AN INVERSE THEOREM IN SIMULTANEOUS APPROXIMATION FOR A LINEAR COMBINATION OF BERNSTEIN-DURRMEYER TYPE POLYNOMIALS

KARUNESH SINGH AND P.N. AGRAWAL

ABSTRACT. The present paper is a continuation of our work in [5]. Here we study an inverse result in simultaneous approximation for a linear combination of Bernstein-Durrmeyer type polynomials by Peetre's K- functional approach.

2000 Mathematics Subject Classification: 41A27, 41A28 (41A36).

Keywords: linear combination, simultaneous approximation, modulus of continuity.

1. INTRODUCTION

The Bernstein-Durrmeyer type polynomial operators

$$P_n(f;x) = n \sum_{\nu=1}^n p_{n,\nu}(x) \int_0^1 p_{n-1,\nu-1}(t) f(t) \, du + (1-x)^n f(0),$$

where

$$p_{n,\nu}(x) = \binom{n}{\nu} x^{\nu} (1-x)^{n-\nu}, \ 0 \le x \le 1,$$

defined on $L_B[0, 1]$, the space of bounded and Lebesgue integrable functions on [0, 1]were introduced by Gupta and Maheshwari [3] wherein they studied the approximation of functions of bounded variation by these operators. In [1] Gupta and Ispir studied the pointwise convergence and Voronovskaja-type asymptotic results in simultaneous approximation for these operators.

For $f \in L_B[0,1]$, the operators $P_n(f;x)$ can be expressed as

$$P_n(f;x) = \int_0^1 W_n(t,x)f(t) \, dt,$$

where

$$W_n(t,x) = n \sum_{\nu=1}^n p_{n,\nu}(x) \, p_{n-1,\nu-1}(t) + (1-x)^n \delta(t),$$

 $\delta(t)$ being the Dirac-delta function, is the kernel of the operators.

It turns out that the order of approximation by these operators is at best $O(n^{-1})$, however smooth the function may be. In order to speed up the rate of convergence by the operators P_n , we considered the linear combination $P_n(f, k, .)$ of the operators P_n , as

$$P_n(f,k,x) = \sum_{j=0}^k C(j,k) P_{d_j n}(f,x),$$

where

$$C(j,k) = \prod_{i=0, i \neq j}^{k} \frac{d_j}{d_j - d_i}, k \neq 0 \text{ and } C(0,0) = 1,$$

 $d_0, d_1, \dots d_k$ being (k+1) arbitrary but fixed distinct positive integers.

Throughout this paper, we assume C(I) the space of all continuous functions on the interval I, $\|.\|_{C(I)}$ the sup norm on the space C(I) and C a constant not necessarily the same in the different cases.

Let I = [a, b] be a fixed subinterval of (0, 1), $I' = [a', b'] \subset (a, b)$ and $I'' = [a'', b''] \subset (a', b')$. Further, let $G^r(I') = \{g \in C_0^r : supp \ g \ \subset I'\}.$

For $f \in G^r(I')$ and $g \in G^{2k+r+2}(I')$ we define

$$K_{r}(\xi, f, I') = \inf_{g \in G^{2k+r+2}(I')} \left\{ \|f^{(r)} - g^{(r)}\|_{C(I')} + \xi \left(\|g^{(r)}\|_{C(I')} + \|g^{(2k+2+r)}\|_{C(I')} \right) \right\},\$$

where $0 < \xi \leq 1$.

For $0 < \beta < 2$, we define $C_0^r(\beta, k+1, I')$ as the class of all $f \in G^r(I')$ such that the functional

$$||f||_{\beta,r} = \sup_{0 < \xi \le 1} \xi^{-\beta/2} K_r(\xi, f, I') < C, \text{ for some } C > 0.$$

2. AUXILIARY RESULTS

In this section we give some results which are useful in establishing our main theorem.

For sufficiently small $\eta > 0, 0 < a_1 < a_2 < b_2 < b_1 < 1, I_i = [a_i, b_i], i = 1, 2$ and $m \in \mathbb{N}$, the Steklov mean $f_{\eta,m}$ of m-th order corresponding to $f \in C[a, b]$ is defined as follows:

$$f_{\eta,m}(t) = \eta^{-m} \int_{-\eta/2}^{\eta/2} \cdots \int_{-\eta/2}^{\eta/2} \left(f(t) + (-1)^{m-1} \Delta_{\sum_{i=1}^{m} t_i}^{m} f(t) \right) \prod_{i=1}^{m} dt_i, \ , t \in I_1,$$

where Δ_h^m is the *m*-th order forward difference operator with step length *h*.

Lemma 1. [4] For the function $f_{\eta,m}$, we have

- (a) $f_{\eta,m}$ has derivatives up to order m over I_1 ;
- (b) $||f_{\eta,m}^{(r)}||_{C(I_1)} \leq C_r \ \omega_r(f,\eta,[a,b]), r = 1,2,...,m;$ (c) $||f - f_{\eta,m}||_{C(I_1)} \leq C_{m+1} \ \omega_m(f,\eta,[a,b]);$
- (d) $||f_{\eta,m}||_{C(I_1)} \leq C_{m+2} \eta^{-m} ||f||_{C[a,b]};$
- (e) $||f_{\eta,m}^{(r)}||_{C(I_1)} \leq C_{m+3} ||f||_{C[a,b]}$,

where C'_i s are certain constants that depend on *i* but are independent of *f* and η . Lemma 2. [4] For the function $p_{n,\nu}(t)$, there holds the result

$$t^{r}(1-t)^{r}\frac{d^{r}}{dt^{r}}(p_{n,\nu}(t)) = \sum_{\substack{2i+j \leqslant r\\i,j \ge 0}} n^{i}(\nu - nt)^{j}q_{i,j,r}(t)p_{n,\nu}(t),$$

where $q_{i,j,r}(t)$ are certain polynomials in t independent of n and ν .

Lemma 3. [1] For the function $u_{n,m}(t), m \in \mathbb{N}^0$ (the set of non-negative integers) defined as

$$u_{n,m}(t) = \sum_{\nu=1}^{n} p_{n,\nu}(t) \left(\frac{\nu}{n} - t\right)^{m},$$

we have $u_{n,0}(t) = 1$ and $u_{n,1}(t) = 0$. Further, there holds the recurrence relation

$$nu_{n,m+1}(t) = t \left[u'_{n,m}(t) + mu_{n,m-1}(t) \right], m = 1, 2, 3, \dots$$

Consequently,

(i) $u_{n,m}(t)$ is a polynomial in t of degree at most m;

(ii) for every $t \in [0,\infty)$, $u_{n,m}(t) = O\left(n^{-[(m+1)/2]}\right)$, where $[\alpha]$ denotes the integral part of α .

Lemma 4. [4] For the function $\mu_{n,m}(t)$, we have $\mu_{n,0}(t) = 1$, $\mu_{n,1}(t) = \frac{(-t)}{(n+1)}$ and there holds the recurrence relation

$$(n+m+1)\mu_{n,m+1}(t) = t(1-t)\left\{\mu_{n,m}'(t) + 2m\mu_{n,m-1}(t)\right\} + (m(1-2t)-t)\mu_{n,m}(t),$$

for $m \ge 1$. Consequently, we have

(i) $\mu_{n,m}(t)$ is a polynomial in t of degree m; (ii) for every $t \in [0,1], \mu_{n,m}(t) = \mathcal{O}\left(n^{-[(m+1)/2]}\right)$, where $[\beta]$ is the integer part of β .

Theorem 1. [5] Let $f \in L_B[0,1]$ admitting a derivative of order (2k + r + 2) at a point $x \in (0,1)$ then we have

$$\lim_{n \to \infty} n^{k+1} [P_n^{(r)}(f,k,x) - f^{(r)}(x)] = \sum_{\nu=r}^{2k+r+2} \frac{f^{(\nu)}(x)}{\nu!} Q(\nu,k,r,x)$$
(1)

and

$$\lim_{n \to \infty} n^{k+1} [P_n^{(r)}(f, k, x) - f^{(r)}(x)] = 0,$$
(2)

where $Q(\nu, k, r, x)$ are certain polynomials in x of degree ν . Further, the limits in (1) and (2) hold uniformly in [a, b] if $f^{(2k+r+2)}$ is continuous on $(a - \eta, b + \eta) \subset (0, 1), \eta > 0.$

Lemma 5. If $f^{(r)} \in G^r(I'')$ and

$$\left\|P_n^{(r)}(f,k,.) - f^{(r)}\right\| \le Cn^{-\beta(k+1)/2},$$

then

$$K_r(\xi, f, I') \le C\left(n^{-\beta(k+1)/2} + n^{k+1}\xi K_r(n^{-(k+1)}, f, I')\right).$$
(3)

Consequently, $K_r(\xi, f, I') \leq C\xi^{\beta/2}$ i.e. $f \in C_0^r(\beta, k+1, I')$

Proof. Following [6] it is enough to show that 3 holds for all n sufficiently large. Since $\operatorname{supp} f \subset I''$, in view of Theorem 1 [5], we can find a function $h \in G^{2k+r+2}(I')$ such that for i = r and 2k + 2 + r, there holds

 $||h^{(i)} - P_n^{(i)}(f,k,.)||_{C(I)} \le Cn^{-(k+1)}$, for all *n* sufficiently large.

Therefore,

$$K_{r}(\xi, f, I') \leq 3Cn^{-(k+1)} + \|f^{(r)} - P_{n}^{(i)}(f, k, .)\|_{C(I)} + \xi \left(\|P_{n}^{(r)}(f, k, .)\| + \|P_{n}^{(2k+r+2r)}(f, k, .)\|_{C(I)}\right)$$

Hence, it is sufficient to show that for each $g \in G^{2k+r+2}(I'))$,

$$\|P_n^{(2k+2+r)}(f,k,.)\|_{C(I')} \le Cn^{(k+1)} \left(\|f^{(r)} - g^{(r)}\|_{C(I)} + n^{-(k+1)}g^{(2k+2+r)} \right).$$
(4)

Now,

$$\begin{aligned} \|P_n^{(2k+2+r)}(f,k,.)\|_{C(I')} &\leq \|P_n^{(2k+2+r)}(f-g,k,.)\|_{C(I')} + \|P_n^{(2k+2+r)}(g,k,.)\|_{C(I')} \\ &= \Sigma_1 + \Sigma_2. \end{aligned}$$

By using Taylor's expansion of (f - g)(t) about t = x, Lemmas 4, 2, Schwarz inequality for integration and then for summation, we get

$$\Sigma_1 \le C n^{(k+1)} \| f^{(r)} - g^{(r)} \|_{C(I)} \quad (\operatorname{supp} f \cup \operatorname{supp} g \subset I')$$

Similarly, using the Taylor's expansion of g(t) about t = x, we get

$$\Sigma_2 \le C \| g^{(2k+2+r)} \|_{C(I)}$$

Combining the estimates of Σ_1 and Σ_2 , the inequality 4 follows. Hence, 3 holds.

Lemma 6. If $f^{(r)} \in G^r(I'')$ and $f \in C_0^r(\beta, k+1, I')$ then for sufficiently large n, we have

$$\left\|P_n^{(r)}(f,k,.) - f^{(r)}\right\|_{C(I)} = O(n^{-\beta(k+1)/2}).$$

Proof. For $g \in G^{2k+r+2}(I')$, we have

$$\begin{aligned} \left\| P_n^{(r)}(f,k,.) - f^{(r)} \right\|_{C(I)} &\leq \left\| P_n^{(r)}(f-g,k,.) \right\|_{C(I)} + \left\| P_n^{(r)}(g,k,.) - f^{(r)} \right\|_{C(I)} \\ &= \Sigma_1 + \Sigma_2. \end{aligned}$$

Proceeding along the lines of estimate Σ_1 in Lemma 6 and in view of $\operatorname{supp}(f-g) \subset I'$, we get

$$\Sigma_1 \le C \| f^{(r)} - g^{(r)} \|_{C(I)}.$$

Using Theorem 1 and intermediate derivative property ([2], p.5) we obtain

$$\Sigma_2 \le C \|f^{(r)} - g^{(r)}\|_{C(I)} + Cn^{-(k+1)} \left(\|g^{(r)}\|_{C(I')} + \|g^{(2k+2+r)}\|_{C(I')} \right).$$

Combining the estimates of Σ_1 and Σ_2 , we get

$$\begin{aligned} \left\| P_n^{(r)}(f,k,.) - f^{(r)} \right\|_{C(I)} &\leq C.K_r(n^{-(k+1)},f;I') \\ &\leq C.O(n^{-\beta(k+1)/2}), \end{aligned}$$

since $f \in C_0^r(\beta, k+1, I')$.

Lemma 7. If $f^{(r)} \in G^r(I'')$ then

$$f \in C_0^r(\beta, k+1, I') \Leftrightarrow f^{(r)} \in Liz(\beta, k+1, I').$$

Proof. Let $|\delta| < h$ and $g \in G^{2k+r+2}(I')$. Then, if $f \in C_0^r(\beta, k+1, I')$ we get

$$\begin{aligned} |\Delta_{\delta}^{(2k+2)}f^{(r)}(x)| &\leq |\Delta_{\delta}^{(2k+2)}(f^{(r)}(x) - g^{(r)}(x))| + |\Delta_{\delta}^{(2k+2)}g^{(r)}(x)| \\ &\leq 2^{2k+2} \|f^{(r)} - g^{(r)}\|_{C(I')} + \delta^{(2k+2)} \|g^{(2k+2+r)}\|_{C(I')} \\ &\leq 2^{2k+2}C.K_r(\delta^{(2k+2)}, f; I') \\ &\leq 2^{2k+2}C.\delta^{\beta(k+1)}. \end{aligned}$$

It follows that

$$\omega_{2k+2}(f^{(r)},h;I) \leq \sup_{|\delta| \leq h} |\Delta_{\delta}^{(2k+2)} f^{(r)}(x)| \\
\leq C.h^{\beta(k+1)}.$$

i.e. $f^{(r)} \in \text{Liz} (\beta, k+1, I')$. Conversely, suppose that $f^{(r)} \in \text{Liz} (\beta, k+1, I')$ and $f_{\eta, 2k+r+2}$ be the (2k + r + 2)th order Steklov mean corresponding to f as defined in . Hence $f_{\eta,2k+r+2}(x) \in G^{2k+r+2}(I')$, by property (b) of Lemma 1 we have

$$\begin{aligned} \|f_{\eta,2k+r+2}^{(2k+2+r)}(x)\|_{C(I')} &\leq C\eta^{-(2k+r+2)}\omega_{2k+r+2}(f,\eta;I) \\ &\leq C\eta^{-(2k+r+2)}\eta^{r}\omega_{2k+2}(f^{(r)},\eta;I) \\ &\leq C\eta^{-(2k+2)+\beta(k+1)}. \end{aligned}$$

Using property (c) of Lemma 1, we get

$$\|f_{\eta,2k+r+2}^{(r)}(x) - f^{(r)}\|_{C(I')} \le C\omega_{2k+2}(f^{(r)},\eta;I)) \le Cn^{\beta(k+1)},$$
which implies that $f \in C_0^r(\beta, k+1, I').$

н		

Theorem 2. [5] Let $p \in \mathbb{N}$, $1 \le p \le 2k+2$ and $f \in L_B[0,1]$. If $f^{(p+r)}$ exists and is continuous on $(a - \eta, b + \eta) \subset [0,1]$, $\eta > 0$ then

$$\left\|P_n^{(r)}(f,k,.) - f^{(r)}\right\|_{C(I)} \le \max\left\{C_1 n^{-p/2} \omega\left(f^{(p+r)}, n^{-1/2}\right), C_2 n^{-(k+1)}\right\},\$$

where $C_1 = C_1(k, p, r)$, $C_2 = C_2(k, p, r, f)$ and $\omega(f^{(p+r)}, \delta)$ is the modulus of continuity of $f^{(p+r)}$ on $(a - \eta, b + \eta)$.

3. Main Result

Theorem 3. Let $f \in L_B[0,1]$ and $0 < \alpha < 2$. Then, in the following statements, the implications $(i) \Rightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv)$ hold:

- (i) $||P_n^{(r)}(f,k,.) f^{(r)}||_{C[a_1,b_1]} = O(n^{-\alpha(k+1)/2});$
- (*ii*) $f \in \operatorname{Liz}(\alpha, k, a_2, b_2);$
- (iii) (a) for m < α(k + 1) < m + 1, m = 0, 1,2k 1, f^(m) exists and belongs to the class Lip(αk m, a₂, b₂),
 (b) for α(k + 1) = m + 1, m = 0, 1,2k 2, f^(m) exists and belongs to the class Lip*(1, a₂, b₂);

(*iv*)
$$|| P_n^{(r)}(f, .) - f(.) ||_{C[a_3, b_3]} = O(n^{-\alpha(k+1)/2}).$$

Proof. To show $(i) \Rightarrow (ii)$ we reassume that $a_1 < a' < a'' < a_2, b_2 < b' < b'' < b_1, I = [a', b']$ and I'' = [a'', b'']. Writing $\tau = \beta(k+1)$, we first consider the case $0 < \tau \leq 1$.

Let $g \in C_0^{\infty}$ be such that $\operatorname{supp} g \subset I''$ and g(x) = 1 on I_2 . Writing $D \equiv \frac{d}{dx}$, then for $x \in I'$ we have

$$P_n^{(r)}(fg,k,x) - (fg)^{(r)}(x) = D^r \{P_n((fg)(t) - (fg)(x),k,x)\}$$

= $D^r \{P_n((f(t)(g(t) - g(x)),k,x)\}$
+ $D^r \{P_n((g(x)(f(t) - f(x)),k,x)\}$
= $\Gamma_1 + \Gamma_2$, say.

Using Leibnitz theorem

$$\begin{split} \Gamma_1 &= \sum_{j=0}^k C(j,k) D^r \left\{ \int_0^1 W_{d_jn}(t,x) f(t)(g(t) - g(x)) dt \right\} \\ &= \sum_{j=0}^k C(j,k) \sum_{i=0}^r \binom{r}{i} \int_0^1 W_{d_jn}^{(i)}(t,x) D^{r-i} \{f(t)(g(t) - g(x))\} dt \\ &= -\sum_{i=0}^{r-1} \binom{r}{i} g^{(r-i)}(x) P_n^{(i)}(f,k,x) \\ &+ \sum_{j=0}^k C(j,k) \int_0^1 W_{d_jn}^{(r)}(t,x) f(t)(g(t) - g(x)) dt \\ &= J_1 + J_2, \text{ say.} \end{split}$$

By Theorem 2, we have

$$J_1 = -\sum_{i=0}^{r-1} \binom{r}{i} g^{(r-i)}(x) f^{(i)}(x) + O(n^{-\tau/2}), \text{ uniformly on } I'.$$

Next, we estimate J_2 . By Taylor's expansion of f and g at t = x, we have

$$f(t) = \sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!} (t-x)^{i} + o(t-x)^{r}$$

and

$$g(t) = \sum_{i=0}^{r+1} \frac{g^{(i)}(x)}{i!} (t-x)^i + o(t-x)^{r+1}.$$

Hence, by using Schwarz inequality and Lemma 4 we obtain

$$J_2 = \sum_{i=1}^r \frac{f^{(r-i)}(x)g^{(i)}(x)}{i!(r-i)!}r! + O(n^{-1/2})$$
$$= \sum_{i=1}^r g^{(i)}(x)f^{(r-i)}(x) + O(n^{-\tau/2}),$$

uniformly on I'. Hence, $\Gamma_1 = O(n^{-\tau/2})$, uniformly on I'.

Again, by Leibnitz theorem, Theorem 2 and hypothesis (i) we obtain

$$\begin{split} \Gamma_2 &= \sum_{j=0}^k C(j,k) \sum_{i=0}^r \binom{r}{i} \int_0^1 W_{d_j n}^{(i)}(t,x) D^{r-i} \{g(x)(f(t) - f(x))\} dt \\ &= \sum_{i=0}^r \binom{r}{i} g^{(r-i)}(x) P_n^{(i)}(f,k,x) - (fg)^{(r)}(x) \\ &= O(n^{-\tau/2}), \text{ uniformly on } I'. \end{split}$$

Combining the estimates of Γ_1 and Γ_2 we obtain

$$\|P_n^{(r)}(fg,k,.) - (fg)^{(r)}\|_{C(I')} = O(n^{-\tau/2}).$$

Thus, by Lemma 5 and 7 we have

$$(fg)^{(r)} \in Liz(\beta, k+1, I'').$$

Hence, $f^{(r)} \in Liz(\beta, k+1, I_2)$ (in view of g(x) = 1 on I_2). This completes the proof of the implication $(i) \Rightarrow (ii)$ when $0 < \tau \leq 1$.

Now to prove the implication $(i) \Rightarrow (ii)$ for $0 < \tau < 2k + 2$, it is sufficient to assume it for $\tau \in (m - 1, m)$ and prove it for $\tau \in [m, m + 1)$, m = 1, 2, ..., 2k + 1. Since, the result holds for $\tau \in (m - 1, m)$, therefore $f^{(m+r-1)}$ exists and belongs to $Lip(1 - \delta; [z_1, w_1])$ for any interval $[z_1, w_1] \subset (a_1, b_1)$ and $\delta > 0$. Let z_2, w_2 be such that $I_2 \subset (z_2, w_2)$ and $[z_2, w_2] \subset (z_1, w_1)$. Let $g \in C_0^{\infty}$ be such that g(x) = 1 on I_2 and supp $g \in (z_2, w_2)$. Then, we have

$$\begin{aligned} \|P_n^{(r)}(fg,k,.) - (fg)^{(r)}\|_{C[z_2,w_2]} &\leq \|D^r \{P_n(g(x)(f(t) - f(x)),k,.\}\|_{C[z_2,w_2]} \\ &+ \|D^r \{P_n(f(t)(g(t) - g(x)),k,.\}\|_{C[z_2,w_2]} \\ &= \Sigma_3 + \Sigma_4, \text{ say.} \end{aligned}$$

Now, by Leibnitz theorem, Theorem 2 and assumption that (i) holds, we have

$$\begin{split} \Sigma_3 &= \|D^r \{g(x) P_n(f(t), k, .\} - (fg)^{(r)}\|_{C[z_2, w_2]} \\ &= \left\| \sum_{i=0}^r \binom{r}{i} g^{(r-i)} P_n^{(i)}(f, k, .) - (fg)^{(r)} \right\|_{C[z_2, w_2]} \\ &= \left\| \sum_{i=0}^r \binom{r}{i} g^{(r-i)} f^{(i)} - (fg)^{(r)} \right\|_{C[z_2, w_2]} + O(n^{-\tau/2}) \\ &= O(n^{-\tau/2}). \end{split}$$

Again, using Leibnitz theorem and Theorem 1, we obtain

$$\Sigma_{4} = \left\| -\sum_{i=0}^{r-1} {r \choose i} g^{(r-i)}(x) P_{n}^{(i)}(f(t), k, .) + P_{n}^{(r)}(f(t)(g(t) - g(x))\chi_{2}(t), k, .) \right\|_{C[z_{2}, w_{2}]} + o(n^{-(k+1)})$$

= $\|J_{3} + J_{4}\|_{C[z_{2}, w_{2}]} + o(n^{-(k+1)})$, say,

where $\chi_2(t)$ is the characteristic function of the interval $[z_1, w_1]$. Then, by Theorem 2, we get

$$J_3 = -\sum_{i=0}^{r-1} \binom{r}{i} g^{(r-i)}(x) f^{(i)}(x) + O\left(n^{-(k+1)}\right),$$

uniformly on $[z_2, w_2]$.

Since, by the induction hypothesis $f^{(m+r-1)}$ exists and belongs to $\text{Lip}(1-\delta; [z_1, w_1])$ for any $\delta > 0$, by Taylor's expansion of f about t = x, we obtain

$$J_{4} = \sum_{j=0}^{k} C(j,k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \int_{0}^{1} W_{d_{j}n}^{(r)}(t,x)(t-x)^{i}(g(t)-g(x))\chi_{2}(t) dt$$

+
$$\sum_{j=0}^{k} C(j,k) \int_{0}^{1} W_{d_{j}n}^{(r)}(t,x) \left(\frac{f^{(m+r-1)}(\xi) - f^{(m+r-1)}(x)}{(m+r-1)!}\right) \times$$

$$(t-x)^{m+r-1}(g(t) - g(x))\chi_{2}(t) dt$$

=
$$J_{5} + J_{6}, \text{ say.}$$

Using Theorem 1, we have

$$J_{5} = \sum_{j=0}^{k} C(j,k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \int_{0}^{1} W_{d_{j}n}^{(r)}(t,x)(t-x)^{i}(g(t)-g(x)) dt + o\left(n^{-(k+1)}\right)$$

= $J_{7} + o\left(n^{-(k+1)}\right)$, say.

Since $g \in C_0^{\infty}$, therefore we can write

$$J_{7} = \sum_{j=0}^{k} C(j,k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \sum_{p=1}^{m+r+1} \frac{g^{(p)}(x)}{p!} \int_{0}^{1} W^{(r)}_{d_{j}n}(t,x)(t-x)^{i+p} dt$$

+
$$\sum_{j=0}^{k} C(j,k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \int_{0}^{1} W^{(r)}_{d_{j}n}(t,x) \epsilon(t,x)(t-x)^{i+m+r+1} dt$$

=
$$J_{8} + J_{9}, \text{ say,}$$

where $\epsilon(t, x) \to 0$ as $t \to x$. By Lemma 4 and Theorem 1, we obtain

$$J_8 = \sum_{i=1}^r \frac{g^{(i)}(x)f^{(r-i)}(x)}{i!(r-i)!}r! + O\left(n^{-(k+1)}\right)$$
$$= \sum_{i=1}^r \binom{r}{i}g^{(i)}(x)f^{(r-i)}(x) + O\left(n^{-(k+1)}\right),$$

uniformly on $[z_2, w_2]$.

To estimate J_9 , it is sufficient to treat it without linear combination. Let

$$J \equiv P_n^{(r)}(\epsilon(t,x)(t-x)^{i+m+r+1};x).$$

By using Lemma 2 we have

$$\begin{aligned} |J| &\leq \sum_{\substack{2p+j \leq r\\p,j \geq 0}} n^p \frac{|q_{p,j,r}(x)|}{x^r (1-x)^r} \sum_{\nu=1}^n |\nu - nx|^j p_{n,\nu}(x) \times \\ &\int_0^1 p_{n-1,\nu-1}(t) |\epsilon(t,x)| |t-x|^{i+m+r+1} dt \\ &+ \frac{(n+r-1)!}{(n-1)!} (1-x)^{-n-r} |\epsilon(0,x)| x^{i+m+r+1} \\ &= J_{10} + J_{11}, \text{ say.} \end{aligned}$$

Since $\epsilon(t,x) \to 0$ as $t \to x$, for a given $\epsilon' > 0$ we can find a $\delta > 0$ such that $|\epsilon(t,x)| < \epsilon'$ whenever $0 < |t-x| < \delta$ and for $|t-x| \ge \delta$, $|\epsilon(t,x)| \le K$ for some K > 0. Hence

$$\begin{aligned} |J_{10}| &\leq \sum_{\substack{2p+j \leq r \\ p,j \geq 0}} n^p \frac{|q_{p,j,r}(x)|}{x^r (1-x)^r} \sum_{\nu=1}^n |k - nx|^j p_{n,\nu}(x) \times \\ & \left[\epsilon \int_{|t-x| < \delta} p_{n-1,\nu-1}(t) |t - x|^{i+m+r+1} dt + \frac{1}{\delta^s} \int_{|t-x| \geq \delta} p_{n-1,\nu-1}(t) K |t - x|^s dt \right], \\ & \text{for any } s > 0 \\ &= J_{12} + J_{13}, \text{ say.} \end{aligned}$$

Let $C_1 = \sup_{\substack{2p+j \leq r \\ p,j \geq 0}} |q_{p,j,r}(x)| / x^r (1-x)^r$. Applying Schwarz inequality for integration and then for summation and Lemma 4, 3 we have

$$\begin{aligned} |J_{12}| &\leq C_1 \epsilon' \sum_{\substack{2p+j \leq p \\ p,j \geq 0}} n^p \left(\sum_{\nu=1}^n (\nu - nx)^{2j} p_{n,\nu}(x) \right)^{1/2} \times \left(\int_0^1 p_{n-1,\nu-1}(t) dt \right)^{1/2} \\ &\qquad \left(\sum_{\nu=1}^n p_{n,\nu}(x) \int_{|t-x| < \delta} p_{n-1,\nu-1}(t) (t-x)^{2i+2m+2r+2} dt \right)^{1/2} \\ &\leq C_1 \epsilon' \sum_{\substack{2p+j \leq r \\ p,j \geq 0}} n^p O(n^{j/2}) O(n^{-(i+m+r+1)/2}) \\ &= \epsilon' O(n^{-(i+m+1)/2}), \ i \in \mathbb{N}^0 \\ &= \epsilon' O(n^{-(m+1)/2}). \end{aligned}$$

Next, again applying Schwarz inequality for integration and then for summation and Lemma 4, 3, on choosing s to be any positive integer > m + r + 1, we have

$$J_{13} \leq C_{1} \sum_{\substack{2p+j \leq r \\ p,j \geq 0}} n^{p+1} \sum_{\nu=1}^{n} p_{n,\nu}(x) |\nu - nx|^{j} \left(\int_{0}^{1} p_{n-1,\nu-1}(t)(t-x)^{2s} dt \right)^{1/2}$$

$$\leq C_{1} \sum_{\substack{2p+j \leq r \\ p,j \geq 0}} n^{p} \left(\sum_{\nu=1}^{n} p_{n,\nu}(x)(\nu - nx)^{2j} \right)^{1/2} \times \left(n \sum_{\substack{\nu=1 \\ \nu=1}}^{n} p_{n,\nu}(x) \int_{0}^{1} p_{n-1,\nu-1}(t)(t-x)^{2s} dt \right)^{1/2}$$

$$\leq C_{1} \sum_{\substack{2p+j \leq r \\ p,j \geq 0}} n^{p} O(n^{j/2}) O(n^{-s/2})$$

$$= O(n^{(r-s)/2})$$

$$= o(n^{-(m+1)/2}).$$

Combining the estimates of J_{12} and J_{13} , we get

$$J_{10} = \epsilon' O(n^{-(m+1)/2}) + o(n^{-(m+1)/2}, \text{ uniformly on } [z_2, w_2].$$

Clearly,

$$J_{11} = O(n^{-s}) \text{ (for any } s > 0)$$

= $O(n^{-\tau/2})$, uniformly on $[z_2, w_2]$.

Therefore,

 $J_9 = O(n^{-\tau/2})$, uniformly on $[z_2, w_2]$.

Next, using the mean value theorem, Schwarz inequality for integration and then for summation and Lemma 4, 3 for any $\delta > 0$ we have

$$\begin{split} |J_{6}| &\leq \\ &\leq \sum_{j=0}^{k} |C(j,k)| \int_{0}^{1} \left| W_{djn}^{(r)}(t,x) \right| \\ &\quad \left\{ \frac{|f^{(m+r-1)}(\xi) - f^{(m+r-1)}(x)|}{(m+r-1)!} |t-x|^{m+r}|g'(\eta)|\chi_{2}(t) \right\} dt \\ &\leq M \|g'\|_{C[z_{2},w_{2}]} \sum_{j=0}^{k} |C(j,k)| \int_{0}^{1} \left| W_{djn}^{(r)}(t,x) \right| |t-x|^{1-\delta}||t-x|^{m+r}\chi_{2}(t) dt \\ &\leq M \|g'\|_{C[z_{2},w_{2}]} \sum_{j=0}^{k} |C(j,k)| \left[d_{j} \sum_{\nu=1}^{n} |p_{djn}^{(r)}(x)| \int_{0}^{1} p_{n-1,\nu-1}(t)|t-x|^{m+r+1-\delta} \chi_{2}(t) dt \\ &+ \frac{(d_{j}n+r-1)!}{(d_{j}n-1)!} (1-x)^{-d_{j}n-r} x^{m+r+1-\delta} \right] \\ &\cdot = O(n^{(-(m+1-\delta)/2}) + O(n^{-s}), \text{ for any } s > 0 \\ &= O(n^{-\tau/2}), \text{ on choosing } 0 < \delta \le m+1-\tau(>0). \end{split}$$

Combining the above estimates, we get

$$\|M_n^{(r)}(fg,k,.) - (fg)^{(r)}\|_{C[z_2,w_2]} = O(n^{-\tau/2}).$$

Since $\operatorname{supp} fg \subset (z_2, w_2)$ by Lemmas 5 and 7 it follows that $(fg)^{(r)} \in \operatorname{Liz}(\beta, k+1; z_2, w_2)$. Since g(x) = 1 on I_2 , it follows that $f^{(r)} \in \operatorname{Liz}(\beta, k+1; I_2)$. This completes the proof of $(i) \to (ii)$. The equivalence of (ii) and (iii) is well known [2]. The implication $(iii) \to (iv)$ follows from Theorem 2. This completes the proof of the inverse theorem.

Acknowledgement: The author Karunesh Kumar Singh is thankful to the "Council of Scientific and Industrial Research", New Delhi, India for financial support to carry out the above work.

References

 V. Gupta and N. Ispir, On simultaneous approximation for some Bernstein-type operators, Int. J. Math and Math Sci. 71 (2004), 3951-3958.

- [2] S. Goldberg and A. Meir, Minimum moduli of ordinary differential operators, Proc. London Math. Soc. 23 (1971), 1-15.
- [3] V. Gupta and P. Maheshwari, Bézier variant of a new Durrmeyer-type operators, Riv. Mat. Univ. Parma 7 (2) (2003), 9-21.
- [4] P. N. Agrawal, Karunesh Kumar Singh and A. R. Gairola, L_p- Approximation by iterates of Bernstein-Durrmeyer Type polynomials, Int. J. Math. Anal. 4 (2010), 469-479.
- [5] Karunesh Kumar Singh and P. N. Agrawal, Simultaneous approximation by a linear combination of Bernstein-Durrmeyer type polynomials, Bull. Math. Anal. Appl., 3(2) (2011), 70-82.
- [6] H. Berens and G.G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), 693-708.

Karunesh Singh Department of Mathematics Indian Institute of Technology Roorkee Roorkee-247667(Uttarakhand), India email:kksiitr.singh@gmail.com

P.N. Agrawal Department of Mathematics Indian Institute of Technology Roorkee Roorkee-247667(Uttarakhand), India email: pnappfma@gmail.com