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Abstract. In this study, the inequality of Hardy-Littlewood-Sobolev type is
established for generalized Riesz potentials depending on the generalized λ−distance.
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1. Introduction

It is well known that the Hardy-Littlewood-Sobolev inequality for the classi-
cal Riesz potential [9]. Çınar studied this inequality for Riesz potential with the
kernel depending on λ−distance [2]. On the other hand, Yıldırım gave the Hardy-
Littlewood-Sobolev inequality for the generalized Riesz potential generated by the
generalized shift operator [13]. Different problems for convolution type integrals
with the kernel depending on λ−distance were studied in [1]-[4],[7],[10]-[12],[14],[16].

In this paper, we have defined the generalized Riesz potential generated by the
λ−distance and the generalized shift operator, and we have studied the Hardy-
Littlewood-Sobolev inequality for this potential.

Firstly we give some notations and definitions.
Let λ1, λ2, ..., λn be positive numbers with |λ| = λ1 + λ2 + ...+ λn and for

R+
n = {x : x = (x1, x2, ..., xn), x1 > 0, x2 > 0, ..., xn > 0}, x, y ∈ R+

n

|x− y|λ := (|x1 − y1|
1
λ1 + |x2 − y2|

1
λ2 + ...+ |xn − yn|

1
λn )

|λ|
n . (1)

The expression |x− y|λ is called the λ−distance between the points x and y. It
can be seen that for λi = 1

2 , i = 1, 2, ..., n the λ−distance become ordinary Euclidean
distance |x−y|. For a positive number ρ and x ∈ R+

n define ρλx = (ρλ1x1, ..., ρ
λnxn).

Then we have
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1. |x|λ = 0⇐⇒ x = θ

2.
∣∣ρλx∣∣ = ρ

|λ|
n |x|λ

3. |x− y|λ ≤ C(|x|λ + |y|λ)

where C = 2

(
1+ 1

λmin

)
|λ|
n , λmin = min{λ1, λ2, ..., λn}.

It is known the generalized shift operator the following equality

T yx1,...,xnf(x) := [
n∏
i=1

Γ(νi+
1
2

)

Γ(νi)Γ( 1
2

)
]
π∫
0

. . .
π∫
0

f
(√

x2
1 + y2

1 − 2x1y1 cosϕ1, ...

. . . ,
√
x2
n + y2

n − 2xnyn cosϕn

)
(
n∏
i=1

sin2νi−1 ϕidϕi)

as in [5], [8], [13], [15].
Now we define the generalized translation operator generated by the generalized

λ−distance and the generalized shift operator as

(T yx )λ |x|λ := Cν
π∫
0

...
π∫
0

[
(x2

1 + y2
1 − 2x1y1 cosϕ1)

1
2λ1 + ....

+ (x2
n + y2

n − 2xnyn cosϕn)
1

2λn

] |λ|
n

(
n∏
i=1

sin
νi
λi
−1
ϕi dϕi

) (2)

where Cν = π−
n
2 [

n∏
i=1

Γ(
νi+λi
2λi

)

Γ(
νi
2λi

)
], ν1 > 0, ν2 > 0, ..., νn > 0 and |ν| = ν1 + ν2 + ...+ νn.

In the equality (2) if we take λi = 1
2 , i = 1, 2, ..., n, we obtained the generalized shift

operator which is given in [6],[13],[15].
Lp,ν,λ := Lp,ν,λ(R+

n ) is defined with respect to the Lebesque- Stieljes measure

(
n∏
i=1

x
νi
λi
i )dx (It is clear the Lebesque- Stieljes mesure is no invariant in translation.

But we never are using such as properties of measure) as follows [13],[15]:

Lp,ν,λ = Lp,ν,λ(R+
n ) =

f : ‖f‖p,ν,λ =

∫
R+
n

|f(x)|p(
n∏
i=1

x
νi
λi
i )dx


1
p

<∞

 , 1 ≤ p <∞.

We also define Bν,λ− convolution operator as

(f ∗K)(x) :=

∫
R+
n

f(y) (T yx )λK(x)

(
n∏
i=1

y
νi
λi

)
dx.
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Now we define the following Bν,λ−convolution type operator which is obtained
by the λ−distance and the generalized shift operator:

(
Iαν,λ f

)
(x) :=

∫
R+
n

f(y)T yx (|x|α−
n
|λ| (|λ|+|ν|))

(
n∏
i=1

y
νi
λi
i

)
dy, 0 < α < n(|λ|+|ν|)

|λ| . (3)

Iαν,λf is called a generalized Riesz Potentials generated by the λ−distance and the

generalized shift operator. For λi = 1
2 , i = 1, 2, ..., n, we have the Riesz Potential

generated by the generalize shift operator which is given in [5],[13],[15]. It can be
seen that for λi = 1

2 and ϕi = 1, i = 1, 2, ..., n the generalized Riesz potential
generated by the λ−distance and the generalized shift operator become the classical
Riesz potential. We show that the generalized Riesz potential generated by the
λ−distance and the generalized shift operator has a weak (p, q)−type for some p and
q in the sense of [9]. It means, there exist a positive constant Cp,q,ν,λ independent
on function f such that for any β > 0 the inequality

mes{x : |(Iαν,λf)(x)| > β} ≤
(
Cp,q,ν,λ

‖f‖p,ν,λ
β

)q
(4)

is hold. Here, mesE :=
∫
E

(
n∏
i=1

x
νi
λi
i

)
dx , E ⊂ R+

n .

In this study, we consider spherical coordinates by the following formulas:

x1 = (ρ cosϕ1)2λ1 , ..., xn = (ρ sinϕ1 sinϕ2... sinϕn−1)2λn

we obtained that |x|λ = ρ
2|λ|
n . It can be seen that the Jacobian J(ρ, ϕ) of this

transformation is J(ρ, ϕ) = ρ2|λ|−1Ω(ϕ), where Ω(ϕ) is the bounded function, which
depend only on angles ϕ1, ϕ2, ..., ϕn−1.

Lemma 1. There are the following properties for the (T yx )λ |x|λ ,
i. (T yx )λ .1 = 1
ii.|(T yx )λ |x|λ|

p ≤ (T yx )λ |x|
p
λ ,

1
p + 1

p′ = 1, 1 < p <∞.
Proof: i. From the definition of (T yx )λ and equality

π∫
0

sin
νi
λi
−1
ϕidϕi =

Γ( νi
2λi

)Γ(1
2)

Γ( νi
2λi

+ 1
2)

we have

(T yx )λ .1 = Cν

π∫
0

...

π∫
0

(
n∏
i=1

sin
νi
λi
−1
ϕi dϕi

)
= Cν .

1

Cν
= 1
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ii. From Hölder’s inequality and (i), we have

|(T yx )λ |x|λ|
p

=

∣∣∣∣Cν π∫
0

...
π∫
0

Ψ(x, y, α)

(
n∏
i=1

sin
νi
λi
−1
ϕi dϕi

)∣∣∣∣p
≤
(
Cν

π∫
0

...
π∫
0

Ψp(x, y, α)

(
n∏
i=1

sin
νi
λi
−1
ϕi dϕi

))(
Cν

π∫
0

...
π∫
0

(
n∏
i=1

sin
νi
λi
−1
ϕi dϕi

)) p
p′

≤ (T yx )λ |x|
p
λ

where Ψ(x, y, α) =
[
(x2

1 + y2
1 − 2x1y1 cosϕ1)

1
2λ1 + ....+ (x2

n + y2
n − 2xnyn cosϕn)

1
2λn

] |λ|
n
.

Remark 1. Let xi, yi ∈ R+, i = 1, 2, ..., n . In this case there is the following
inequality for the generalized translation operator generated by the λ−distance and
the generalized shift operator.

(xi − yi)2 ≤ x2
i + y2

i − 2xiyi cosϕi ≤ (xi + yi)
2

|xi − yi|
1
λi ≤ (x2

i + y2
i − 2xiyi cosϕi)

1
2λi ≤ (xi + yi)

1
λi

|x− y|λ ≤ (T yx )λ |x|λ ≤ |x+ y|λ

where ϕi ∈ [0, π] .
Now, we prove the following Hardy-Littlewood-Sobolev type theorem for poten-

tial Iαν,λf.

Theorem 1. Let 1 ≤ p < q < ∞ , 2

(
1+ 1

λmin

)
|λ|
n

+1 |x|λ ≤ |y|λ and 1
q = 1

p −
α|λ|

n(|ν|+|λ|) .

a. If f ∈ Lp,ν,λ(R+
n ), then Iαν,λf is absolutely convergent almost everywhere.

b. If p > 1, then

‖Iαν,λf‖q,ν,λ ≤ Cα(p, q, ν, λ)‖f‖p,ν,λ (5)

c. If f ∈ Lp,ν,λ(R+
n ), then Iαν,λf has weak (1, q)−type, where q = 1− α|λ|

n(|ν|+|λ|) .

Proof . First we assume that K(x) = |x|α−
n
|λ| (|ν|+|λ|). Let us decompose K as

K1 +K∞, where

K1(x) =

{
K(x) if |x|λ ≤ µ
0 if |x|λ > µ

, K∞(x) =

{
K(x) if |x|λ > µ
0 if |x|λ ≤ µ
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and µ is a fixed positive constant which need not be specified. It is obvious that(
Iαν,λ f

)
(x) =

∫
R+
n

f(y) (T yx )λK(x)

(
n∏
i=1

y
νi
λi
i

)
dy

=
∫
R+
n

f(y) (T yx )λK1(x)

(
n∏
i=1

y
νi
λi
i

)
dy

+
∫
R+
n

f(y) (T yx )λK∞(x)

(
n∏
i=1

y
νi
λi
i

)
dy

= I1(x) + I2(x).

(6)

If we apply the Hölder inequality to I1(x) with pp′ = p + p′, then we obtain the
following inequality∫

R+
n

Ip1 (x)

(
n∏
i=1

y
νi
λi
i

)
dy ≤ ‖ (T yx )λK1‖

p+p′
p

1,ν,λ‖f‖
p
p,ν,λ. (7)

However, we obtain the following inequality for ‖ (T yx )λK1‖1,ν,λ by the Remark 1

and 2
(1+ 1

λmin
)
|λ|
n

+1 |x|λ ≤ |y|λ .

‖ (T yx )λK1‖1,ν,λ =
∫

|y|λ≤µ
(T yx )λ |x|

α− n
|λ| (|ν|+|λ|)

λ

(
n∏
i=1

y
νi
λi
i

)
dy

≤
∫

|y|λ≤µ
|x− y|

α− n
|λ| (|ν|+|λ|)

λ

(
n∏
i=1

y
νi
λi
i

)
dy

≤ C1

∫
|y|λ≤µ

|y|
α− n
|λ| (|ν|+|λ|)

λ

(
n∏
i=1

y
νi
λi
i

)
dy ≤ C2µ

2|λ|α
n

(8)

where C2 is a constant depending on the Ω(ϕ) with respect to angles coordinates,
α and λ. Since f ∈ Lp,ν,λ(R+

n ) and ‖ (T yx )λK1‖1,ν,λ <∞ we have

‖I1‖p,ν,λ ≤ C2µ
2|λ|α

n ‖f‖p,ν,λ <∞. (9)

The integral I2 may be direct calculated by the Hölder inequality. Then we have

|I2| ≤ ‖ (T yx )λK∞‖p′ ,ν,λ‖f‖p,ν,λ. (10)

where p
′

= p
p−1 . Moreover, (α − n

|λ|(|ν| + |λ|))p
′
< − n

|λ|(|ν| + |λ|) is equivalent to

q <∞ by 1
q = 1

p −
α|λ|

n(|ν|+|λ|) . Now we show that ‖ (T yx )λK∞‖p′ ,ν,λ is finite. We have
the following inequality by Lemma and Remark 1
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‖ (T yx )λK∞‖p′ ,ν,λ =

 ∫
|y|λ>µ

[
(T yx )λ |x|

α− n
|λ| (|ν|+|λ|)

λ

]p′ ( n∏
i=1

y
νi
λi
i

)
dy

 1

p
′

≤

( ∫
|y|λ>µ

(T yx )λ |x|
(α− n

|λ| (|ν|+|λ|))p
′

λ

(
n∏
i=1

y
νi
λi
i

)
dy

) 1

p
′

≤

( ∫
|y|λ>µ

|x− y|
(α− n

|λ| (|ν|+|λ|))p
′

λ

(
n∏
i=1

y
νi
λi
i

)
dy

) 1

p
′

≤ C3

([
ρ

2p
′ |λ|
n

[α−n(|ν|+|λ|)|λ|p ]
]∣∣∣∣∞
µ

) 1

p
′

.

Thus we get ‖ (T yx )λK∞‖p′ ,ν,λ <∞ by hypothesis

n

|λ|
(|ν|+ |λ|)

(
α|λ|

n(|ν|+ |λ|)
− 1

p

)
< 0.

This means that I2 is also finite. Note that the last inequality follows from 1
q =

1
p−

α|λ|
n(|ν|+|λ|) . From (6), (9) and (10) it follows that Iαν,λ f is finite almost everywhere.

Thus the part (a) of theorem is proved.
Now we prove the part (c). Obviously, it is sufficient to prove this fact in case

‖f‖p,ν,λ = 1 and with 2β replace β in (4).

Since
(
Iαν,λ f

)
(x) = I1(x) + I2(x) in view of (6) we have the inequality

mes{x : |(Iαν,λf)(x)| > 2β} ≤ mes{x : |I1(x)| > β}+mes{x : |I2(x)| > β}. (11)

Consider the right side of (11) inequality. Denoting E1 = {x : |I1(x)| > β}, then
we see that

mes{x : |I1(x)| > β} ≤
∫
E1

(
|I1(x)|
β

)p( n∏
i=1

x
νi
λi
i

)
dx. (12)

Applying the generalized Minkowsky inequality and using the definition of the kernel
K1(x) we obtain ∫

E1

(
|I1(x)|
β

)p( n∏
i=1

x
νi
λi
i

)
dx ≤ C4µ

2α
|λ|
n
p
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where C4 is a constant depending on p, ν, λ, α. Using this inequality in (12) we have

mes{x : |I1(x)| > β} ≤ C4

(
µ2α

|λ|
n

β

)p
. (13)

Consider the second term in (11). Let E2 = {x : |I2(x)| > β}. Applying the Hölder
inequality we see that the inequality

|I2(x)| ≤ ‖K∞‖p′ ,ν,λ‖f‖p,ν,λ = C5µ
−n |λ|+|ν|

q .

Therefore choosing µ =
(
C−1

5 β
)− q

n(|λ|+|ν|) , then for all x ∈ R+
n |I1(x)| ≤ ∞ and so

mes{x : |I2(x)| > β} = 0. By (11) and (13), we have

mes{x : |(Iαν,λf)(x) > 2β|} ≤ C5

(
‖f‖p,ν,λ

β

)q
.

where C5 is a constant depending on p, q, ν, λ and α. Consequently, under condition
1 ≤ p < q <∞, 1

q = 1
p −

α|λ|
n(|ν|+|λ|) , (Iαν,λf)(x) has a weak (p, q)−type.

b. To prove this part we use the Marcinkiewicz interpolation theorem [1]. By

part (c) the operator Iαν,λf is the weak type-(p, q) where 1
q = 1

p−
α|λ|

n(|ν|+|λ|) . In special

case p = 1 this operator is the weak type-(1, q) where 1
q = 1 − α|λ|

n(|ν|+|λ|) . Using the

Marcinkiewicz interpolation theorem between (p0, q0) and (p1, q1) where

p0 = 1, q0 =

(
1− α|λ|

n(|ν|+ |λ|)

)−1

, p1 = p1, q1 =

(
1

p1
− n(|ν|+ |λ|)

α|λ|

)−1

.

We have that for potential Iαν,λf holds (5) and 1
q = 1

p + α|λ|
n(|ν|+|λ|) . The proof is

completed.
Remark 2. The conditions 1 ≤ p < q < ∞ and 1

q = 1
p −

α|λ|
n(|ν|+|λ|) are also

the necessary for (5). To prove this we assume that (5) holds for every function
f ∈ Lp,ν,λ(R+

n ) and consider the dilation operator =ρλ defined by

=ρλ(f)(x) := f(ρλx), ρ > 0

where ρλx = (ρλ1x1, ρ
λ2x2, ..., ρ

λnxn) and x, y ∈ R+
n . Then simple calculation show

that

I. =ρ−λ
[
Iαν,λ=ρλf

]
(x) = ρ−α

|λ|
n Iαν,λf(x)

II.
∥∥=ρλf∥∥p,ν,λ = ρ

− |λ|+|ν|
p ‖f‖p,ν,λ

III.
∥∥∥=αρ−λIαν,λf∥∥∥q,ν,λ = ρ

|λ|+|ν|
q

∥∥∥Iαν,λf∥∥∥
q,ν,λ

.
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Hence, we have∥∥∥∥=−α |λ|nρ−λ
Iαν,λf

∥∥∥∥
q,ν,λ

=
∥∥∥=ρ−λ [Iαν,λ=ρλf]∥∥∥

q,ν,λ
from I

= ρ
|λ|+|ν|
q

∥∥∥Iαν,λ=ρλf∥∥∥
q,ν,λ

from III

≤ Cα(p, q, ν, λ)ρ
|λ|+|ν|
q
∥∥=ρλf∥∥q,ν,λ from(5)

≤ Cα(p, q, ν, λ)ρ
|λ|+|ν|
q ρ

− |λ|+|ν|
p ‖f‖q,ν,λ from II

and so ∥∥Iαν,λf∥∥q,ν,λ ≤ Cα(p, q, ν, λ)ρ
α|λ|
n

+(|λ|+|ν|)( 1
q
− 1
p

) ‖f‖p,ν,λ . (14)

The contradiction, which can be obtained from this inequality when

ρ→ 0
(

if 1
q >

1
p −

α|λ|
n(|λ|+|ν|)

)
and when ρ→∞

(
if 1

q <
1
p −

α|λ|
n(|λ|+|ν|)

)
.

Show that (5) holds only for if 1
q = 1

p −
α|λ|

n(|λ|+|ν|) . Note that (5) does not hold

for p = q. Really from the (14) it may be see that in the case p = q∥∥Iαν,λf∥∥q,ν,λ ≤ Cα(p, q, ν, λ)ρ
α|λ|
n ‖f‖p,ν,λ .

But this is possible only when α = 0. That is the potential I0
ν,λ can not acting from

Lp,ν,λ(R+
n ) to Lq,ν,λ(R+

n ).
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erated by the λ−distance, Selçuk Journal of Appl. Math. Vol. 1, 2006.

[13] H. Yıldırım, Riesz Potentials Generated a Generalized shift operator,
Ph.D.thesis (Ankara University)1995.

[14] H. Yıldırım, On the Non-Isotropic Distance, Afyon Kocatepe University Journal
of Science Vol.4(1-2)(2004), pp.119-126.

[15] H. Yıldırım and M. Z. Sarikaya, On the generalized Riesz type potentials, Jour.
Inst. Math. Comput. Sci., Math. Ser. 14, No.3, 217-224 (2001).

[16] H. Yıldırım, On generalization of the quasi homogeneous Riesz potential , Turk.
J. Math., 29, (2005), 381-387.

Huseyin Yildirim
Department of Mathematics
University of Sütçü İmam
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