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THE ELASTICITY OF THE THIN AND PERIODIC OBLIQUE BARS

Camelia Gheldiu and Raluca-Mihaela Georgescu

Abstract. The homogenization of linear elasticity problem for a two-dimen-
sional domain of thin and periodic oblique bars which are periodic distributed is
studied. These structures depend by the ε-period and δ-parameter. Then the elas-
ticity coefficients are obtained.
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1. Introduction

The problem of the linear elasticity for oblique bars is an elliptical problem of the
second order in a perforated domain. To homogenize this problem first we make ε
tends to zero using L. Tartar’s variational method. The result is a limit problem
(named homogenized) which is set on a space domain without holes and has constant
coefficients. These coefficients are integrals on the cell of periodicity from the Y -
periodic correction functions, defined themselves on the periodicity cell. Because it
is a reticulated structure, these coefficients depend on the thickness δ of the material
from the periodicity cell.

In the literature was studied the homogenization of the linear elasticity for reti-
culated domain with different geometry (i.e. honeycomb, reinforced structure)

In this paper we make δ → 0. Our study is based on the dilatation method
where the integrals on domains of thick δ becomes integrals on a fixed domain.
Now, the parameter δ appears explicit in the integrals. The a-priori estimations
for the correction functions make possible the transition to limit δ → 0 in the
expression coefficients, finally obtaining homogenized coefficients which have the
same symmetry and elipticity property as elasticity coefficients of the perforated
material (named reinforced structure with oblique bars).
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1.1. The periodic structure Ωε,δ made from oblique bars.

Consider the open and bounded domain Ω = (0, l1) × (0, l2), the reference cell

Y =

(
−1

2
,
1

2

)
×
(
−1

2
,
1

2

)
, the periodicity cell Yδ = Hδ ∪ Vδ ∪Oδ, where

Hδ =

{
|y1| <

1

2
, |y2| <

δ

2

}

Vδ =

{
|y1| <

δ

2
, |y2| <

1

2

}
and the oblique bar Oδ has the height

√
2 and the width δ. In the figure 1 is

representing the periodicity cell Yδ.

Fig.1. The periodicity cell Yδ.

The periodicity cell Yδ is distributed in the domain Ω with the period ε and
along the OX1 axe and OX2, respectively. Thus it results the perforated domain
Ωεδ, which represent the domain from Ω occupied by the distributed material along
the bars with the width δ. In the figure 2 we represent the perforated domain Ωεδ

(named reticulated domain):

1.2. Setting the problem.

It is known that the problem of the linear elasticity for a domain Ωεδ is

− ∂

∂xj

(
aijkh

∂uεδk
∂xk

)
= fi in Ωεδ, i = 1, 2, uεδ = (uεδ1 , u

εδ
2 )

aijkh
∂uεδk
∂xk

· nj = 0 on ∂Tεδ (1)

uεδk = 0 on ∂Ω,
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Fig.2. The perforated domain Ωεδ

where aijkh are the elasticity constants and satisfy the conditions of symmetry and
elipticity
i) aijkh = aijhk = akhij , ∀i, j, k, h ∈ {1, 2}
ii) ∃C0 > 0 such that aijkhvijvkh ≥ C0vijvij , ∀ symmetric matrix vij ,

iii) f = (f1, f2) ∈
[
L2(Ω)

]2
.

Let be
Vεδ = {v ∈ H1(Ωεδ) | v = 0 on ∂Ω},

with the induced norm by the H1(Ωεδ).
According to Lax-Milgram theorem, (1) has unique solution uεδk ∈ Vεδ.

1.3. Basic results in the homogenization of the linear elasticity
problem from periodic domain.

By the L. Tartar’s variational method, if ε→ 0, we find
Theorem 1.1.[6] There exists an extension operator P εδ ∈ L

(
[Vεδ]

2; [H1
0 (Ω)]2

)
such that

P εδuεδ → uδ weakly in [H1
0 (Ω)]2,

where uδ is the solution of the problem

−qδijkh
∂2uδk
∂xj∂xh

=
meas Yδ
meas Y

fi in Ω

uδk = 0 on ∂Ω.

(2)
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The homogenization coefficients are defined by

qδijkh =

∫
Yγ

(
aijkh − aijpr

∂χkhδ,p
∂yr

)
dy (3)

The periodic corrector functions χkhδ = (χkhδ,1, χ
kh
δ,2) are given by

− ∂

∂yj

(
aijlm

∂(χkhδ,l − ykδhl)
∂ym

)
= 0 in Yδ

aijlm
∂(χkhδ,l − ykδhl)

ym
· nj = 0 on ∂Tδ (4)

χkhδ,l are Y − periodic.

2.Main results

In this paper we consider the isotropic material

aijkh = λδijδkh + µ(δikδjh + δihδjk), (5)

where λ and µ are Lamé constants.
In the following we consider δ → 0 and we homogenize the problem (2) using

the method from [4].
Theorem 2.1. For the reticulated structure Ωεδ, for δ → 0, the following con-

vergence holds:
uδ ⇀

δ→0
u∗ weakly in [H1

0 (Ω)]2, (6)

where u∗ is the solution of the limit problem

−q∗ijkh
∂2u∗k
∂xj∂xh

= (2 +
√

2)fi in Ω

u∗k = 0 on ∂Ω.

(7)

The homogenized coefficients q∗ijkl are symmetric and elliptic and have the form:

q∗1111 = q∗2222 = 2

(
2 +

√
2

2

)
µ
λ+ µ

λ+ 2µ

q∗1122 = q∗2211 =
√

2µ
λ+ µ

λ+ 2µ

q∗1212 = q∗1221 = q∗2112 = q∗2121 =
√

2µ
λ+ µ

λ+ 2µ
q∗ijkh = 0 in all the other cases

(8)
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Proof.
We have

meas Yδ = (2 +
√

2)δ(1− δ)

and the a priori estimation [3]

‖grad χkhδ ‖[L2(Yδ)]2×2 ≤ Cδ
1
2 , (9)

where C is a positive constant, which is independent of δ.
From (3) and (9) we obtain

δ−1qδijkh ⇀
δ→0

q∗ijkh. (10)

From (3) and the decomposition of Yδ in Yδ = Hδ ∪ Vδ ∪Oδ, we obtain

δ−1qδijkh = (2 +
√

2)(1− δ)aijkh −

−δ−1

∫
Hδ

+

∫
Vδ

+

∫
Oδ

−
∫
Kδ

(aijpr ∂χkhδ,p
∂yr

)
dy, (11)

where Kδ = Hδ ∩ Vδ ∩Oδ.
Due to the estimation (9) and to the relation meas Kδ ≤ Cδ2, we have

δ−1
∫
Kδ

aijpr
∂χkhδ,p
∂yr

dy ⇀
δ→0

0. (12)

Now, we make a rotation of angle −π
4

and thus, the oblique bar Oδ becomes the

horizontal bar Õδ defined by

Õδ =

{
(t1, t2) | |t1| ≤

√
2

2
, |t2| ≤

δ

2

}
.

Now, we apply the dilatation method [3], which consists in the dilatation of the
horizontal bar in the domain

Y0 =

(
−
√

2

2
,

√
2

2

)
×
(
−1

2
,
1

2

)
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with help of the transformation

z1 =

√
2

2
y1 +

√
2

2
y2 = t1

z2 = −
√

2

2δ
y1 +

√
2

2δ
y2 =

t2
δ

With the change of the function

ϕO

(√
2

2
y1 +

√
2

2
y2,−

√
2

2δ
y1 +

√
2

2δ
y2

)
= ϕO(z1, z2) = ϕ(y1, y2)

and using the estimation (9), we obtain the following weak convergence

∂
(
χkhδ
)
O

∂z1
⇀
δ→0

okh1 weakly in
[
L2(Y0)

]2
,

δ−1
∂
(
χkhδ
)
O

∂z2
⇀
δ→0

okh2 weakly in
[
L2(Y0)

]2
.

(13)

Applying, analogue, the dilatation method for the bars Hδ and Vδ, which, by

the corresponding transformations pass into the domain Y =

(
−1

2
,
1

2

)
×
(
−1

2
,
1

2

)
,

with the help of the estimation (9), we found the weak convergences:

∂
(
χkhδ
)
H

∂z1
⇀
δ→0

wkh1 weakly in
[
L2(Y )

]2
,

δ−1
∂
(
χkhδ
)
H

∂z2
⇀
δ→0

wkh2 weakly in
[
L2(Y )

]2
,

(14)

and

δ−1
∂
(
χkhδ
)
V

∂z1
⇀
δ→0

vkh1 weakly in
[
L2(Y )

]2
,

∂
(
χkhδ
)
V

∂z2
⇀
δ→0

vkh2 weakly in
[
L2(Y )

]2
,

(15)

where ϕH

(
y1,

y2
δ

)
= ϕ(y1, y2) and ϕV

(y1
δ
, y2

)
= ϕ(y1, y2) respectively.

Due to the Y -periodicity of the function χkhδ we have:∫
Y

wkh1,jdy = 0,

∫
Y

vkh2,jdy = 0 and

∫
Y0

okh1,jdy = 0, j ∈ {1, 2}. (16)
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Now consider the relation (11) for δ → 0, and, due to the convergences (10),
(13), (14), (15) and the relation (16), we find:

q∗ijkh = (2 +
√

2)aijkh − aij2r
∫
Y

wkh2,rdy − aij1r
∫
Y

vkh1,rdy

−
√

2

2
(−aij1r + aij2r)

∫
Y0

okh2,rdy. (17)

In the following we multiply the equation (4)1 with the test functions δ−1 (ϕ(y1, y2), 0),
respectively δ−1 (0, ϕ(y1, y2)), where

ϕ(y1, y2) = ϕ1(y1) · ϕ2(y2) · ϕ3

(
−
√

2

2
y1 +

√
2

2
y2

)
.

We consider the functions ϕ1 and ϕ2 periodic with the period equal 1, and the

function ϕ3 with the period
√
2
2 , therefore the function ϕ is Y -periodic. We integrate

by parts using the transformations of Hδ, Vδ, Oδ in Y , respectively Y0, then we
consider δ → 0. Thus, we obtain(

I1H +

√
2

2
I2H

)
ϕ2(0) +

(
I1V −

√
2

2
I2V

)
ϕ1(0) + I3H

(
∂ϕ2

∂y2

)
(0) +

+I3V

(
∂ϕ1

∂y1

)
(0) +

√
2

2

(
I1O + I2O

)
ϕ3(0) +

1

2

(
I3O − I4O

)(∂ϕ3

∂z

)
(0) = 0, (18)

where

I1H =

∫
Y

[ailp1w
kh
l,p − ai1kh]

∂

∂y1

[
ϕ1(y1)ϕ3

(
−
√

2

2
y1

)]
dy,

I2H =

∫
Y

[ailp2w
kh
l,p − ai2kh]ϕ1(z1)

(
∂ϕ3

∂z

)(
−
√

2

2
z1

)
dz,

I3H =

∫
Y

[ailp2w
kh
l,p − ai2kh]ϕ1(y1)ϕ3

(
−
√

2

2
y1

)
dy,

I1V =

∫
Y

[ailp2v
kh
l,p − ai2kh]

(
∂

∂y2

[
ϕ2(y2)ϕ3

(
−
√

2

2
y1 +

√
2

2
y2

)])
(0, z2)dz,
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I2V = −
∫
Y

[ailp1v
kh
l,p − ai1kh]ϕ2(z2)

(
∂ϕ3

∂z

)(√
2

2
z2

)
dz,

I3V =

∫
Y

[ailp1v
kh
l,p − ai1kh]ϕ2(z2)ϕ3

(√
2

2
z2

)
dz,

I1O =

∫
Y0

[
(ai1p1 + ai2p1)o

kh
1,p + (−ai1p1 + ai2p1)o

kh
2,p −

2√
2
ai1kh

]
·

·
(
ϕ2
∂ϕ1

∂y1

)(√
2

2
z1,

√
2

2
z1

)
dz,

I2O =

∫
Y0

[
(ai1p2 + ai2p2)o

kh
1,p + (−ai1p2 + ai2p2)o

kh
2,p −

2√
2
ai2kh

]
·

·
(
ϕ1
∂ϕ2

∂y2

)(√
2

2
z1,

√
2

2
z1

)
dz,

I3O =

∫
Y0

[
(ai1p1 + ai2p1)o

kh
1,p + (−ai1p1 + ai2p1)o

kh
2,p −

2√
2
ai1kh

]
·

·ϕ1

(√
2

2
z1

)
ϕ2

(√
2

2
z1

)
dz,

I4O =

∫
Y0

[
(ai1p2 + ai2p2)o

kh
1,p + (−ai1p2 + ai2p2)o

kh
2,p −

2√
2
ai2kh

]
·

·ϕ1

(√
2

2
z1

)
ϕ2

(√
2

2
z1

)
dz,

Let choose in relation (18) the functions ϕ1, ϕ2, ϕ3 such that ϕ1(0) = ϕ2(0) =

ϕ3(0) = 0 and
∂ϕ1

∂y1
6= 0,

∂ϕ2

∂y2
6= 0,

∂ϕ3

∂z
6= 0. Therefore, we obtain I3H = 0, I3V =

0, I3O − I4O = 0, and, thus,

ailp2

1
2∫

− 1
2

wkhl,pdy2 = ai2kh, ailp1

1
2∫

− 1
2

vkhl,pdy1 = ai1kh,
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(−ai1p1 − ai2p1 + ai1p2 + ai2p2)

1
2∫

− 1
2

okh1,pdz2+

+(ai1p1 − ai1p2 − ai2p1 + ai2p2)

1
2∫

− 1
2

okh2,pdz2 =
2√
2

(−ai1kh + ai2kh).

From the Y -periodicity we obtain:∫
Y

wkh1,pdy =

∫
Y

vkh2,pdy =

∫
Y0

okh1,pdy = 0, p ∈ {1, 2} (19)

ai2p2

∫
Y

wkh2,pdy = ai2kh, ai1p1

∫
Y

vkh1,pdy = ai1kh, (20)

(ai1p1 − ai1p2 − ai2p1 + ai2p2)

∫
Y

okh2,pdy = 2(−ai1kh + ai2kh). (21)

Replacing the relations (19), (20) and (21) in (17), we obtain the homogenization
coefficients (8).

From the dilatation method [3] we obtain the weak convergence (6).
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[7] El Otmani, S. Sac-Épée, J.M., Saint Jean Paulin, J., Study of a perforated
thin plate according to the relative sizes of this different parameters, Math. Meth.
in Appl. Sci., 18(1995), 571-589.

[8] Panasenko, G.P., Asymptotic solutions of the elasticity theory system of equa-
tions for lattice and skeletal structures, Math. Sbornic 183(1)(1992), 89-113 (in
Russian). (English translation: Acad. Sci. Sbornic Math. 75(1993), 1, 85-110).

Camelia Gheldiu
Department of Mathematics and Computer Science
University of Pitesti
Str. Tg. din Vale, No. 1, Pitesti, Arges, Romania, code 110040.
E-mail address: camelia.gheldiu@upit.ro

Raluca Mihaela Georgescu
Department of Mathematics and Computer Science
University of Pitesti
Str. Tg. din Vale, No. 1, Pitesti, Arges, Romania, code 110040.
E-mail address: raluca.georgescu@upit.ro

292


