AN INVERSE THEOREM IN SIMULTANEOUS APPROXIMATION FOR A LINEAR COMBINATION OF BERNSTEIN-DURRMEYER TYPE POLYNOMIALS

Karunesh Singh and P.N. Agrawal

Abstract. The present paper is a continuation of our work in [5]. Here we study an inverse result in simultaneous approximation for a linear combination of Bernstein-Durrmeyer type polynomials by Peetre's K- functional approach.

2000 Mathematics Subject Classification: 41A27, 41A28 (41A36).

Keywords: linear combination, simultaneous approximation, modulus of continuity.

1. Introduction

The Bernstein-Durrmeyer type polynomial operators

$$
P_{n}(f ; x)=n \sum_{\nu=1}^{n} p_{n, \nu}(x) \int_{0}^{1} p_{n-1, \nu-1}(t) f(t) d u+(1-x)^{n} f(0)
$$

where

$$
p_{n, \nu}(x)=\binom{n}{\nu} x^{\nu}(1-x)^{n-\nu}, \quad 0 \leqslant x \leqslant 1,
$$

defined on $L_{B}[0,1]$, the space of bounded and Lebesgue integrable functions on $[0,1]$ were introduced by Gupta and Maheshwari [3] wherein they studied the approximation of functions of bounded variation by these operators. In [1] Gupta and Ispir studied the pointwise convergence and Voronovskaja-type asymptotic results in simultaneous approximation for these operators.
For $f \in L_{B}[0,1]$, the operators $P_{n}(f ; x)$ can be expressed as

$$
P_{n}(f ; x)=\int_{0}^{1} W_{n}(t, x) f(t) d t
$$

Karunesh Singh, P.N. Agrawal - An inverse theorem in simultaneous ...
where

$$
W_{n}(t, x)=n \sum_{\nu=1}^{n} p_{n, \nu}(x) p_{n-1, \nu-1}(t)+(1-x)^{n} \delta(t),
$$

$\delta(t)$ being the Dirac-delta function, is the kernel of the operators.
It turns out that the order of approximation by these operators is at best $O\left(n^{-1}\right)$, however smooth the function may be. In order to speed up the rate of convergence by the operators P_{n}, we considered the linear combination $P_{n}(f, k,$.$) of the operators$ P_{n}, as

$$
P_{n}(f, k, x)=\sum_{j=0}^{k} C(j, k) P_{d_{j} n}(f, x),
$$

where

$$
C(j, k)=\prod_{i=0, i \neq j}^{k} \frac{d_{j}}{d_{j}-d_{i}}, k \neq 0 \text { and } C(0,0)=1,
$$

$d_{0}, d_{1}, \ldots d_{k}$ being $(k+1)$ arbitrary but fixed distinct positive integers.
Throughout this paper, we assume $C(I)$ the space of all continuous functions on the interval $I,\|\cdot\|_{C(I)}$ the sup norm on the space $C(I)$ and C a constant not necessarily the same in the different cases.
Let $I=[a, b]$ be a fixed subinterval of $(0,1), I^{\prime}=\left[a^{\prime}, b^{\prime}\right] \subset(a, b)$ and $I^{\prime \prime}=\left[a^{\prime \prime}, b^{\prime \prime}\right] \subset$ $\left(a^{\prime}, b^{\prime}\right)$. Further, let $G^{r}\left(I^{\prime}\right)=\left\{g \in C_{0}^{r}: \operatorname{supp} g \subset I^{\prime}\right\}$.
For $f \in G^{r}\left(I^{\prime}\right)$ and $g \in G^{2 k+r+2}\left(I^{\prime}\right)$ we define
$K_{r}\left(\xi, f, I^{\prime}\right)=\inf _{g \in G^{2 k+r+2}\left(I^{\prime}\right)}\left\{\left\|f^{(r)}-g^{(r)}\right\|_{C\left(I^{\prime}\right)}+\xi\left(\left\|g^{(r)}\right\|_{C\left(I^{\prime}\right)}+\left\|g^{(2 k+2+r)}\right\|_{C\left(I^{\prime}\right)}\right)\right\}$,
where $0<\xi \leq 1$.
For $0<\beta<2$, we define $C_{0}^{r}\left(\beta, k+1, I^{\prime}\right)$ as the class of all $f \in G^{r}\left(I^{\prime}\right)$ such that the functional

$$
\|f\|_{\beta, r}=\sup _{0<\xi \leq 1} \xi^{-\beta / 2} K_{r}\left(\xi, f, I^{\prime}\right)<C, \text { for some } C>0 .
$$

2. Auxiliary Results

In this section we give some results which are useful in establishing our main theorem.

For sufficiently small $\eta>0,0<a_{1}<a_{2}<b_{2}<b_{1}<1, I_{i}=\left[a_{i}, b_{i}\right], i=1,2$ and $m \in \mathbb{N}$, the Steklov mean $f_{\eta, m}$ of m-th order corresponding to $f \in C[a, b]$ is defined as follows:

$$
f_{\eta, m}(t)=\eta^{-m} \int_{-\eta / 2}^{\eta / 2} \ldots \int_{-\eta / 2}^{\eta / 2}\left(f(t)+(-1)^{m-1} \Delta_{\sum_{i=1}^{m} t_{i}}^{m} f(t)\right) \prod_{i=1}^{m} d t_{i},, t \in I_{1},
$$

where Δ_{h}^{m} is the m-th order forward difference operator with step length h.
Lemma 1. [4] For the function $f_{\eta, m}$, we have
(a) $f_{\eta, m}$ has derivatives up to order m over I_{1};
(b) $\left\|f_{\eta, m}^{(r)}\right\|_{C\left(I_{1}\right)} \leqslant C_{r} \omega_{r}(f, \eta,[a, b]), r=1,2, \ldots, m$;
(c) $\left\|f-f_{\eta, m}\right\|_{C\left(I_{1}\right)} \leqslant C_{m+1} \omega_{m}(f, \eta,[a, b])$;
(d) $\left\|f_{\eta, m}\right\|_{C\left(I_{1}\right)} \leqslant C_{m+2} \eta^{-m}\|f\|_{C[a, b]}$;
(e) $\left\|f_{\eta, m}^{(r)}\right\|_{C\left(I_{1}\right)} \leqslant C_{m+3}\|f\|_{C[a, b]}$,
where $C_{i}^{\prime} s$ are certain constants that depend on i but are independent of f and η.
Lemma 2. [4] For the function $p_{n, \nu}(t)$, there holds the result

$$
t^{r}(1-t)^{r} \frac{d^{r}}{d t^{r}}\left(p_{n, \nu}(t)\right)=\sum_{\substack{2 i+j \leqslant r \\ i, j \geq 0}} n^{i}(\nu-n t)^{j} q_{i, j, r}(t) p_{n, \nu}(t),
$$

where $q_{i, j, r}(t)$ are certain polynomials in t independent of n and ν.
Lemma 3. [1] For the function $u_{n, m}(t), m \in \mathbb{N}^{0}$ (the set of non-negative integers) defined as

$$
u_{n, m}(t)=\sum_{\nu=1}^{n} p_{n, \nu}(t)\left(\frac{\nu}{n}-t\right)^{m}
$$

we have $u_{n, 0}(t)=1$ and $u_{n, 1}(t)=0$. Further, there holds the recurrence relation

$$
n u_{n, m+1}(t)=t\left[u_{n, m}^{\prime}(t)+m u_{n, m-1}(t)\right], m=1,2,3, \ldots
$$

Consequently,
(i) $u_{n, m}(t)$ is a polynomial in t of degree at most m;
(ii) for every $t \in[0, \infty)$, $u_{n, m}(t)=O\left(n^{-[(m+1) / 2]}\right)$, where $[\alpha]$ denotes the integral part of α.

Lemma 4. [4] For the function $\mu_{n, m}(t)$, we have $\mu_{n, 0}(t)=1, \mu_{n, 1}(t)=\frac{(-t)}{(n+1)}$ and there holds the recurrence relation
$(n+m+1) \mu_{n, m+1}(t)=t(1-t)\left\{\mu_{n, m}^{\prime}(t)+2 m \mu_{n, m-1}(t)\right\}+(m(1-2 t)-t) \mu_{n, m}(t)$,
for $m \geq 1$.
Consequently, we have
(i) $\mu_{n, m}(t)$ is a polynomial in t of degree m;
(ii) for every $t \in[0,1], \mu_{n, m}(t)=\mathcal{O}\left(n^{-[(m+1) / 2]}\right)$, where $[\beta]$ is the integer part of β.

Theorem 1. [5] Let $f \in L_{B}[0,1]$ admitting a derivative of order $(2 k+r+2)$ at a point $x \in(0,1)$ then we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k+1}\left[P_{n}^{(r)}(f, k, x)-f^{(r)}(x)\right]=\sum_{\nu=r}^{2 k+r+2} \frac{f^{(\nu)}(x)}{\nu!} Q(\nu, k, r, x) \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{n \rightarrow \infty} n^{k+1}\left[P_{n}^{(r)}(f, k, x)-f^{(r)}(x)\right]=0 \tag{2}
\end{equation*}
$$

where $Q(\nu, k, r, x)$ are certain polynomials in x of degree ν. Further, the limits in (1) and (2) hold uniformly in [a,b] if $f^{(2 k+r+2)}$ is continuous on $(a-\eta, b+\eta) \subset(0,1), \eta>0$.

Lemma 5. If $f^{(r)} \in G^{r}\left(I^{\prime \prime}\right)$ and

$$
\left\|P_{n}^{(r)}(f, k, .)-f^{(r)}\right\| \leq C n^{-\beta(k+1) / 2}
$$

then

$$
\begin{equation*}
K_{r}\left(\xi, f, I^{\prime}\right) \leq C\left(n^{-\beta(k+1) / 2}+n^{k+1} \xi K_{r}\left(n^{-(k+1)}, f, I^{\prime}\right)\right) \tag{3}
\end{equation*}
$$

Consequenlty, $K_{r}\left(\xi, f, I^{\prime}\right) \leq C \xi^{\beta / 2}$ i.e. $f \in C_{0}^{r}\left(\beta, k+1, I^{\prime}\right)$
Proof. Following [6] it is enough to show that 3 holds for all n sufficiently large.
Since $\operatorname{supp} f \subset I^{\prime \prime}$, in view of Theorem 11 [5] we can find a function $h \in G^{2 k+r+2}\left(I^{\prime}\right)$ such that for $i=r$ and $2 k+2+r$, there holds

$$
\left\|h^{(i)}-P_{n}^{(i)}(f, k, .)\right\|_{C(I)} \leq C n^{-(k+1)}, \text { for all } n \text { sufficiently large. }
$$

Therefore,

$$
\begin{aligned}
K_{r}\left(\xi, f, I^{\prime}\right) & \leq 3 C n^{-(k+1)}+\left\|f^{(r)}-P_{n}^{(i)}(f, k, .)\right\|_{C(I)} \\
& +\xi\left(\left\|P_{n}^{(r)}(f, k, .)\right\|+\left\|P_{n}^{(2 k+r+2 r)}(f, k, .)\right\|_{C(I)}\right)
\end{aligned}
$$

Hence, it is sufficient to show that for each $\left.g \in G^{2 k+r+2}\left(I^{\prime}\right)\right)$,

$$
\begin{equation*}
\left\|P_{n}^{(2 k+2+r)}(f, k, .)\right\|_{C\left(I^{\prime}\right)} \leq C n^{(k+1)}\left(\left\|f^{(r)}-g^{(r)}\right\|_{C(I)}+n^{-(k+1)} g^{(2 k+2+r)}\right) . \tag{4}
\end{equation*}
$$

Now,

$$
\begin{aligned}
\left\|P_{n}^{(2 k+2+r)}(f, k, .)\right\|_{C\left(I^{\prime}\right)} & \leq\left\|P_{n}^{(2 k+2+r)}(f-g, k, .)\right\|_{C\left(I^{\prime}\right)}+\left\|P_{n}^{(2 k+2+r)}(g, k, .)\right\|_{C\left(I^{\prime}\right)} \\
& =\Sigma_{1}+\Sigma_{2} .
\end{aligned}
$$

By using Taylor's expansion of $(f-g)(t)$ about $t=x$, Lemmas 4. 2. Schwarz inequality for integration and then for summation, we get

$$
\Sigma_{1} \leq C n^{(k+1)}\left\|f^{(r)}-g^{(r)}\right\|_{C(I)} \quad\left(\operatorname{supp} f \cup \operatorname{supp} g \subset I^{\prime}\right)
$$

Similarly, using the Taylor's expansion of $g(t)$ about $t=x$, we get

$$
\Sigma_{2} \leq C\left\|g^{(2 k+2+r)}\right\|_{C(I)}
$$

Combining the estimates of Σ_{1} and Σ_{2}, the inequality 4 follows. Hence, 3 holds.

Lemma 6. If $f^{(r)} \in G^{r}\left(I^{\prime \prime}\right)$ and $f \in C_{0}^{r}\left(\beta, k+1, I^{\prime}\right)$ then for sufficiently large n, we have

$$
\left\|P_{n}^{(r)}(f, k, .)-f^{(r)}\right\|_{C(I)}=O\left(n^{-\beta(k+1) / 2}\right) .
$$

Proof. For $g \in G^{2 k+r+2}\left(I^{\prime}\right)$, we have

$$
\begin{aligned}
\left\|P_{n}^{(r)}(f, k, .)-f^{(r)}\right\|_{C(I)} & \leq\left\|P_{n}^{(r)}(f-g, k, .)\right\|_{C(I)}+\left\|P_{n}^{(r)}(g, k, .)-f^{(r)}\right\|_{C(I)} \\
& =\Sigma_{1}+\Sigma_{2} .
\end{aligned}
$$

Proceeding along the lines of estimate Σ_{1} in Lemma 6 and in view of $\operatorname{supp}(f-g) \subset I^{\prime}$, we get

$$
\Sigma_{1} \leq C\left\|f^{(r)}-g^{(r)}\right\|_{C(I)} .
$$

Using Theorem 1 and intermediate derivative property (2 , p. 5) we obtain

$$
\Sigma_{2} \leq C\left\|f^{(r)}-g^{(r)}\right\|_{C(I)}+C n^{-(k+1)}\left(\left\|g^{(r)}\right\|_{C\left(I^{\prime}\right)}+\left\|g^{(2 k+2+r)}\right\|_{C\left(I^{\prime}\right)}\right) .
$$

Combining the estimates of Σ_{1} and Σ_{2}, we get

$$
\begin{aligned}
\left\|P_{n}^{(r)}(f, k, .)-f^{(r)}\right\|_{C(I)} & \leq C \cdot K_{r}\left(n^{-(k+1)}, f ; I^{\prime}\right) \\
& \leq C \cdot O\left(n^{-\beta(k+1) / 2}\right)
\end{aligned}
$$

since $f \in C_{0}^{r}\left(\beta, k+1, I^{\prime}\right)$.

Lemma 7. If $f^{(r)} \in G^{r}\left(I^{\prime \prime}\right)$ then

$$
f \in C_{0}^{r}\left(\beta, k+1, I^{\prime}\right) \Leftrightarrow f^{(r)} \in \operatorname{Liz}\left(\beta, k+1, I^{\prime}\right) .
$$

Proof. Let $|\delta|<h$ and $g \in G^{2 k+r+2}\left(I^{\prime}\right)$. Then, if $f \in C_{0}^{r}\left(\beta, k+1, I^{\prime}\right)$ we get

$$
\begin{aligned}
\left|\Delta_{\delta}^{(2 k+2)} f^{(r)}(x)\right| & \leq\left|\Delta_{\delta}^{(2 k+2)}\left(f^{(r)}(x)-g^{(r)}(x)\right)\right|+\left|\Delta_{\delta}^{(2 k+2)} g^{(r)}(x)\right| \\
& \leq 2^{2 k+2}\left\|f^{(r)}-g^{(r)}\right\|_{C\left(I^{\prime}\right)}+\delta^{(2 k+2)}\left\|g^{(2 k+2+r)}\right\|_{C\left(I^{\prime}\right)} \\
& \leq 2^{2 k+2} C \cdot K_{r}\left(\delta^{(2 k+2)}, f ; I^{\prime}\right) \\
& \leq 2^{2 k+2} C \cdot \delta^{\beta(k+1)} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\omega_{2 k+2}\left(f^{(r)}, h ; I\right) & \leq \sup _{|\delta| \leq h}\left|\Delta_{\delta}^{(2 k+2)} f^{(r)}(x)\right| \\
& \leq C . h^{\beta(k+1)}
\end{aligned}
$$

i.e. $f^{(r)} \in \operatorname{Liz}\left(\beta, k+1, I^{\prime}\right)$.

Conversely, suppose that $f^{(r)} \in \operatorname{Liz}\left(\beta, k+1, I^{\prime}\right)$ and $f_{\eta, 2 k+r+2}$ be the $(2 k+r+2)$ th order Steklov mean corresponding to f as defined in. Hence $f_{\eta, 2 k+r+2}(x) \in G^{2 k+r+2}\left(I^{\prime}\right)$, by property (b) of Lemma 1 we have

$$
\begin{aligned}
\left\|f_{\eta, 2 k+r+2}^{(2 k+2+r)}(x)\right\|_{C\left(I^{\prime}\right)} & \leq C \eta^{-(2 k+r+2)} \omega_{2 k+r+2}(f, \eta ; I) \\
& \leq C \eta^{-(2 k+r+2)} \eta^{r} \omega_{2 k+2}\left(f^{(r)}, \eta ; I\right) \\
& \leq C \eta^{-(2 k+2)+\beta(k+1)} .
\end{aligned}
$$

Using property (c) of Lemma 1, we get

$$
\left.\left\|f_{\eta, 2 k+r+2}^{(r)}(x)-f^{(r)}\right\|_{C\left(I^{\prime}\right)} \leq C \omega_{2 k+2}\left(f^{(r)}, \eta ; I\right)\right) \leq C n^{\beta(k+1)},
$$

which implies that $f \in C_{0}^{r}\left(\beta, k+1, I^{\prime}\right)$.

Theorem 2. [5] Let $p \in \mathbb{N}, 1 \leq p \leq 2 k+2$ and $f \in L_{B}[0,1]$. If $f^{(p+r)}$ exists and is continuous on $(a-\eta, b+\eta) \subset[0,1], \eta>0$ then

$$
\left\|P_{n}^{(r)}(f, k, .)-f^{(r)}\right\|_{C(I)} \leq \max \left\{C_{1} n^{-p / 2} \omega\left(f^{(p+r)}, n^{-1 / 2}\right), C_{2} n^{-(k+1)}\right\},
$$

where $C_{1}=C_{1}(k, p, r), C_{2}=C_{2}(k, p, r, f)$ and $\omega\left(f^{(p+r)}, \delta\right)$ is the modulus of continuity of $f^{(p+r)}$ on $(a-\eta, b+\eta)$.

3. Main Result

Theorem 3. Let $f \in L_{B}[0,1]$ and $0<\alpha<2$. Then, in the following statements, the implications (i) \Rightarrow (ii) \Leftrightarrow (iii) \Rightarrow (iv) hold:
(i) $\left\|P_{n}^{(r)}(f, k, .)-f^{(r)}\right\|_{C\left[a_{1}, b_{1}\right]}=O\left(n^{-\alpha(k+1) / 2}\right)$;
(ii) $f \in \operatorname{Liz}\left(\alpha, k, a_{2}, b_{2}\right)$;
(iii) (a) for $m<\alpha(k+1)<m+1, m=0,1, \ldots .2 k-1, f^{(m)}$ exists and belongs to the class $\operatorname{Lip}\left(\alpha k-m, a_{2}, b_{2}\right)$,
(b) for $\alpha(k+1)=m+1, m=0,1, \ldots .2 k-2, f^{(m)}$ exists and belongs to the class $\operatorname{Lip}^{*}\left(1, a_{2}, b_{2}\right)$;
(iv) $\left\|P_{n}^{(r)}(f, .)-f(.)\right\|_{C\left[a_{3}, b_{3}\right]}=O\left(n^{-\alpha(k+1) / 2}\right)$.

Proof. To show $(i) \Rightarrow$ (ii) we reassume that $a_{1}<a^{\prime}<a^{\prime \prime}<a_{2}, b_{2}<b^{\prime}<b^{\prime \prime}<b^{\prime}<$ $b_{1}, I=\left[a^{\prime}, b^{\prime}\right]$ and $I^{\prime \prime}=\left[a^{\prime \prime}, b^{\prime \prime}\right]$. Writing $\tau=\beta(k+1)$, we first consider the case $0<\tau \leq 1$.
Let $g \in C_{0}^{\infty}$ be such that $\operatorname{supp} g \subset I^{\prime \prime}$ and $g(x)=1$ on I_{2}. Writing $D \equiv \frac{d}{d x}$, then for $x \in I^{\prime}$ we have

$$
\begin{aligned}
P_{n}^{(r)}(f g, k, x)-(f g)^{(r)}(x) & =D^{r}\left\{P_{n}((f g)(t)-(f g)(x), k, x)\right\} \\
& =D^{r}\left\{P_{n}((f(t)(g(t)-g(x)), k, x)\}\right. \\
& +D^{r}\left\{P_{n}((g(x)(f(t)-f(x)), k, x)\}\right. \\
& =\Gamma_{1}+\Gamma_{2}, \text { say } .
\end{aligned}
$$

Using Leibnitz theorem

$$
\begin{aligned}
\Gamma_{1} & =\sum_{j=0}^{k} C(j, k) D^{r}\left\{\int_{0}^{1} W_{d_{j} n}(t, x) f(t)(g(t)-g(x)) d t\right\} \\
& =\sum_{j=0}^{k} C(j, k) \sum_{i=0}^{r}\binom{r}{i} \int_{0}^{1} W_{d_{j} n}^{(i)}(t, x) D^{r-i}\{f(t)(g(t)-g(x))\} d t \\
& =-\sum_{i=0}^{r-1}\binom{r}{i} g^{(r-i)}(x) P_{n}^{(i)}(f, k, x) \\
& +\sum_{j=0}^{k} C(j, k) \int_{0}^{1} W_{d_{j} n}^{(r)}(t, x) f(t)(g(t)-g(x)) d t \\
& =J_{1}+J_{2}, \text { say. }
\end{aligned}
$$

By Theorem 2, we have

$$
J_{1}=-\sum_{i=0}^{r-1}\binom{r}{i} g^{(r-i)}(x) f^{(i)}(x)+O\left(n^{-\tau / 2}\right) \text {, uniformly on } I^{\prime}
$$

Next, we estimate J_{2}. By Taylor's expansion of f and g at $t=x$, we have

$$
f(t)=\sum_{i=0}^{r} \frac{f^{(i)}(x)}{i!}(t-x)^{i}+o(t-x)^{r}
$$

and

$$
g(t)=\sum_{i=0}^{r+1} \frac{g^{(i)}(x)}{i!}(t-x)^{i}+o(t-x)^{r+1} .
$$

Hence, by using Schwarz inequality and Lemma 4 we obtain

$$
\begin{aligned}
J_{2} & =\sum_{i=1}^{r} \frac{f^{(r-i)}(x) g^{(i)}(x)}{i!(r-i)!} r!+O\left(n^{-1 / 2}\right) \\
& =\sum_{i=1}^{r} g^{(i)}(x) f^{(r-i)}(x)+O\left(n^{-\tau / 2}\right),
\end{aligned}
$$

uniformly on I^{\prime}.
Hence, $\Gamma_{1}=O\left(n^{-\tau / 2}\right)$, uniformly on I^{\prime}.

Again, by Leibnitz theorem, Theorem 2 and hypothesis (i) we obtain

$$
\begin{aligned}
\Gamma_{2} & =\sum_{j=0}^{k} C(j, k) \sum_{i=0}^{r}\binom{r}{i} \int_{0}^{1} W_{d_{j} n}^{(i)}(t, x) D^{r-i}\{g(x)(f(t)-f(x))\} d t \\
& =\sum_{i=0}^{r}\binom{r}{i} g^{(r-i)}(x) P_{n}^{(i)}(f, k, x)-(f g)^{(r)}(x) \\
& =O\left(n^{-\tau / 2}\right), \text { uniformly on } I^{\prime} .
\end{aligned}
$$

Combining the estimates of Γ_{1} and Γ_{2} we obtain

$$
\left\|P_{n}^{(r)}(f g, k, .)-(f g)^{(r)}\right\|_{C\left(I^{\prime}\right)}=O\left(n^{-\tau / 2}\right)
$$

Thus, by Lemma 5 and 7 we have

$$
(f g)^{(r)} \in \operatorname{Liz}\left(\beta, k+1, I^{\prime \prime}\right)
$$

Hence, $f^{(r)} \in \operatorname{Liz}\left(\beta, k+1, I_{2}\right)$ (in view of $g(x)=1$ on I_{2}).
This completes the proof of the implication $(i) \Rightarrow(i i)$ when $0<\tau \leq 1$.
Now to prove the implication $(i) \Rightarrow(i i)$ for $0<\tau<2 k+2$, it is sufficient to assume it for $\tau \in(m-1, m)$ and prove it for $\tau \in[m, m+1), m=1,2, \ldots, 2 k+1$. Since, the result holds for $\tau \in(m-1, m)$, therefore $f^{(m+r-1)}$ exists and belongs to $\operatorname{Lip}\left(1-\delta ;\left[z_{1}, w_{1}\right]\right)$ for any interval $\left[z_{1}, w_{1}\right] \subset\left(a_{1}, b_{1}\right)$ and $\delta>0$.
Let z_{2}, w_{2} be such that $I_{2} \subset\left(z_{2}, w_{2}\right)$ and $\left[z_{2}, w_{2}\right] \subset\left(z_{1}, w_{1}\right)$. Let $g \in C_{0}^{\infty}$ be such that $g(x)=1$ on I_{2} and $\operatorname{supp} g \in\left(z_{2}, w_{2}\right)$. Then, we have

$$
\begin{aligned}
\left\|P_{n}^{(r)}(f g, k, .)-(f g)^{(r)}\right\|_{C\left[z_{2}, w_{2}\right]} & \leq \| D^{r}\left\{P_{n}(g(x)(f(t)-f(x)), k, .\} \|_{C\left[z_{2}, w_{2}\right]}\right. \\
& +\| D^{r}\left\{P_{n}(f(t)(g(t)-g(x)), k, .\} \|_{C\left[z_{2}, w_{2}\right]}\right. \\
& =\Sigma_{3}+\Sigma_{4}, \text { say }
\end{aligned}
$$

Now, by Leibnitz theorem, Theorem 2 and assumption that (i) holds, we have

$$
\begin{aligned}
\Sigma_{3} & =\| D^{r}\left\{g(x) P_{n}(f(t), k, .\}-(f g)^{(r)} \|_{C\left[z_{2}, w_{2}\right]}\right. \\
& =\left\|\sum_{i=0}^{r}\binom{r}{i} g^{(r-i)} P_{n}^{(i)}(f, k, .)-(f g)^{(r)}\right\|_{C\left[z_{2}, w_{2}\right]} \\
& =\left\|\sum_{i=0}^{r}\binom{r}{i} g^{(r-i)} f^{(i)}-(f g)^{(r)}\right\|_{C\left[z_{2}, w_{2}\right]}+O\left(n^{-\tau / 2}\right) \\
& =O\left(n^{-\tau / 2}\right)
\end{aligned}
$$

Again, using Leibnitz theorem and Theorem 1. we obtain

$$
\begin{aligned}
\Sigma_{4}= & \left\|-\sum_{i=0}^{r-1}\binom{r}{i} g^{(r-i)}(x) P_{n}^{(i)}(f(t), k, .)+P_{n}^{(r)}\left(f(t)(g(t)-g(x)) \chi_{2}(t), k, .\right)\right\|_{C\left[z_{2}, w_{2}\right]} \\
& \quad+o\left(n^{-(k+1)}\right) \\
= & \left\|J_{3}+J_{4}\right\|_{C\left[z_{2}, w_{2}\right]}+o\left(n^{-(k+1)}\right), \text { say, }
\end{aligned}
$$

where $\chi_{2}(t)$ is the characteristic function of the interval $\left[z_{1}, w_{1}\right]$.
Then, by Theorem 2, we get

$$
J_{3}=-\sum_{i=0}^{r-1}\binom{r}{i} g^{(r-i)}(x) f^{(i)}(x)+O\left(n^{-(k+1)}\right)
$$

uniformly on $\left[z_{2}, w_{2}\right]$.
Since, by the induction hypothesis $f^{(m+r-1)}$ exists and belongs to $\operatorname{Lip}\left(1-\delta ;\left[z_{1}, w_{1}\right]\right)$ for any $\delta>0$, by Taylor's expansion of f about $t=x$, we obtain

$$
\begin{aligned}
J_{4}= & \sum_{j=0}^{k} C(j, k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \int_{0}^{1} W_{d_{j} n}^{(r)}(t, x)(t-x)^{i}(g(t)-g(x)) \chi_{2}(t) d t \\
& +\sum_{j=0}^{k} C(j, k) \int_{0}^{1} W_{d_{j} n}^{(r)}(t, x)\left(\frac{f^{(m+r-1)}(\xi)-f^{(m+r-1)}(x)}{(m+r-1)!}\right) \times \\
& (t-x)^{m+r-1}(g(t)-g(x)) \chi_{2}(t) d t \\
= & J_{5}+J_{6}, \text { say. }
\end{aligned}
$$

Using Theorem 1, we have

$$
\begin{aligned}
J_{5} & =\sum_{j=0}^{k} C(j, k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \int_{0}^{1} W_{d_{j} n}^{(r)}(t, x)(t-x)^{i}(g(t)-g(x)) d t+o\left(n^{-(k+1)}\right) \\
& =J_{7}+o\left(n^{-(k+1)}\right), \text { say. }
\end{aligned}
$$

Since $g \in C_{0}^{\infty}$, therefore we can write

$$
\begin{aligned}
J_{7} & =\sum_{j=0}^{k} C(j, k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \sum_{p=1}^{m+r+1} \frac{g^{(p)}(x)}{p!} \int_{0}^{1} W_{d_{j} n}^{(r)}(t, x)(t-x)^{i+p} d t \\
& +\sum_{j=0}^{k} C(j, k) \sum_{i=0}^{m+r-1} \frac{f^{(i)}(x)}{i!} \int_{0}^{1} W_{d_{j} n}^{(r)}(t, x) \epsilon(t, x)(t-x)^{i+m+r+1} d t \\
& =J_{8}+J_{9}, \text { say }
\end{aligned}
$$

where $\epsilon(t, x) \rightarrow 0$ as $t \rightarrow x$.
By Lemma 4 and Theorem 1, we obtain

$$
\begin{aligned}
J_{8} & =\sum_{i=1}^{r} \frac{g^{(i)}(x) f^{(r-i)}(x)}{i!(r-i)!} r!+O\left(n^{-(k+1)}\right) \\
& =\sum_{i=1}^{r}\binom{r}{i} g^{(i)}(x) f^{(r-i)}(x)+O\left(n^{-(k+1)}\right),
\end{aligned}
$$

uniformly on $\left[z_{2}, w_{2}\right]$.
To estimate J_{9}, it is sufficient to treat it without linear combination. Let

$$
J \equiv P_{n}^{(r)}\left(\epsilon(t, x)(t-x)^{i+m+r+1} ; x\right) .
$$

By using Lemma 2 we have

$$
\begin{aligned}
|J| \leq & \sum_{\substack{2 p+j \leq r \\
p, j \geq 0}} n^{p} \frac{\left|q_{p, j, r}(x)\right|}{x^{r}(1-x)^{r}} \sum_{\nu=1}^{n}|\nu-n x|^{j} p_{n, \nu}(x) \times \\
& \quad \int_{0}^{1} p_{n-1, \nu-1}(t)|\epsilon(t, x)||t-x|^{i+m+r+1} d t \\
+ & \frac{(n+r-1)!}{(n-1)!}(1-x)^{-n-r}|\epsilon(0, x)| x^{i+m+r+1} \\
= & J_{10}+J_{11}, \text { say. }
\end{aligned}
$$

Since $\epsilon(t, x) \rightarrow 0$ as $t \rightarrow x$, for a given $\epsilon^{\prime}>0$ we can find a $\delta>0$ such that $|\epsilon(t, x)|<\epsilon^{\prime}$ whenever $0<|t-x|<\delta$ and for $|t-x| \geq \delta,|\epsilon(t, x)| \leq K$ for some $K>0$. Hence

$$
\begin{aligned}
\left|J_{10}\right| \leq & \sum_{\substack{2 p+j \leq r \\
p, j \geq 0}} n^{p} \frac{\left|q_{p, j, r}(x)\right|}{x^{r}(1-x)^{r}} \sum_{\nu=1}^{n}|k-n x|^{j} p_{n, \nu}(x) \times \\
& {\left[\epsilon \int_{\substack{|t-x|<\delta}} p_{n-1, \nu-1}(t)|t-x|^{i+m+r+1} d t+\frac{1}{\delta^{s}} \int_{|t-x| \geq \delta} p_{n-1, \nu-1}(t) K|t-x|^{s} d t\right], } \\
\quad & \quad J_{12}+J_{13}, \text { soy } s>0
\end{aligned}
$$

Let $C_{1}=\sup _{\substack{2 p+j \leq r \\ p, j \geq 0}}\left|q_{p, j, r}(x)\right| / x^{r}(1-x)^{r}$.
Applying Schwarz inequality for integration and then for summation and Lemma 4 . 3 we have

$$
\begin{aligned}
\left|J_{12}\right| \leq & C_{1} \epsilon^{\prime} \sum_{\substack{2 p+j \leq p \\
p, j \geq 0}} n^{p}\left(\sum_{\nu=1}^{n}(\nu-n x)^{2 j} p_{n, \nu}(x)\right)^{1 / 2} \times\left(\int_{0}^{1} p_{n-1, \nu-1}(t) d t\right)^{1 / 2} \\
& \quad\left(\sum_{\nu=1}^{n} p_{n, \nu}(x) \int_{|t-x|<\delta} p_{n-1, \nu-1}(t)(t-x)^{2 i+2 m+2 r+2} d t\right)^{1 / 2} \\
\leq & C_{1} \epsilon^{\prime} \sum_{\substack{2 p+j \leq r \\
p, j \geq 0}} n^{p} O\left(n^{j / 2}\right) O\left(n^{-(i+m+r+1) / 2}\right) \\
= & \epsilon^{\prime} O\left(n^{-(i+m+1) / 2}\right), i \in \mathbb{N}^{0} \\
= & \epsilon^{\prime} O\left(n^{-(m+1) / 2}\right) .
\end{aligned}
$$

Next, again applying Schwarz inequality for integration and then for summation and Lemma 4. 3, on choosing s to be any positive integer $>m+r+1$, we have

$$
\begin{aligned}
J_{13} \leq & C_{1} \sum_{\substack{2 p+j \leq r \\
p, j \geq 0}} n^{p+1} \sum_{\nu=1}^{n} p_{n, \nu}(x)|\nu-n x|^{j}\left(\int_{0}^{1} p_{n-1, \nu-1}(t)(t-x)^{2 s} d t\right)^{1 / 2} \\
\leq & C_{1} \sum_{\substack{2 p+j \leq r \\
p, j \geq 0}} n^{p}\left(\sum_{\nu=1}^{n} p_{n, \nu}(x)(\nu-n x)^{2 j}\right)^{1 / 2} \times \\
& \left(n \sum_{\nu=1}^{n} p_{n, \nu}(x) \int_{0}^{1} p_{n-1, \nu-1}(t)(t-x)^{2 s} d t\right)^{1 / 2} \\
\leq & C_{1} \sum_{\substack{2 p+j \leq r \\
p, j \geq 0}} n^{p} O\left(n^{j / 2}\right) O\left(n^{-s / 2}\right) \\
= & O\left(n^{(r-s) / 2}\right) \\
= & o\left(n^{-(m+1) / 2}\right) .
\end{aligned}
$$

Combining the estimates of J_{12} and J_{13}, we get

$$
J_{10}=\epsilon^{\prime} O\left(n^{-(m+1) / 2}\right)+o\left(n^{-(m+1) / 2}, \text { uniformly on }\left[z_{2}, w_{2}\right] .\right.
$$

Clearly,

$$
\begin{aligned}
J_{11} & =O\left(n^{-s}\right)(\text { for any } s>0) \\
& =O\left(n^{-\tau / 2}\right), \text { uniformly on }\left[z_{2}, w_{2}\right] .
\end{aligned}
$$

Therefore,

$$
J_{9}=O\left(n^{-\tau / 2}\right) \text {, uniformly on }\left[z_{2}, w_{2}\right] .
$$

Next, using the mean value theorem, Schwarz inequality for integration and then for summation and Lemma 4,3 for any $\delta>0$ we have

$$
\begin{aligned}
\left|J_{6}\right| \leq & \\
\leq & \sum_{j=0}^{k}|C(j, k)| \int_{0}^{1}\left|W_{d_{j} n}^{(r)}(t, x)\right| \\
& \quad\left\{\frac{\left|f^{(m+r-1)}(\xi)-f^{(m+r-1)}(x)\right|}{(m+r-1)!}|t-x|^{m+r}\left|g^{\prime}(\eta)\right| \chi_{2}(t)\right\} d t \\
\leq & M\left\|g^{\prime}\right\|_{C\left[z_{2}, w_{2}\right]} \sum_{j=0}^{k}|C(j, k)| \int_{0}^{1}\left|W_{d_{j} n}^{(r)}(t, x)\right||t-x|^{1-\delta}| | t-\left.x\right|^{m+r} \chi_{2}(t) d t \\
\leq & M\left\|g^{\prime}\right\|_{C\left[z_{2}, w_{2}\right]} \sum_{j=0}^{k}|C(j, k)|\left[d_{j} \sum_{\nu=1}^{n}\left|p_{d_{j} n}^{(r)}(x)\right| \int_{0}^{1} p_{n-1, \nu-1}(t)|t-x|^{m+r+1-\delta} \chi_{2}(t) d t\right. \\
+ & \left.\frac{\left(d_{j} n+r-1\right)!}{\left(d_{j} n-1\right)!}(1-x)^{-d_{j} n-r} x^{m+r+1-\delta}\right] \\
= & O\left(n^{(-(m+1-\delta) / 2}\right)+O\left(n^{-s}\right), \text { for any } s>0 \\
= & O\left(n^{-\tau / 2}\right), \text { on choosing } 0<\delta \leq m+1-\tau(>0) .
\end{aligned}
$$

Combining the above estimates, we get

$$
\left\|M_{n}^{(r)}(f g, k, .)-(f g)^{(r)}\right\|_{C\left[z_{2}, w_{2}\right]}=O\left(n^{-\tau / 2}\right) .
$$

Since supp $f g \subset\left(z_{2}, w_{2}\right)$ by Lemmas 5 and 7 it follows that $(f g)^{(r)} \in \operatorname{Liz}\left(\beta, k+1 ; z_{2}, w_{2}\right)$. Since $g(x)=1$ on I_{2}, it follows that $f^{(r)} \in \operatorname{Liz}\left(\beta, k+1 ; I_{2}\right)$.
This completes the proof of $(i) \rightarrow(i i)$.
The equivalence of $(i i)$ and ($i i i$) is well known [2].
The implication $(i i i) \rightarrow(i v)$ follows from Theorem 2 .
This completes the proof of the inverse theorem.

Acknowledgement: The author Karunesh Kumar Singh is thankful to the "Council of Scientific and Industrial Research", New Delhi, India for financial support to carry out the above work.

References

[1] V. Gupta and N. Ispir, On simultaneous approximation for some Bernstein-type operators, Int. J. Math and Math Sci. 71 (2004), 3951-3958.

Karunesh Singh, P.N. Agrawal - An inverse theorem in simultaneous ...
[2] S. Goldberg and A. Meir, Minimum moduli of ordinary differential operators, Proc. London Math. Soc. 23 (1971), 1-15.
[3] V. Gupta and P. Maheshwari, Bézier variant of a new Durrmeyer-type operators, Riv. Mat. Univ. Parma 7 (2) (2003), 9-21.
[4] P. N. Agrawal, Karunesh Kumar Singh and A. R. Gairola, $L_{p}-$ Approximation by iterates of Bernstein-Durrmeyer Type polynomials, Int. J. Math. Anal. 4 (2010), 469-479.
[5] Karunesh Kumar Singh and P. N. Agrawal, Simultaneous approximation by a linear combination of Bernstein-Durrmeyer type polynomials, Bull. Math. Anal. Appl., 3(2) (2011), 70-82.
[6] H. Berens and G.G. Lorentz, Inverse theorems for Bernstein polynomials, Indiana Univ. Math. J. 21 (1972), 693-708.

Karunesh Singh
Department of Mathematics
Indian Institute of Technology Roorkee
Roorkee-247667(Uttarakhand), India
email:kksiitr.singh@gmail.com
P.N. Agrawal

Department of Mathematics
Indian Institute of Technology Roorkee
Roorkee-247667(Uttarakhand), India
email: pnappfma@gmail.com

