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A PARTICULAR CLASS OF LINEAR AND POSITIVE STANCU -
TYPE OPERATORS

Adrian D. Indrea

Abstract. The object of this paper is to introduce a particular class of Stancu
- type operators, such that the test functions e0 and e1 are reproduced like in the
classical case of Berstein type operator. Also, in our approach we give two theorems
of error approximation and two Voronovskaja type theorems for this operators. Fi-
nally, we plot on the same graph the images generated for exponential function by
the particular operator and by the classical Stancu operator.
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1.Preliminaries

Let N be the set of positive integers and N0 = N ∪ {0}.
In this section, we recall some notions and results which we will use in this article
(see [8]).

We consider I ⊂ R, I an interval and we shall use the function sets: E(I),F (I)
which are subsets of the set of real functions defined on I, B(I) = {f |f : I → R, f
bounded on I}, C(I) = {f |f : I → R, f continuous on I} and CB(I) = B(I)∩C(I).
For x ∈ I, consider the function ψx : I → R, ψx(t) = t− x, for any t ∈ R.

Let a, b, a′, b′ be real numbers, I ⊂ R interval, a < b, a′ < b′, [a, b] ⊂ I, [a′, b′] ⊂ I,
and [a, b] ∩ [a′, b′] 6= φ. For any m ∈ N, consider the functions ϕm,k : I → R with
the property that ϕm,k(x) ≥ 0 for any x ∈ [a′, b′], for any k ∈ {0, 1, 2, ...,m} and
the linear positive functionals Am,k : E([a, b]) → R, for any k ∈ {0, 1, 2, ...,m}. For
m ∈ N, define the operator: Lm : E([a, b])→ F (I) by

(Lmf)(x) =

m∑
k=0

ϕm,k(x)Am,k(f), (1)

for any f ∈ E([a, b]), for any x ∈ I and for i ∈ N0, define T ∗m,i by

(T ∗m,iLm)(x) = mi(Lmψ
i
x)(x) = mi

m∑
k=0

ϕm,k(x)Am,k(ψ
i
x), (2)

for any x ∈ [a, b] ∩ [a′, b′].
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In the following, let s be a fixed natural number, s even and we suppose that the
operators (Lm)m≥0 verify the condition: there exists the smallest αs, αs+1 ∈ [0;∞)
so that

lim
m→∞

(T ∗m,jLm)(x)

mαj
= Bj(x) ∈ R, (3)

for any x ∈ [a, b] ∩ [a′, b′], j ∈ {s, s+ 2} and

αs+2 < αs + 2. (4)

If I ⊂ R is a given interval and f ∈ CB(I), then, the first order modulus of
smoothness of f is the function ω(f ; .) : [0;∞)→ R defined for any δ ≥ 0 by

ω(f ; δ) = sup{
∣∣f(x′)− f(x′′)

∣∣ : x′, x′′ ∈ I;
∣∣x′ − x′′∣∣ ≤ δ}.

In [8] were obtained the following results.

Proposition 0.1 For m ∈ N the Lm operator is linear and positive.

Theorem 0.1 Let f : [a, b] → R be a function. If x ∈ [a, b] ∩ [a′, b′] and f is a s
times derivable function in x, the function f (s) is continuous in x, then

lim
m→∞

ms−αs

[
(Lmf)(x)−

s∑
i=0

f (i)(x)

mii!
(T ∗m,iLm)(x)

]
= 0. (5)

If f is a s times differentiabile function on [a, b], the function f (s) is continuous
on [a, b] and there exists m(s) ∈ N and kj ∈ R so that for any natural number
m,m ≥ m(s) and for any x ∈ [a, b] ∩ [a′, b′] we have

(T ∗m,jLm)(x)

mαj
≤ kj , (6)

where j ∈ {s, s + 2}, then the convergence given in (5) is uniform on [a, b] ∩ [a′, b′]
and

ms−αs

∣∣∣∣∣(Lmf)(x)−
s∑
i=0

f (i)(x)

mii!
(T ∗m,iLm)(x)

∣∣∣∣∣ ≤ (7)

≤ 1

s!
(ks + ks+2)ω

(
f (s);

1√
m2+αs−αs+2

)
,

for any x ∈ [a, b] ∩ [a′, b′], for any natural number m,m ≥ m(s).
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For any f ∈ C([0, 1]), α, β ∈ R fixed, with 0 ≤ α < β, the Stancu operators are
defined by: (

P (α,β)
m f

)
(x) =

m∑
k=0

(
m

k

)
xk(1− x)m−kf

(
k + α

m+ β

)
(8)

for any m ∈ N and any x ∈ [0, 1].

Remark 0.1 For α = β = 0 in (8), we obtain Berstein’s operators.

In [5], the operator:

Sn,α,β(f, x) =

(
n+ β2
n

)n n∑
r=0

f

(
r + α1

n+ β1

)(
n

r

)(
x− α2

n+ β2

)r (n+ α2

n+ β2
− x
)n−r

(9)
is defined, where α2

n+β2
≤ x ≤ n+α2

n+β2
, and αk, βk, k ∈ {1, 2} are positive real numbers,

provided by 0 ≤ α2 ≤ α1 ≤ β1 ≤ β2.

Remark 0.2 Note that for n ∈ N, the variable x from (9) depends on n, being
situated in an interval depending on n.

We will consider the fixed real numbers α, β, with the property that
0 ≤ α < β. The following result is immediate.

Lemma 0.1 If m1,m2 ∈ N,m1 < m2, then α
m1+β

> α
m2+β

and[
α

m1 + β
;
m1 + α

m1 + β

]
⊂
[

α

m2 + β
;
m2 + α

m2 + β

]
(10)

In the following, let m0 ∈ N be fixed.

Lemma 0.2 We have that[
α

m0 + β
,
m0 + α

m0 + β

]
⊂
[

α

m+ β
,
m+ α

m+ β

]
(11)

for any m ∈ N and m ≥ m0.

Proof. It follows from (10).

Lemma 0.3 The following inequalities:

(m+ β)x− α ≥ 0 (12)

m+ α− (m+ β)x ≥ 0 (13)

hold for any m ∈ N,m ≥ m0 and any x ∈
[

α
m0+β

; m0+α
m0+β

]
.
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Proof. One applies Lemma 0.2.

Definition 0.1 For the function f : [0, 1] −→ R and m ∈ N,m ≥ m0, α, β ∈ R,

with 0 ≤ α ≤ β, we define the operator Q
(α,β)
m by:(

Q(α,β)
m f

)
(x) =

1

mm

m∑
k=0

(
m

k

)
((m+ β)x− α)k(m+ α− (m+ β)x)m−kf

(
k + α

m+ β

)
(14)

for any x ∈
[

α
m0+β

; m0+α
m0+β

]
These operators are studied by Braica P.I., Pop O.T., Bărbosu D. and Pişcoran L.
in [4].

2.Main results

Now, supose that α = 0. Then the operators from (14) become

(Qβmf)(x) =
1

mm

∑
k=0

m

(
m

k

)
((m+ β)x)k(m− (m+ β)x)m−kf

(
k

m+ β

)
(15)

for any m ∈ N,m ≥ m0 and any x ∈
[
0, m0

m0+β

]
.

Proposition 0.2 The operators (Qβm)m≥m0 are linear and positive.

Proof. It follows immediately from (15).

Remark 0.3 For β = 0 in (15), we obtain Berstein’s operators.

Lemma 0.4 For m ∈ N,m ≥ m0 and x ∈
[
0, m0

m0+β

]
we have

(Qβme0)(x) = 1 (16)

(Qβme1)(x) = x (17)

(Qβme2)(x) =
m− 1

m
x2 +

1

m+ β
x (18)

Lemma 0.5 For m ∈ N,m ≥ m0 and x ∈
[
0, m0

m0+β

]
, the following identities

(Tm,0 Q
β
m)(x) = 1 (19)

(Tm,1 Q
β
m)(x) = 0 (20)
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(Tm,2 Q
β
m)(x) = −mx2 +

m2

m+ β
(21)

(Tm,3 Q
β
m)(x) = (−2m3 + 2m)x3 − 3m2

m+ β
x2 +

m3

m+ β
x (22)

(Tm,4 Q
β
m)(x) = (3m2−6)x4+

−16m3 + 12m2

m+ β
x3+

3m4 − 7m3

(m+ β)2
x2+

m4

(m+ β)3
x (23)

hold.

Proof. We take (2) and Lemma 0.4 into account.

Theorem 0.2 Let f : [0, 1] −→ R be a function continuous on [0, 1]. Then, we have

lim
m−→∞

Qβmf = f (24)

uniformly on
[
0, m0

m0+β

]
and exists m∗ = max(m0,m(0)) so that

|(Qβmf)(x)− f(x)| ≤ 9

4
ω

(
f ;

1√
m

)
(25)

for any x ∈
[
0, m0

m0+β

]
, any m ∈ N,m ≥ m∗.

Proof. Using Theorem 0.1, for s = 0, and Lemma 0.5 are obtained immediately the
conclusions of the theorem.

Theorem 0.3 Let f : [0, 1] −→ R be a function s times differentiabile on [0, 1],
having s order derivate continuous on [0, 1].

Then, for s = 2 we have

lim
m−→∞

m((Qβmf)(x)− f(x)) =
x(1− x)

2
f (2)(x) (26)

uniformly on
[
0, m0

m0+β

]
and exists m∗ = max(m0,m(2),m(0)) so that

m
∣∣∣(Qβmf)(x)− f(x)

∣∣∣ ≤ 5

8
M +

39

32
ω

(
f (2),

1√
m

)
(27)

for any x ∈
[
0, m0

m0+β

]
, any m ∈ N,m ≥ m∗, where M = max

x∈[0,1]
|f (2)(x)|.

For s = 4 we have
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lim
m−→∞

m2

(
(Qβmf)(x)− f(x)− 1

2m

(
−x+

m

m+ β
x

)
f (2)(x)− (28)

− 1

6m3
f (2)(x)(Tm,3 Q

β
m)

)
=

=
3

24
(x(1− x))2f (4)(x),

for any x ∈
[
0, m0

m0+β

]
.

Proof. Is the same way using Theorem 0.1 and Lemma 0.5, we obtain immediately
the conclusions.

Remark 0.4 The relation (26), (28) are Voronovskaja type theorems.

3.Application

Next, using graphical representation, we will plot some graphs for this type of
polynomials.

We choose 0 = α < 3 = β and we compare the following polynomials:

(P 0,3
m f)(x) =

m∑
k=0

(
m

k

)
xk(1− x)m−kf

(
k

m+ 3

)
(29)

the classical Stancu polynomial, with:

(Q3
mf)(x) =

1

mm

m∑
k=0

(
m

k

)
((m+ 3)x)k(m− (m+ 3)x)m−kf

(
k

m+ 3

)
(30)

the Stancu polynomial of Berstein type. We fix m0 = 2. For m = 3, we plot
- with black f : [0, 1] −→ R, f(x) = exp(x)

- with red (P
(0,3)
3 exp(·))(x) = (1− x)3 + 3x(1− x)2exp

(
1
6

)
+ 3x2(1− x)·

·exp
(
2
6

)
+ x3exp

(
3
6

)
, for x ∈ [0, 1]

- with yellow (Q3
3exp(·))(x) = (1− 2x)3 + 2x(1− 2x)2exp

(
1
6

)
+ (2x)2·

·(1− 2x)exp
(
2
6

)
+ (2x)3

(
3
6

)
, for x ∈

[
0, 25
]
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We fix m0 = 2. For m = 4 we plot
- with black f : [0, 1] −→ R, f(x) = exp(x)

- with red (P
(0,3)
4 exp(·))(x) = (1− x)4 + 4x(1− x)3exp

(
1
7

)
+ 6x2·

·(1− x)2exp
(
2
7

)
+ 4x3(1− x)exp

(
3
7

)
+ x4exp

(
4
7

)
, for x ∈ [0, 1]

- with yellow (Q3
4exp(·))(x) = 1

256(4− 7x)4 + 1
256(7x)(4− 7x)3exp

(
1
7

)
+

+ 1
256(7x)2(4−7x)2exp

(
2
7

)
+ 1

256(7x)3(4−7x)exp
(
3
7

)
+ 1

256(7x)4exp
(
4
7

)
, for x ∈

[
0, 25
]
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