THE HARDY-LITTLEWOOD-SOBOLEV INEQUALITY FOR GENERALIZED RIESZ POTENTIALS

HUSEYIN YILDIRIM AND MEHEMT ZEKI SARIKAYA

Abstract. In this study, the inequality of Hardy-Littlewood-Sobolev type is established for generalized Riesz potentials depending on the generalized λ-distance.

2000 Mathematics Subject Classification: 31C15, 44A15 and 47B37.

1. Introduction

It is well known that the Hardy-Littlewood-Sobolev inequality for the classical Riesz potential [9]. Çinar studied this inequality for Riesz potential with the kernel depending on λ-distance [2]. On the other hand, Yıldırım gave the Hardy-Littlewood-Sobolev inequality for the generalized Riesz potential generated by the generalized shift operator [13]. Different problems for convolution type integrals with the kernel depending on λ-distance were studied in [1]-[4],,[7],[10]-[12],[14],[16].

In this paper, we have defined the generalized Riesz potential generated by the λ-distance and the generalized shift operator, and we have studied the Hardy-Littlewood-Sobolev inequality for this potential.

Firstly we give some notations and definitions.
Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be positive numbers with $|\lambda|=\lambda_{1}+\lambda_{2}+\ldots+\lambda_{n}$ and for $R_{n}^{+}=\left\{x: x=\left(x_{1}, x_{2}, \ldots, x_{n}\right), x_{1}>0, x_{2}>0, \ldots, x_{n}>0\right\}, x, y \in R_{n}^{+}$

$$
\begin{equation*}
|x-y|_{\lambda}:=\left(\left|x_{1}-y_{1}\right|^{\frac{1}{\lambda_{1}}}+\left|x_{2}-y_{2}\right|^{\frac{1}{\lambda_{2}}}+\ldots+\left|x_{n}-y_{n}\right|^{\frac{1}{\lambda_{n}}}\right)^{\frac{|\lambda|}{n}} . \tag{1}
\end{equation*}
$$

The expression $|x-y|_{\lambda}$ is called the λ-distance between the points x and y. It can be seen that for $\lambda_{i}=\frac{1}{2}, i=1,2, \ldots, n$ the λ-distance become ordinary Euclidean distance $|x-y|$. For a positive number ρ and $x \in R_{n}^{+}$define $\rho^{\lambda} x=\left(\rho^{\lambda_{1}} x_{1}, \ldots, \rho^{\lambda_{n}} x_{n}\right)$. Then we have

1. $|x|_{\lambda}=0 \Longleftrightarrow x=\theta$
2. $\left|\rho^{\lambda} x\right|=\rho^{\frac{|\lambda|}{n}}|x|_{\lambda}$
3. $|x-y|_{\lambda} \leq C\left(|x|_{\lambda}+|y|_{\lambda}\right)$
where $C=2^{\left(1+\frac{1}{\lambda_{\text {min }}}\right) \frac{|\lambda|}{n}}, \lambda_{\text {min }}=\min \left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$.
It is known the generalized shift operator the following equality

$$
\begin{aligned}
T_{x_{1}, \ldots, x_{n}}^{y} f(x): & =\left[\prod_{i=1}^{n} \frac{\Gamma\left(\nu_{i}+\frac{1}{2}\right)}{\Gamma\left(\nu_{i}\right) \Gamma\left(\frac{1}{2}\right)}\right] \int_{0}^{\pi} \ldots \int_{0}^{\pi} f\left(\sqrt{x_{1}^{2}+y_{1}^{2}-2 x_{1} y_{1} \cos \varphi_{1}}, \ldots\right. \\
& \left.\ldots, \sqrt{x_{n}^{2}+y_{n}^{2}-2 x_{n} y_{n} \cos \varphi_{n}}\right)\left(\prod_{i=1}^{n} \sin ^{2 \nu_{i}-1} \varphi_{i} d \varphi_{i}\right)
\end{aligned}
$$

as in [5], [8], [13], [15].
Now we define the generalized translation operator generated by the generalized λ-distance and the generalized shift operator as

$$
\begin{align*}
\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda}:= & C_{\nu} \int_{0}^{\pi} \ldots \int_{0}^{\pi}\left[\left(x_{1}^{2}+y_{1}^{2}-2 x_{1} y_{1} \cos \varphi_{1}\right)^{\frac{1}{2 \lambda_{1}}}+\ldots\right. \\
& \left.+\left(x_{n}^{2}+y_{n}^{2}-2 x_{n} y_{n} \cos \varphi_{n}\right)^{\frac{1}{2 \lambda_{n}}}\right]^{\frac{|\lambda|}{n}}\left(\prod_{i=1}^{n} \sin ^{\frac{\nu_{i}}{\lambda_{i}}-1} \varphi_{i} d \varphi_{i}\right) \tag{2}
\end{align*}
$$

where $C_{\nu}=\pi^{-\frac{n}{2}}\left[\prod_{i=1}^{n} \frac{\Gamma\left(\frac{\nu_{i}+\lambda_{i}}{2 \lambda_{i}}\right)}{\Gamma\left(\frac{\nu_{i}}{2 \lambda_{i}}\right)}\right], \nu_{1}>0, \nu_{2}>0, \ldots, \nu_{n}>0$ and $|\nu|=\nu_{1}+\nu_{2}+\ldots+\nu_{n}$. In the equality (2) if we take $\lambda_{i}=\frac{1}{2}, i=1,2, \ldots, n$, we obtained the generalized shift operator which is given in $[6],[13],[15]$.
$L_{p, \nu, \lambda}:=L_{p, \nu, \lambda}\left(R_{n}^{+}\right)$is defined with respect to the Lebesque- Stieljes measure $\left(\prod_{i=1}^{n} x_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d x$ (It is clear the Lebesque- Stieljes mesure is no invariant in translation. But we never are using such as properties of measure) as follows [13],[15]:

$$
L_{p, \nu, \lambda}=L_{p, \nu, \lambda}\left(R_{n}^{+}\right)=\left\{f:\|f\|_{p, \nu, \lambda}=\left(\int_{R_{n}^{+}}|f(x)|^{p}\left(\prod_{i=1}^{n} x_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d x\right)^{\frac{1}{p}}<\infty\right\}, 1 \leq p<\infty
$$

We also define $B_{\nu, \lambda}-$ convolution operator as

$$
(f * K)(x):=\int_{R_{n}^{+}} f(y)\left(T_{x}^{y}\right)_{\lambda} K(x)\left(\prod_{i=1}^{n} y^{\frac{\nu_{i}}{\lambda_{i}}}\right) d x
$$

Now we define the following $B_{\nu, \lambda}$-convolution type operator which is obtained by the λ-distance and the generalized shift operator:

$$
\begin{equation*}
\left(I_{\nu, \lambda}^{\alpha} f\right)(x):=\int_{R_{n}^{+}} f(y) T_{x}^{y}\left(|x|^{\alpha-\frac{n}{|\lambda|}(|\lambda|+|\nu|)}\right)\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y, \quad 0<\alpha<\frac{n(|\lambda|+|\nu|)}{|\lambda|} . \tag{3}
\end{equation*}
$$

$I_{\nu, \lambda}^{\alpha} f$ is called a generalized Riesz Potentials generated by the λ-distance and the generalized shift operator. For $\lambda_{i}=\frac{1}{2}, i=1,2, \ldots, n$, we have the Riesz Potential generated by the generalize shift operator which is given in [5],[13],[15]. It can be seen that for $\lambda_{i}=\frac{1}{2}$ and $\varphi_{i}=1, \quad i=1,2, \ldots, n$ the generalized Riesz potential generated by the λ-distance and the generalized shift operator become the classical Riesz potential. We show that the generalized Riesz potential generated by the λ-distance and the generalized shift operator has a weak (p, q)-type for some p and q in the sense of [9]. It means, there exist a positive constant $C_{p, q, \nu, \lambda}$ independent on function f such that for any $\beta>0$ the inequality

$$
\begin{equation*}
\operatorname{mes}\left\{x:\left|\left(I_{\nu, \lambda}^{\alpha} f\right)(x)\right|>\beta\right\} \leq\left(C_{p, q, \nu, \lambda} \frac{\|f\|_{p, \nu, \lambda}}{\beta}\right)^{q} \tag{4}
\end{equation*}
$$

is hold. Here, mes $E:=\int_{E}\left(\prod_{i=1}^{n} x_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d x, E \subset R_{n}^{+}$.
In this study, we consider spherical coordinates by the following formulas:

$$
x_{1}=\left(\rho \cos \varphi_{1}\right)^{2 \lambda_{1}}, \ldots, x_{n}=\left(\rho \sin \varphi_{1} \sin \varphi_{2} \ldots \sin \varphi_{n-1}\right)^{2 \lambda_{n}}
$$

we obtained that $|x|_{\lambda}=\rho^{\frac{2|\lambda|}{n}}$. It can be seen that the Jacobian $J(\rho, \varphi)$ of this transformation is $J(\rho, \varphi)=\rho^{2|\lambda|-1} \Omega(\varphi)$, where $\Omega(\varphi)$ is the bounded function, which depend only on angles $\varphi_{1}, \varphi_{2}, \ldots, \varphi_{n-1}$.

Lemma 1. There are the following properties for the $\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda}$,
i. $\left(T_{x}^{y}\right)_{\lambda} \cdot 1=1$
ii. $\left.\left.\left|\left(T_{x}^{y}\right)_{\lambda}\right| x\right|_{\lambda}\right|^{p} \leq\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda}^{p}, \frac{1}{p}+\frac{1}{p^{\prime}}=1, \quad 1<p<\infty$.

Proof: i. From the definition of $\left(T_{x}^{y}\right)_{\lambda}$ and equality

$$
\int_{0}^{\pi} \sin ^{\frac{\nu_{i}}{\lambda_{i}}-1} \varphi_{i} d \varphi_{i}=\frac{\Gamma\left(\frac{\nu_{i}}{2 \lambda_{i}}\right) \Gamma\left(\frac{1}{2}\right)}{\Gamma\left(\frac{\nu_{i}}{2 \lambda_{i}}+\frac{1}{2}\right)}
$$

we have

$$
\left(T_{x}^{y}\right)_{\lambda} \cdot 1=C_{\nu} \int_{0}^{\pi} \ldots \int_{0}^{\pi}\left(\prod_{i=1}^{n} \sin ^{\frac{\nu_{i}}{\lambda_{i}}-1} \varphi_{i} d \varphi_{i}\right)=C_{\nu} \cdot \frac{1}{C_{\nu}}=1
$$

ii. From Hölder's inequality and (i), we have

$$
\begin{aligned}
& \left.\left.\left|\left(T_{x}^{y}\right)_{\lambda}\right| x\right|_{\lambda}\right|^{p}=\left|C_{\nu} \int_{0}^{\pi} \ldots \int_{0}^{\pi} \Psi(x, y, \alpha)\left(\prod_{i=1}^{n} \sin ^{\frac{\nu_{i}}{\lambda_{i}}-1} \varphi_{i} d \varphi_{i}\right)\right|^{p} \\
& \leq\left(C_{\nu} \int_{0}^{\pi} \ldots \int_{0}^{\pi} \Psi^{p}(x, y, \alpha)\left(\prod_{i=1}^{n} \sin ^{\frac{\nu_{i}}{\lambda_{i}}-1} \varphi_{i} d \varphi_{i}\right)\right)\left(C_{\nu} \int_{0}^{\pi} \ldots \int_{0}^{\pi}\left(\prod_{i=1}^{n} \sin ^{\frac{\nu_{i}}{\lambda_{i}}-1} \varphi_{i} d \varphi_{i}\right)\right)^{\frac{p}{p^{\prime}}} \\
& \leq\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda}^{p}
\end{aligned}
$$

where $\Psi(x, y, \alpha)=\left[\left(x_{1}^{2}+y_{1}^{2}-2 x_{1} y_{1} \cos \varphi_{1}\right)^{\frac{1}{2 \lambda_{1}}}+\ldots .+\left(x_{n}^{2}+y_{n}^{2}-2 x_{n} y_{n} \cos \varphi_{n}\right)^{\frac{1}{2 \lambda_{n}}}\right]^{\frac{|\lambda|}{n}}$.
Remark 1. Let $x_{i}, y_{i} \in R^{+}, i=1,2, \ldots, n$. In this case there is the following inequality for the generalized translation operator generated by the λ-distance and the generalized shift operator.

$$
\begin{aligned}
& \left(x_{i}-y_{i}\right)^{2} \leq x_{i}^{2}+y_{i}^{2}-2 x_{i} y_{i} \cos \varphi_{i} \leq\left(x_{i}+y_{i}\right)^{2} \\
& \left|x_{i}-y_{i}\right|^{\frac{1}{\lambda_{i}}} \leq\left(x_{i}^{2}+y_{i}^{2}-2 x_{i} y_{i} \cos \varphi_{i}\right)^{\frac{1}{2 \lambda_{i}}} \leq\left(x_{i}+y_{i}\right)^{\frac{1}{\lambda_{i}}} \\
& |x-y|_{\lambda} \leq\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda} \leq|x+y|_{\lambda}
\end{aligned}
$$

where $\varphi_{i} \in[0, \pi]$.
Now, we prove the following Hardy-Littlewood-Sobolev type theorem for potential $I_{\nu, \lambda}^{\alpha} f$.

Theorem 1. Let $1 \leq p<q<\infty, 2^{\left(1+\frac{1}{\lambda_{\min }}\right) \frac{|\lambda|}{n}+1}|x|_{\lambda} \leq|y|_{\lambda}$ and $\frac{1}{q}=\frac{1}{p}-$ $\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}$.
a. If $f \in L_{p, \nu, \lambda}\left(R_{n}^{+}\right)$, then $I_{\nu, \lambda}^{\alpha} f$ is absolutely convergent almost everywhere.
b. If $p>1$, then

$$
\begin{equation*}
\left\|I_{\nu, \lambda}^{\alpha} f\right\|_{q, \nu, \lambda} \leq C_{\alpha}(p, q, \nu, \lambda)\|f\|_{p, \nu, \lambda} \tag{5}
\end{equation*}
$$

c. If $f \in L_{p, \nu, \lambda}\left(R_{n}^{+}\right)$, then $I_{\nu, \lambda}^{\alpha} f$ has weak $(1, q)$-type, where $q=1-\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}$.

Proof . First we assume that $K(x)=|x|^{\alpha-\frac{n}{|\lambda|}(|\nu|+|\lambda|)}$. Let us decompose K as $K_{1}+K_{\infty}$, where

$$
K_{1}(x)=\left\{\begin{array}{ll}
K(x) & \text { if }|x|_{\lambda} \leq \mu \\
0 & \text { if }|x|_{\lambda}>\mu
\end{array}, K_{\infty}(x)=\left\{\begin{array}{lll}
K(x) & \text { if }|x|_{\lambda}>\mu \\
0 & \text { if }|x|_{\lambda} \leq \mu
\end{array}\right.\right.
$$

and μ is a fixed positive constant which need not be specified. It is obvious that

$$
\begin{align*}
\left(I_{\nu, \lambda}^{\alpha} f\right)(x) & =\int_{R_{n}^{+}} f(y)\left(T_{x}^{y}\right)_{\lambda} K(x)\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y \\
& =\int_{R_{n}^{+}} f(y)\left(T_{x}^{y}\right)_{\lambda} K_{1}(x)\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y \tag{6}\\
& +\int_{R_{n}^{+}} f(y)\left(T_{x}^{y}\right)_{\lambda} K_{\infty}(x)\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y \\
& =I_{1}(x)+I_{2}(x) .
\end{align*}
$$

If we apply the Hölder inequality to $I_{1}(x)$ with $p p^{\prime}=p+p^{\prime}$, then we obtain the following inequality

$$
\begin{equation*}
\int_{R_{n}^{+}} I_{1}^{p}(x)\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y \leq\left\|\left(T_{x}^{y}\right)_{\lambda} K_{1}\right\|_{1, \nu, \lambda}^{\frac{p+p^{\prime}}{p}}\|f\|_{p, \nu, \lambda}^{p} . \tag{7}
\end{equation*}
$$

However, we obtain the following inequality for $\left\|\left(T_{x}^{y}\right)_{\lambda} K_{1}\right\|_{1, \nu, \lambda}$ by the Remark 1 and $2^{\left(1+\frac{1}{\lambda_{\text {min }}}\right) \frac{|\lambda|}{n}+1}|x|_{\lambda} \leq|y|_{\lambda}$.

$$
\begin{align*}
\left\|\left(T_{x}^{y}\right)_{\lambda} K_{1}\right\|_{1, \nu, \lambda} & =\int_{|y|_{\lambda} \leq \mu}\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda}^{\alpha-\frac{n}{|\lambda|}(|\nu|+|\lambda|)}\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y \\
& \leq \int_{|y| \lambda \leq \mu}|x-y|_{\lambda}^{\alpha-\frac{n}{|\lambda|}(|\nu|+|\lambda|)}\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y \tag{8}\\
& \leq C_{1} \int_{|y| \lambda \leq \mu}|y|_{\lambda}^{\alpha-\frac{n}{|\lambda|}(|\nu|+|\lambda|)}\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y \leq C_{2} \mu^{2|\lambda| \frac{\alpha}{n}}
\end{align*}
$$

where C_{2} is a constant depending on the $\Omega(\varphi)$ with respect to angles coordinates, α and λ. Since $f \in L_{p, \nu, \lambda}\left(R_{n}^{+}\right)$and $\left\|\left(T_{x}^{y}\right)_{\lambda} K_{1}\right\|_{1, \nu, \lambda}<\infty$ we have

$$
\begin{equation*}
\left\|I_{1}\right\|_{p, \nu, \lambda} \leq C_{2} \mu^{2|\lambda| \frac{\alpha}{n}}\|f\|_{p, \nu, \lambda}<\infty . \tag{9}
\end{equation*}
$$

The integral I_{2} may be direct calculated by the Hölder inequality. Then we have

$$
\begin{equation*}
\left|I_{2}\right| \leq\left\|\left(T_{x}^{y}\right)_{\lambda} K_{\infty}\right\|_{p^{\prime}, \nu, \lambda}\|f\|_{p, \nu, \lambda} . \tag{10}
\end{equation*}
$$

where $p^{\prime}=\frac{p}{p-1}$. Moreover, $\left(\alpha-\frac{n}{|\lambda|}(|\nu|+|\lambda|)\right) p^{\prime}<-\frac{n}{|\lambda|}(|\nu|+|\lambda|)$ is equivalent to $q<\infty$ by $\frac{1}{q}=\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\nu|+\lambda \mid)}$. Now we show that $\left\|\left(T_{x}^{y}\right)_{\lambda} K_{\infty}\right\|_{p^{\prime}, \nu, \lambda}$ is finite. We have the following inequality by Lemma and Remark 1

$$
\begin{aligned}
\left\|\left(T_{x}^{y}\right)_{\lambda} K_{\infty}\right\|_{p^{\prime}, \nu, \lambda} & =\left(\int_{|y| \lambda>\mu}\left[\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda}^{\alpha-\frac{n}{|\lambda|}(|\nu|+|\lambda|)}\right]^{p^{\prime}}\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y\right)^{\frac{1}{p^{\prime}}} \\
& \leq\left(\int_{|y|_{\lambda}>\mu}\left(T_{x}^{y}\right)_{\lambda}|x|_{\lambda}^{\left(\alpha-\frac{n}{|\lambda|}(|\nu|+|\lambda|)\right) p^{\prime}}\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y\right)^{\frac{1}{p^{\prime}}} \\
& \leq\left(\int_{|y| \lambda>\mu}|x-y|_{\lambda}^{\left(\alpha-\frac{n}{\mid \lambda}(|\nu|+|\lambda|)\right) p^{\prime}}\left(\prod_{i=1}^{n} y_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d y\right)^{\frac{1}{p^{\prime}}} \\
& \leq C_{3}\left(\left.\left[\rho^{2 p^{\prime} \frac{|\lambda|}{n}\left[\alpha-\frac{n(|\nu|+|\lambda|)}{|\lambda| p}\right]}\right]\right|_{\mu} ^{\infty}\right)^{\frac{1}{p^{\prime}}} .
\end{aligned}
$$

Thus we get $\left\|\left(T_{x}^{y}\right)_{\lambda} K_{\infty}\right\|_{p^{\prime}, \nu, \lambda}<\infty$ by hypothesis

$$
\frac{n}{|\lambda|}(|\nu|+|\lambda|)\left(\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}-\frac{1}{p}\right)<0
$$

This means that I_{2} is also finite. Note that the last inequality follows from $\frac{1}{q}=$ $\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}$. From (6), (9) and (10) it follows that $I_{\nu, \lambda}^{\alpha} f$ is finite almost everywhere. Thus the part (a) of theorem is proved.

Now we prove the part (c). Obviously, it is sufficient to prove this fact in case $\|f\|_{p, \nu, \lambda}=1$ and with 2β replace β in (4).

Since $\left(I_{\nu, \lambda}^{\alpha} f\right)(x)=I_{1}(x)+I_{2}(x)$ in view of (6) we have the inequality

$$
\begin{equation*}
\operatorname{mes}\left\{x:\left|\left(I_{\nu, \lambda}^{\alpha} f\right)(x)\right|>2 \beta\right\} \leq \operatorname{mes}\left\{x:\left|I_{1}(x)\right|>\beta\right\}+\operatorname{mes}\left\{x:\left|I_{2}(x)\right|>\beta\right\} . \tag{11}
\end{equation*}
$$

Consider the right side of (11) inequality. Denoting $E_{1}=\left\{x:\left|I_{1}(x)\right|>\beta\right\}$, then we see that

$$
\begin{equation*}
m e s\left\{x:\left|I_{1}(x)\right|>\beta\right\} \leq \int_{E_{1}}\left(\frac{\left|I_{1}(x)\right|}{\beta}\right)^{p}\left(\prod_{i=1}^{n} x_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d x . \tag{12}
\end{equation*}
$$

Applying the generalized Minkowsky inequality and using the definition of the kernel $K_{1}(x)$ we obtain

$$
\int_{E_{1}}\left(\frac{\left|I_{1}(x)\right|}{\beta}\right)^{p}\left(\prod_{i=1}^{n} x_{i}^{\frac{\nu_{i}}{\lambda_{i}}}\right) d x \leq C_{4} \mu^{2 \alpha \frac{|\lambda|}{n} p}
$$

where C_{4} is a constant depending on p, ν, λ, α. Using this inequality in (12) we have

$$
\begin{equation*}
\operatorname{mes}\left\{x:\left|I_{1}(x)\right|>\beta\right\} \leq C_{4}\left(\frac{\mu^{2 \alpha \frac{|\lambda|}{n}}}{\beta}\right)^{p} \tag{13}
\end{equation*}
$$

Consider the second term in (11). Let $E_{2}=\left\{x:\left|I_{2}(x)\right|>\beta\right\}$. Applying the Hölder inequality we see that the inequality

$$
\left|I_{2}(x)\right| \leq\left\|K_{\infty}\right\|_{p^{\prime}, \nu, \lambda}\|f\|_{p, \nu, \lambda}=C_{5} \mu^{-n \frac{|\lambda|+|\nu|}{q}} .
$$

Therefore choosing $\mu=\left(C_{5}^{-1} \beta\right)^{-\frac{q}{n(|\lambda|+| | \nu)}}$, then for all $x \in R_{n}^{+}\left|I_{1}(x)\right| \leq \infty$ and so $\operatorname{mes}\left\{x:\left|I_{2}(x)\right|>\beta\right\}=0$. By (11) and (13), we have

$$
\operatorname{mes}\left\{x:\left|\left(I_{\nu, \lambda}^{\alpha} f\right)(x)>2 \beta\right|\right\} \leq C_{5}\left(\frac{\|f\|_{p, \nu, \lambda}}{\beta}\right)^{q} .
$$

where C_{5} is a constant depending on p, q, ν, λ and α. Consequently, under condition $1 \leq p<q<\infty, \frac{1}{q}=\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\nu|+\lambda \mid)},\left(I_{\nu, \lambda}^{\alpha} f\right)(x)$ has a weak (p, q)-type.
b. To prove this part we use the Marcinkiewicz interpolation theorem [1]. By part (c) the operator $I_{\nu, \lambda}^{\alpha} f$ is the weak type- (p, q) where $\frac{1}{q}=\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}$. In special case $p=1$ this operator is the weak type- $(1, q)$ where $\frac{1}{q}=1-\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}$. Using the Marcinkiewicz interpolation theorem between $\left(p_{0}, q_{0}\right)$ and (p_{1}, q_{1}) where

$$
p_{0}=1, q_{0}=\left(1-\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}\right)^{-1}, p_{1}=p_{1}, q_{1}=\left(\frac{1}{p_{1}}-\frac{n(|\nu|+|\lambda|)}{\alpha|\lambda|}\right)^{-1} .
$$

We have that for potential $I_{\nu, \lambda}^{\alpha} f$ holds (5) and $\frac{1}{q}=\frac{1}{p}+\frac{\alpha|\lambda|}{n(|\nu|+|\lambda|)}$. The proof is completed.

Remark 2. The conditions $1 \leq p<q<\infty$ and $\frac{1}{q}=\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\nu|+\lambda \mid \lambda)}$ are also the necessary for (5). To prove this we assume that (5) holds for every function $f \in L_{p, \nu, \lambda}\left(R_{n}^{+}\right)$and consider the dilation operator $\Im_{\rho^{\lambda}}$ defined by

$$
\Im_{\rho^{\lambda}}(f)(x):=f\left(\rho^{\lambda} x\right), \rho>0
$$

where $\rho^{\lambda} x=\left(\rho^{\lambda_{1}} x_{1}, \rho^{\lambda_{2}} x_{2}, \ldots, \rho^{\lambda_{n}} x_{n}\right)$ and $x, y \in R_{n}^{+}$. Then simple calculation show that
I. $\Im_{\rho^{-\lambda}}\left[I_{\nu, \lambda}^{\alpha} \Im_{\rho^{\lambda}} f\right](x)=\rho^{-\alpha \frac{|\lambda|}{n}} I_{\nu, \lambda}^{\alpha} f(x)$
II. $\left\|\Im_{\rho^{\lambda}} f\right\|_{p, \nu, \lambda}=\rho^{-\frac{|\lambda|+|\nu|}{p}}\|f\|_{p, \nu, \lambda}$
III. $\left\|\Im_{\rho^{-\lambda}}^{\alpha} I_{\nu, \lambda}^{\alpha} f\right\|_{q, \nu, \lambda}=\rho^{\frac{|\lambda|+|\nu|}{q}}\left\|I_{\nu, \lambda}^{\alpha} f\right\|_{q, \nu, \lambda}$.

Hence, we have

$$
\begin{aligned}
\left\|\Im_{\rho^{-\lambda}}^{-\alpha \frac{|\lambda|}{n}} I_{\nu, \lambda}^{\alpha} f\right\|_{q, \nu, \lambda} & =\left\|\Im_{\rho^{-\lambda}}\left[I_{\nu, \lambda}^{\alpha} \Im_{\rho^{\lambda}} f\right]\right\|_{q, \nu, \lambda} & & \text { from } I \\
& =\rho^{\frac{|\lambda|+|\nu|}{q}}\left\|I_{\nu, \lambda}^{\alpha} \Im_{\rho^{\lambda}} f\right\|_{q, \nu, \lambda} & & \text { from III } \\
& \leq C_{\alpha}(p, q, \nu, \lambda) \rho^{\left.\frac{|\lambda|+|\nu\rangle}{q} \right\rvert\,}\left\|\Im_{\rho^{\lambda}} f\right\|_{q, \nu, \lambda} & & \text { from(5) } \\
& \leq C_{\alpha}(p, q, \nu, \lambda) \rho^{\frac{|\lambda|+|\nu|}{q}} \rho^{-\frac{|\lambda|+|\nu|}{p}}\|f\|_{q, \nu, \lambda} & & \text { from II }
\end{aligned}
$$

and so

$$
\begin{equation*}
\left\|I_{\nu, \lambda}^{\alpha} f\right\|_{q, \nu, \lambda} \leq C_{\alpha}(p, q, \nu, \lambda) \rho^{\frac{\alpha|\lambda|}{n}+(|\lambda|+|\nu|)\left(\frac{1}{q}-\frac{1}{p}\right)}\|f\|_{p, \nu, \lambda} . \tag{14}
\end{equation*}
$$

The contradiction, which can be obtained from this inequality when
$\rho \rightarrow 0\left(\right.$ if $\left.\frac{1}{q}>\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\lambda|+|\nu|)}\right)$ and when $\rho \rightarrow \infty\left(\right.$ if $\left.\frac{1}{q}<\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\lambda|+|\nu|)}\right)$.
Show that (5) holds only for if $\frac{1}{q}=\frac{1}{p}-\frac{\alpha|\lambda|}{n(|\lambda|+|\nu|)}$. Note that (5) does not hold for $p=q$. Really from the (14) it may be see that in the case $p=q$

$$
\left\|I_{\nu, \lambda}^{\alpha} f\right\|_{q, \nu, \lambda} \leq C_{\alpha}(p, q, \nu, \lambda) \rho^{\frac{\alpha|\lambda|}{n}}\|f\|_{p, \nu, \lambda} .
$$

But this is possible only when $\alpha=0$. That is the potential $I_{\nu, \lambda}^{0}$ can not acting from $L_{p, \nu, \lambda}\left(R_{n}^{+}\right)$to $L_{q, \nu, \lambda}\left(R_{n}^{+}\right)$.

References

[1] O.V. Besov, V.P. Il'in and P.I. Lizorkin, The L ${ }^{p}$ Estimates of a certain class of non-isotropic singular integrals, Dok. Akad. Nauk. SSSR, 69(1960), pp,12501253.
[2] I. Çinar, The Hardy-Littewood Sobolev inequality for non-isotropic Riesz potentials, Turkish J. Math. No: 2, 21(1997) 153-157.
[3] I. Çınar, The (p, q, l)-properties of a generalized Riesz potential, App.Math. and Comp., Volume 153, Issue 3, 14 June 2004, Pages 751-755.
[4] I.Çinar, The Hardy-Littewood Sobolev inequality (β, γ)-distance Riesz potentials, App. Math. Comp. 153(2004), 757-762.
[5] A. D. Gadjiev and I. A. Aliev, Riesz and Bessel potentials generated by the generalized Shift operators and its inversion. In Theory of function and approximation (Proc. IV.Math. Conferences, Saratova-1988), Printed in Saratov Univ. 1990, pp,43-53
[6] B. M. Levitan, Expansion in Fourier Series and integrals with Bessel Function, Uspeki Math. Nauka (N.S) 6, no:2(42), 1951, 102-143 (in Russian) Math. Reviews, Vol.14, no:1, January 1953, pp. 163
[7] P. I. Lizorkin, Multipliers of Fourier integrals and bounds of convolution in spaces with mixed norms, Aplications Izv. Akad. Nauk.SSSR Ser.Mat. Tom VI(1970), English Translated Math. Izvestion. Vol.4(1970), N1.pp.225-255
[8] J. Löfström and J. Pectre, Approximation theorem connected with generalized translations, Mat.Ann. Vol.181(1969), pp.255-268.
[9] E.M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton, New Jersey, Princeton University press, 1971.
[10] M. Z. Sarikaya and H. Yıldırım, The Restriction and the Continuity Properties of Potentials Depending On λ-Distance, Turk. J. Math.Vol. 30(3), 263-275,2006.
[11] M. Z. Sarikaya and H. Yıldırım, On the β-spherical Riesz potential generated by the β-distance, Int. Jour. of Contemp. Math. Sci., Vol. 1,2006, no. 1-4, 85 89.
[12] M. Z. Sarikaya and H. Yıldırım, On the non-isotropic fractional integrals generated by the λ-distance, Selçuk Journal of Appl. Math. Vol. 1, 2006.
[13] H. Yıldırım, Riesz Potentials Generated a Generalized shift operator, Ph.D.thesis (Ankara University)1995.
[14] H. Yıldırım, On the Non-Isotropic Distance, Afyon Kocatepe University Journal of Science Vol.4(1-2)(2004), pp.119-126.
[15] H. Yıldırım and M. Z. Sarikaya, On the generalized Riesz type potentials, Jour. Inst. Math. Comput. Sci., Math. Ser. 14, No.3, 217-224 (2001).
[16] H. Yıldırım, On generalization of the quasi homogeneous Riesz potential, Turk. J. Math., 29, (2005), 381-387.

Huseyin Yildirim
Department of Mathematics
University of Sütçü İmam
Kahramanmaraş, Turkey
email: hyildir@ksu.edu.tr

Mehmet Zeki Sarikaya
Department of Mathematics
H. Yildirim, M. Z. Sarikaya -The Hardy-Littlewood-Sobolev Inequality ...

University of Düzce
Düzce, Turkey
email: sarikayamz@gmail.com

