G)) is D - mappings and F(X) (resp. J(X)) or G(X)

(resp. I(X)) is a closed set of X, then

c) I and F have a strict coincidence point,

d) J and G have a strict coincidence point.

Moreover, if the pairs (I, F) and (J, G) are sowc, then I, J, F and G have a unique common fixed point which is a strict fixed point for F and G.

Proof. As in Lemma 2.1 we have

$$\begin{split} \psi(\delta(Fx,Gy)) &= \int_0^{\delta(Fx,Gy)} h(t)dt, \ \psi(d(Ix,Jy)) = \int_0^{d(Ix,Jy)} h(t)dt, \\ \psi(\delta(Ix,Fx)) &= \int_0^{\delta(Ix,Fx)} h(t)dt, \ \psi(\delta(Jy,Gy)) = \int_0^{\delta(Jy,Gy)} h(t)dt, \end{split}$$

$$\psi(D(Ix,Gy)) \ = \ \int_0^{D(Ix,Gy)} h(t)dt, \ \psi(D(Jy,Fx)) = \int_0^{D(Jy,Fx)} h(t)dt.$$

Then by b) we obtain

$$\begin{aligned} \phi(\psi(\delta(Fx,Gy)),\psi(d(Ix,Jy)),\psi(\delta(Ix,Fx)),\\ \psi(\delta(Jy,Gy)),\psi(D(Ix,Gy)),\psi(D(Jy,Fx))) < 0 \end{aligned}$$

for all $x, y \in X$ and $\phi \in \mathcal{F}_D$, which is the inequality (4) because by Lemma 2.1, $\psi(t)$ is an altering distance. Hence the conditions of Theorem 4.3 are satisfied and Theorem 5.1 it follows from Theorem 4.3.

If F = G and I = J by Theorem 4.1 we obtain

Theorem 5.2 Let (X, d) be a metric space, $I : X \to X$, $F : X \to B(X)$ such that:

-)

a) $F(X) \subset I(X),$ b) the inequality

$$\begin{aligned} &\phi(\int_{0}^{\delta(Fx,Fy)} h(t)dt, \int_{0}^{d(Ix,Jy)} h(t)dt, \int_{0}^{\delta(Ix,Fx)} h(t)dt, \\ &\int_{0}^{\delta(Jy,Fy)} h(t)dt, \int_{0}^{D(Ix,Fy)} h(t)dt, \int_{0}^{D(Iy,Fx)} h(t)dt) < 0 \end{aligned}$$

holds for all $x, y \in X$, $\phi \in \mathcal{F}_D$ and h(t) as in Theorem 2.1.

If (I, F) are D - mappings and F(X) or I(X) is a closed set of X, then

c) I and F have a strict coincidence point.

Moreover, if the pair (I, F) is sowc, then I and F have a unique common fixed point which is a strict fixed point for F.

Corollary 5.1 Let (X, d) be a metric space, $I : X \to X$, $F : X \to B(X)$ such that:

a) $F(X) \subset I(X)$,

b) the inequality

$$\int_{0}^{\delta(Fx,Fy)} h(t)dt < a \int_{0}^{d(Ix,Jy)} h(t)dt + b \left[\int_{0}^{\delta(Ix,Fx)} h(t)dt + \int_{0}^{\delta(Jy,Fy)} h(t)dt \right] + c \min \left[\int_{0}^{D(Ix,Fy)} h(t)dt, \int_{0}^{D(Iy,Fx)} h(t)dt \right]$$

holds for all $x, y \in X$, h(t) as in Theorem 2.1, a > 0, $b \ge 0$, $c \ge 0$ and a+2b+c < 1.

If F and I are D - mappings and F(X) or I(X) is a closed set of X, then c) F and I have a strict point of coincidence.

Moreover, if the pair (I, F) is sowc, then I and F have a unique common fixed point which is a strict fixed point for F.

Remark 5.1 If in Corollary 5.1 F and I are single valued mappings and a = b = c we obtain a generalization of Theorem 2.2.

References

[1] A. Aamri and D. El-Moutawakil, Some new common fixed point theorems under strict contraction conditions, Math. Anal. Appl., 270, (2002), 181 - 190.

[2] A. Aliouche, A common fixed point theorem for weakly compatible mappings in symmetric spaces satisfying a contractive condition of integral type, J. Math. Appl., 322, (2006), 796 - 802.

[3] A. Aliouche and V. Popa, Common fixed point for occasionally weakly compatible mappings via implicit relations, Filomat, 22(2), (2008), 99 - 107.

[4] A. Aliouche and V. Popa, General fixed point theorems for occasionally weakly compatible hybrid mappings and applications, Novi Sad J. Math., 30, 1(2009), 89 - 109.

[5] M. A. Al-Thagafi and N. Shahzad, *Generalized I-nonexpansive self maps and invariant approximation*, Acta Math. Sinica, 24(5), (2008), 867 - 876.

[6] H. Bouhadjera and A. Djoudi, Common fixed point theorems for single and set valued maps without continuity, Anal. St. Univ. Ovidius, Constanţa, 16(1)(2008), 49 - 58.

[7] H. Bouhadjera and A. Djoudi, Common fixed point theorems for subcompatible single and set valued D - mappings, Acta Univ. Apulensis, 18(2009), 135 - 150.

[8] A. Branciari, A fixed point theorem for mappings satisfying a general contractive condition of integral type, Intern. J. Math. Math. Sci, 29, 9(2002), 531 -536.

[9] A. Djoudi and R. Khemis, *Fixed point for set and single valued maps without continuity*, Demonstratio Math., 38, 3(2005), 739 - 751.

[10] E. Elamrani and B. Mehdaoui, *Common fixed points for compatible and weak compatible mappings*, Revista Colombiano Mathematicos, 34(2000), 25 - 33.

[11] B. Fisher, Common fixed point for mappings and set valued mappings, Rostok Math. Kollok., 18, (1981), 69 - 77.

[12] B. Fisher and S. Sessa, Two common fixed point theorems for weakly commuting mappings, Period. Math. Hungarica, 20(3), (1989), 207 - 218.

[13] M. Imdad, S. Kumar and M. S. Khan, *Remarks on some fixed points satisfying implicit relations*, Radovi Mat., 1, (2002), 135 - 143.

[14] G. Jungck, Compatible mappings and common fixed point, Intern. J. Math. Math. Sci., 9, (1986), 771 - 779.

[15] G. Jungck, Common fixed points for noncontinuous nonself maps on nonnumeric spaces, Far East J. Math. Sci., 4(2), (1996), 199 - 215.

[16] G. Jungck and B. E. Rhoades, Some fixed point theorems for compatible mappings, Intern. J. Math. Math. Sci., 16, (1993), 417 - 428.

[17] G. Jungck and B. E. Rhoades, *Fixed point theorems for set valued functions without continuity*, Indian J. Pure Appl. Math., 29(3), (1998), 227 - 238.

[18] G. Jungck and B. E. Rhoades, *Fixed point theorems for occasionally weakly compatible mappings*, Fixed Point Theory, 7, 2, (2006), 287 - 297.

[19] M. S. Khan, M. Swaleh and S. Sessa, *Fixed point theorems by altering dis*tances between two points, Bull. Austral. Math. Soc., 30, (1984), 1 - 9.

[20] J. K. Kohli and S. Washistha, Common fixed point theorems for compatible and weakly compatible mappings satisfying a general contractive condition, Stud. Cerc. St. Ser. Mat. Univ. Bacău, 16, (2006), 33 - 42.

[21] S. Kumar, R. Cugh and R. Kumar, *Fixed point theorems for compatible mappings satisfying a contractive condition of integral type*, Soochow J. Math., 33, (2007), 181 - 185.

[22] B. Marzauki and A. B. Mbaraki, *Multivalued fixed point theorems by altering distance between the points*, Southwest J. Pure Appl. Math., 1, (2002), 126 - 134.

[23] M. Mocanu and V. Popa, Some fixed point theorems for mappings satisfying implicit relations in symmetric spaces, Libertas Math., 28, (2008), 1 - 13.

[24] R. P. Pant, Common fixed points for noncommuting mappings, J. Math. Anal. Appl., 188, (1994), 436 - 440.

[25] R. P. Pant, Common fixed points for four mappings, Bull. Calcutta Math. Soc., 90, (1998), 281 - 286.

[26] V. Popa, Some fixed point theorems for compatible mappings satisfying an implicit relation, Demonstratio Math., 32, (1999), 157 - 163.

[27] V. Popa, Some generalized fixed point theorems for occasionally weakly compatible D - mappings, Sci. Stud. and Research, Ser. Math. Informatics, 19, 2, (2009), 403 - 414.

[28] V. Popa, A fixed point theorem for four compatible mappings in compact metric spaces, U. P. B. Bull. Ser. A, 63, 4, (2001), 43 - 46.

[29] V. Popa and M. Mocanu, A new viewpoint in the study of fixed points for mappings satisfying a contractive condition of integral type, Bul. Inst. Politeh. Iaşi, Sect. Mat. Mec. Teor. Fiz., 5, (2007), 269 - 272.

[30] B. E. Rhoades, Two fixed point theorems for mappings satisfying a general contractive condition of integral type, Intern. J. Math. Math. Sci., 15, (2005), 2359 - 2364.

[31] K. P. Sastri and G. V. R. Babu, *Fixed point theorems in metric spaces by altering distances*, Bull. Calcutta Math. Soc., 90, (1998), 175 - 182.

[32] K. P. Sastri and G. V. R. Babu, Some fixed point theorems by altering distances between points, Indian J. Pure Appl. Math., 30, (1999), 641 - 647.

[33] P. Viayaraju, B. E. Rhoades and R. Mohansaj, A fixed point theorem for pair of mappings satisfying a general contractive condition of integral type, Intern. J. Math. Math. Sci., 15, (2005), 2359 - 2364.

Valeriu Popa Department of Mathematics and Informatics Faculty of Sciences "Vasile Alecsandri" University of Bacău 157 Calea Mărăşeşti, Bacău, 600115, Romania email: *vpopa@ub.ro*

Alina-Mihaela Patriciu Department of Mathematics and Informatics Faculty of Sciences "Vasile Alecsandri" University of Bacău 157 Calea Mărăşeşti, Bacău, 600115, Romania email: *alina.patriciu@ub.ro*