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ABSTRACT. In this study, the inequality of Hardy-Littlewood-Sobolev type is
established for generalized Riesz potentials depending on the generalized A—distance.
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1. INTRODUCTION

It is well known that the Hardy-Littlewood-Sobolev inequality for the classi-
cal Riesz potential [9]. Cmar studied this inequality for Riesz potential with the
kernel depending on A—distance [2]. On the other hand, Yildirim gave the Hardy-
Littlewood-Sobolev inequality for the generalized Riesz potential generated by the
generalized shift operator [13]. Different problems for convolution type integrals
with the kernel depending on A—distance were studied in [1]-[4],[7],[10]-[12],[14],[16].

In this paper, we have defined the generalized Riesz potential generated by the
A—distance and the generalized shift operator, and we have studied the Hardy-
Littlewood-Sobolev inequality for this potential.

Firstly we give some notations and definitions.

Let A1, Ag, ..., A, be positive numbers with |[A\| = A1 + A2 + ... + \,, and for
R ={z:2 = (r1,22,...,%Tn), 01 > 0,29 > 0, ..., 2, > 0}, 2,y € R

[A]

1 1 2 Al
[z —yly = (lz1 —y[™ + w2 — g2 2 + o4 [z — yu[ ) v (1)

The expression |z — y|, is called the A—distance between the points z and y. It
can be seen that for \; = %,i =1,2,...,n the A—distance become ordinary Euclidean
distance |z —y|. For a positive number p and z € R, define p*z = (pMay, ..., p*zy,).
Then we have
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1. |z|y,=0<=2z=10
N B
|| = ol
3.z —yly < C(lz]y + lyl))
1 (Al

where C = 2<1+*min)7 s Amin = min{A1, Ag, ..., A\ }.
It is known the generalized shift operator the following equality

™

n T
Tglp.‘,l‘nf(x) = [ F(l/ F( { E]ff (\/l’% + y% - 25513/1 COS 1, .-

n
, \/:U,21 +y2 — 2wy, cos cpn) (]_[1 sin?i~1 pde;)
1=

as in [3], [8], [13], [15].
Now we define the generalized translation operator generated by the generalized
A—distance and the generalized shift operator as

n vitA;
[H(i))] v1 > 0,0 >0,..,v, >0and V| =v1 + o+ ... + 1y

: (
i=1 2X;
In the equality (2) if we take A\; = %, 1=1,2,...,n, we obtained the generalized shift
operator which is given in [6],[13],[15].
Lp’ A = Ly, A(R}) is defined with respect to the Lebesque- Stieljes measure

w3

where C, =7~

(H ;) *i)dz (It is clear the Lebesque- Stieljes mesure is no invariant in translation.

But we never are using such as properties of measure) as follows [13],[15]:

Lp,u,)\ = Lp,u,/\(R:) = f : Hpr,u,/\ = / ‘f(x)‘p(Hl'?)d.%' < 0 71 < p < oo.
=1

We also define B, y— convolution operator as

(K@) = [ 1) (@)K (m) d.
Ry B
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Now we define the following B, y—convolution type operator which is obtained
by the A—distance and the generalized shift operator:

(I5n ) (@) == / F(y) T (2] BT (Hyz )dy, 0<a< D (3)
Ry

I, f is called a generalized Riesz Potentials generated by the A—distance and the

generalized shift operator. For \; = %, i =1,2,...,n, we have the Riesz Potential
generated by the generalize shift operator which is given in [5],[13],[15]. It can be
seen that for \; = 5 and ¢; = 1, i = 1,2,...,n the generalized Riesz potential
generated by the A—distance and the generalized shift operator become the classical
Riesz potential. We show that the generalized Riesz potential generated by the
A—distance and the generalized shift operator has a weak (p, ¢)—type for some p and
q in the sense of [9]. It means, there exist a positive constant C,,,,  independent
on function f such that for any g > 0 the inequality

I/

mes{z : |(1;,f)(@)] >ﬂ}<< P g\ |p’V’A>q (4)

B

n Y
is hold. Here, mesE := [ <H :zz-xi) dr , E C R.
E
In this study, we consider spherical coordinates by the following formulas:

21

. . . 22
y ooy Ty = (psin gy sing... sin @, _1)“™"

z1 = (pcosr)

we obtained that |z|, = ,0 n . It can be seen that the Jacobian J(p,¢) of this
transformation is J(p, ¢) = p2|>‘| 1Q(¢p), where Q(¢p) is the bounded function, which
depend only on angles ©1, @2, ..., Pp_1.

Lemma 1. There are the following properties for the (T¥), |z|, ,

i (TY),.1=1

i |(TY), =], [P < (TF), |z}, %—F 1% =1, 1<p<oo.

Proof: i. From the definition of (7¥), and equality

T

vy L(z)0(3)
/sin*i pidp; = T
Pl +32

0

we have
v ™

" vi 1
TY), .1 = v in A ! i i | = 1/-7:1
(TY)\ C / /(ll—[lsm © dgo) C .

0 0
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ii. From Hélder’s inequality and (i), we have

e 1
where ¥ (z,y, ) = [(a:% +y? — 22191 €08 1) M A+ o+ (22 + Y2 — 2T,Yn cOS Op) ZM}

Remark 1. Let x;,y; € RT, i = 1,2,...,n . In this case there is the following
inequality for the generalized translation operator generated by the A—distance and
the generalized shift operator.

(zi — yi)? < af +y? — 2wy, cos ; < (xz' + i)

1 1
i — il M < (93 + y? — 2y cos soz)“l < (mi +yi)
|z —yly < (T ))\ lz|y < |z +yly

where ¢; € [0, 7].
Now, we prove the following Hardy-Littlewood-Sobolev type theorem for poten-
tial 1¢ oA f.

1)1
Theorem 1. Let 1 < p < g < o0, 2<1+Amin> ot lz|, < |yl and % = %_
alA|
n([v[+[A]) 0

a. If f € Ly, \(R)}), then I7\[ is absolutely convergent almost everywhere.
b. If p> 1, then

”Ig,)\f”q,ll,/\ < Ca(pv q,v, /\)Hf‘|p:1/7/\ (5)
c. If fe€L,,x\(R)), then I\ f has weak (1,q)—type, where ¢ =1 — %

K = (D

Proof . First we assume that K(z) = |z Let us decompose K as

K + Ko, where

_f K@) if |z[y<p _ [ K(z) if |z[\>p
SCEE PR A NUES e v
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and u is a fixed positive constant which need not be specified. It is obvious that

(2 1)@ = J s @,r (o) a

R

= [ s () a

R
+ [ IW)(TE), Koo(2) (ln_l y?) dy
Ry
= ILi(z)+ L(x).

@
Il
—

If we apply the Holder inequality to I;(z) with pp’ = p 4 p/, then we obtain the
following inequality

/ (Hyz )dy<| 10, Kall £ 1 (7)

R+

However, we obtain the following inequality for || (%), K1l/1,,n by the Remark 1
13
and 2w [y < [yly-

) (%
T, Kl = [ (@), fels P (Hyf)
lyla<p Z:U
a—737 (IV+IAD v
< f e (") ®)
lyla<p
a—157 (IV[+[A) = a
<o ot <H *)d < Cpp?N
lyla<p

where Cy is a constant depending on the (¢) with respect to angles coordinates,
a and A. Since f € L, (R}) and || (T¥), K111 < 0o we have

11l < Co® V5| fllpn < oo 9)

The integral I, may be direct calculated by the Holder inequality. Then we have

(Lo < 1 (TZ)x Kool yall fllp.n- (10)
where p' = 5. Moreover, (a — prvl+ AP < —i (vl + [A]) is equivalent to
q < oo by % = % - % Now we show that || (Tf)AKooHp/ L is finite. We have

the following inequality by Lemma and Remark 1
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Thus we get || (T¥), Kool x < 00 by hypothesis

>p
”w
n

L
(11X <n<|v| ) p> <0

This means that I5 is also finite. Note that the last inequality follows from % =

%— % From (6), (9) and (10) it follows that I}, f is finite almost everywhere.

Thus the part (a) of theorem is proved.
Now we prove the part (c). Obviously, it is sufficient to prove this fact in case
|| fllpo,x =1 and with 23 replace 3 in (4).

Since (Iﬁj/\ f) (x) = Ii(x) + I2(x) in view of (6) we have the inequality

mes{x : |[(I7\f)(x)] > 28} <mes{x : [I1(x)| > B} +mes{x : [Io(x)] > B}. (11)

Consider the right side of (11) inequality. Denoting Ey = {z : |I;(x)| > 5}, then
we see that

mes{z : |I1(x)| > 5} géfl (W)p <217jl x}i> dx. (12)

Applying the generalized Minkowsky inequality and using the definition of the kernel

Ki(x) we obtain
pfn v
[ (B0 ()< ot

i=1
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where C}y is a constant depending on p, v, A\, a. Using this inequality in (12) we have

2021\ P
mes{xz : |1 (x)] >} < Cy (,u 5n > . (13)

Consider the second term in (11). Let Ey = {z : |I2(x)| > S}. Applying the Hélder
inequality we see that the inequality
NI

[L2(2)| < [[Koolly yalflpwn = Cop™

Therefore choosing p = (C’glﬁ)_"“ﬂqﬂ”‘), then for all x € R |I;(z)| < oo and so
mes{x : |I2(x)| > f} = 0. By (11) and (13), we have

q
mes{z : [(I7\f)(x) > 28|} < Cs <Hf|!§,u,,\> .

where C is a constant depending on p, ¢, v, A and «. Consequently, under condition
A
1<p<qg< oo, % = % — m, (Il%\f)(x) has a weak (p, q)—type.

b. To prove this part we use the Marcinkiewicz interpolation theorem [1]. By

o 1_1 alA| Deci
part (c) the operator I3\ f is the weak type-(p, q) where AR (E IR In special
case p = 1 this operator is the weak type-(1,q) where % =1- % Using the

Marcinkiewicz interpolation theorem between (pg, go) and (p1,q1) where

a7 < 1 (v + |Ar>)—1
:17 = 1* [} - ) = —_ :
po=5 ( n<|u|+w>> Pr=ram= A, o\

We have that for potential I}, f holds (5) and % = % + % The proof is
completed.

Remark 2. The conditions 1 < p < ¢ < oo and % = % — %
the necessary for (5). To prove this we assume that (5) holds for every function
f € Lyua(Ry}) and consider the dilation operator I ,» defined by

are also

%p)‘(f)(m) = f(pkx% p>0

where prz = (pMxy, p2as, ..., pMa,) and 2,y € R, Then simple calculation show
that N
L S, [Igj)\%p)\ f} (x) =p " I%,f(x)
[M+]v]

II. H%P)‘fH :Pi P Hf”p,y,)\

e Al+1v]
1. ||Se_ 1, /| —p o 1oy

gV, q,VA
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Hence, we have

H " Ia)\f = H%pfx [Ia)\\s )\fi| from [
q,V,)\ q»llz)‘
[Al+1v]
= p @ |I5LSf \ from IT1
sV,
I>\|+\
< Calp.a.v N o from(®)
[Al+v] MH—\ |
S Coz(p’(LV?)‘)p g P || qu/)\ fI'OIl’l II
and so
oAl (| 1.1
12537, s < Calpiqv N H DG g (14)
The contradiction, which can be obtained from this inequality when
e 1 1 Y el 1 Al
p—0 (1f = > - — (|§\+|V|)) and when p — oo <1f 1<~ n(|§|+|y‘)> .
Show that (5) holds only for if 1 = ]; - (lf\éllj\r”le)‘ Note that (5) does not hold

for p = q. Really from the (14) it may be see that in the case p = ¢

5Nl Colp, gy, Np™ ||

But this is possible only when o« = 0. That is the potential IS y can not acting from
Lyu(RY) to Ly a(RY).

ql/)\ - DV "
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