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1. Introduction

The Bernstein-Durrmeyer type polynomial operators

Pn(f ;x) = n

n∑
ν=1

pn,ν(x)

1∫
0

pn−1,ν−1(t)f(t) du+ (1− x)nf(0),

where

pn,ν(x) =

(
n

ν

)
xν(1− x)n−ν , 0 6 x 6 1,

defined on LB[0, 1], the space of bounded and Lebesgue integrable functions on [0, 1]
were introduced by Gupta and Maheshwari [3] wherein they studied the approx-
imation of functions of bounded variation by these operators. In [1] Gupta and
Ispir studied the pointwise convergence and Voronovskaja-type asymptotic results
in simultaneous approximation for these operators.
For f ∈ LB[0, 1], the operators Pn(f ;x) can be expressed as

Pn(f ;x) =

1∫
0

Wn(t, x)f(t) dt,
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where

Wn(t, x) = n
n∑
ν=1

pn,ν(x) pn−1,ν−1(t) + (1− x)nδ(t),

δ(t) being the Dirac-delta function, is the kernel of the operators.
It turns out that the order of approximation by these operators is at best O(n−1),
however smooth the function may be. In order to speed up the rate of convergence
by the operators Pn, we considered the linear combination Pn(f, k, .) of the operators
Pn, as

Pn(f, k, x) =

k∑
j=0

C(j, k)Pdjn(f, x),

where

C(j, k) =

k∏
i=0,i 6=j

dj
dj − di

, k 6= 0 and C(0, 0) = 1,

d0, d1, ...dk being (k + 1) arbitrary but fixed distinct positive integers.

Throughout this paper, we assume C(I) the space of all continuous functions
on the interval I, ‖.‖C(I) the sup norm on the space C(I) and C a constant not
necessarily the same in the different cases.
Let I = [a, b] be a fixed subinterval of (0, 1), I ′ = [a′, b′] ⊂ (a, b) and I ′′ = [a′′, b′′] ⊂
(a′, b′). Further, let Gr(I ′) = {g ∈ Cr0 : supp g ⊂ I ′}.

For f ∈ Gr(I ′) and g ∈ G2k+r+2(I ′) we define

Kr(ξ, f, I
′) = inf

g∈G2k+r+2(I′)

{
‖f (r) − g(r)‖C(I′) + ξ

(
‖g(r)‖C(I′) + ‖g(2k+2+r)‖C(I′)

)}
,

where 0 < ξ ≤ 1.

For 0 < β < 2, we define Cr0(β, k + 1, I ′) as the class of all f ∈ Gr(I ′) such that the
functional

‖f‖β,r = sup
0<ξ≤1

ξ−β/2Kr(ξ, f, I
′) < C, for some C > 0.

2. Auxiliary Results

In this section we give some results which are useful in establishing our main theorem.
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For sufficiently small η > 0, 0 < a1 < a2 < b2 < b1 < 1, Ii = [ai, bi], i = 1, 2 and
m ∈ N, the Steklov mean fη,m of m−th order corresponding to f ∈ C[a, b] is defined
as follows:

fη,m(t) = η−m
η/2∫
−η/2

· · ·
η/2∫
−η/2

(
f(t) + (−1)m−1∆m∑m

i=1 ti
f(t)

) m∏
i=1

dti, , t ∈ I1,

where ∆m
h is the m−th order forward difference operator with step length h.

Lemma 1. [4] For the function fη,m, we have

(a) fη,m has derivatives up to order m over I1;

(b) ‖f (r)η,m‖C(I1) 6 Cr ωr(f, η, [a, b]), r = 1, 2, ...,m;

(c) ‖f − fη,m‖C(I1) 6 Cm+1 ωm(f, η, [a, b]);

(d) ‖fη,m‖C(I1) 6 Cm+2 η
−m‖f‖C[a,b];

(e) ‖f (r)η,m‖C(I1) 6 Cm+3 ‖f‖C[a,b],

where C ′is are certain constants that depend on i but are independent of f and η.

Lemma 2. [4] For the function pn,ν(t), there holds the result

tr(1− t)r d
r

dtr
(pn,ν(t)) =

∑
2i+j6r
i,j≥0

ni(ν − nt)jqi,j,r(t)pn,ν(t),

where qi,j,r(t) are certain polynomials in t independent of n and ν.

Lemma 3. [1] For the function un,m(t),m ∈ N0 (the set of non-negative integers)
defined as

un,m(t) =

n∑
ν=1

pn,ν(t)
(ν
n
− t
)m

,

we have un,0(t) = 1 and un,1(t) = 0. Further, there holds the recurrence relation

nun,m+1(t) = t
[
u′n,m(t) +mun,m−1(t)

]
,m = 1, 2, 3, ...

Consequently,
(i) un,m(t) is a polynomial in t of degree at most m;
(ii) for every t ∈ [0,∞), un,m(t) = O

(
n−[(m+1)/2]

)
, where [α] denotes the integral

part of α.
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Lemma 4. [4] For the function µn,m(t), we have µn,0(t) = 1, µn,1(t) = (−t)
(n+1) and

there holds the recurrence relation

(n+m+ 1)µn,m+1(t) = t(1− t)
{
µ′n,m(t) + 2mµn,m−1(t)

}
+ (m(1− 2t)− t)µn,m(t),

for m ≥ 1.
Consequently, we have
(i) µn,m(t) is a polynomial in t of degree m;
(ii) for every t ∈ [0, 1], µn,m(t) = O

(
n−[(m+1)/2]

)
, where [β] is the integer part of β.

Theorem 1. [5] Let f ∈ LB[0, 1] admitting a derivative of order (2k + r + 2) at a
point x ∈ (0, 1) then we have

lim
n→∞

nk+1[P (r)
n (f, k, x)− f (r)(x)] =

2k+r+2∑
ν=r

f (ν)(x)

ν!
Q(ν, k, r, x) (1)

and
lim
n→∞

nk+1[P (r)
n (f, k, x)− f (r)(x)] = 0, (2)

where Q(ν, k, r, x) are certain polynomials in x of degree ν. Further, the limits in
(1) and (2) hold uniformly in [a, b] if f (2k+r+2) is continuous on
(a− η, b+ η) ⊂ (0, 1), η > 0.

Lemma 5. If f (r) ∈ Gr(I ′′) and∥∥P (r)
n (f, k, .)− f (r)

∥∥ ≤ Cn−β(k+1)/2,

then

Kr(ξ, f, I
′) ≤ C

(
n−β(k+1)/2 + nk+1ξKr(n

−(k+1), f, I ′)

)
. (3)

Consequenlty, Kr(ξ, f, I
′) ≤ Cξβ/2 i.e. f ∈ Cr0(β, k + 1, I ′)

Proof. Following [6] it is enough to show that 3 holds for all n sufficiently large.
Since suppf ⊂ I ′′, in view of Theorem 1 [5], we can find a function h ∈ G2k+r+2(I ′)
such that for i = r and 2k + 2 + r, there holds

‖h(i) − P (i)
n (f, k, .)‖C(I) ≤ Cn−(k+1), for all n sufficiently large.

Therefore,

Kr(ξ, f, I
′) ≤ 3Cn−(k+1) + ‖f (r) − P (i)

n (f, k, .)‖C(I)

+ ξ
(
‖P (r)

n (f, k, .)‖+ ‖P (2k+r+2r)
n (f, k, .)‖C(I)

)
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Hence, it is sufficient to show that for each g ∈ G2k+r+2(I ′)),

‖P (2k+2+r)
n (f, k, .)‖C(I′) ≤ Cn(k+1)

(
‖f (r) − g(r)‖C(I) + n−(k+1)g(2k+2+r)

)
. (4)

Now,

‖P (2k+2+r)
n (f, k, .)‖C(I′) ≤ ‖P (2k+2+r)

n (f − g, k, .)‖C(I′) + ‖P (2k+2+r)
n (g, k, .)‖C(I′)

= Σ1 + Σ2.

By using Taylor’s expansion of (f − g)(t) about t = x, Lemmas 4, 2, Schwarz
inequality for integration and then for summation, we get

Σ1 ≤ Cn(k+1)‖f (r) − g(r)‖C(I) (suppf ∪ suppg ⊂ I ′)

Similarly, using the Taylor’s expansion of g(t) about t = x, we get

Σ2 ≤ C‖g(2k+2+r)‖C(I).

Combining the estimates of Σ1 and Σ2, the inequality 4 follows. Hence, 3 holds.

Lemma 6. If f (r) ∈ Gr(I ′′) and f ∈ Cr0(β, k + 1, I ′) then for sufficiently large n,
we have ∥∥P (r)

n (f, k, .)− f (r)
∥∥
C(I)

= O(n−β(k+1)/2).

Proof. For g ∈ G2k+r+2(I ′), we have∥∥P (r)
n (f, k, .)− f (r)

∥∥
C(I)

≤
∥∥P (r)

n (f − g, k, .)
∥∥
C(I)

+
∥∥P (r)

n (g, k, .)− f (r)
∥∥
C(I)

= Σ1 + Σ2.

Proceeding along the lines of estimate Σ1 in Lemma 6 and in view of supp(f−g) ⊂ I ′,
we get

Σ1 ≤ C‖f (r) − g(r)‖C(I).

Using Theorem 1 and intermediate derivative property ([2], p.5 ) we obtain

Σ2 ≤ C‖f (r) − g(r)‖C(I) + Cn−(k+1)
(
‖g(r)‖C(I′) + ‖g(2k+2+r)‖C(I′)

)
.
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Combining the estimates of Σ1 and Σ2, we get∥∥P (r)
n (f, k, .)− f (r)

∥∥
C(I)

≤ C.Kr(n
−(k+1), f ; I ′)

≤ C.O(n−β(k+1)/2),

since f ∈ Cr0(β, k + 1, I ′).

Lemma 7. If f (r) ∈ Gr(I ′′) then

f ∈ Cr0(β, k + 1, I ′)⇔ f (r) ∈ Liz(β, k + 1, I ′).

Proof. Let |δ| < h and g ∈ G2k+r+2(I ′). Then, if f ∈ Cr0(β, k + 1, I ′) we get

|∆(2k+2)
δ f (r)(x)| ≤ |∆(2k+2)

δ (f (r)(x)− g(r)(x))|+ |∆(2k+2)
δ g(r)(x)|

≤ 22k+2‖f (r) − g(r)‖C(I′) + δ(2k+2)‖g(2k+2+r)‖C(I′)

≤ 22k+2C.Kr(δ
(2k+2), f ; I ′)

≤ 22k+2C.δβ(k+1).

It follows that

ω2k+2(f
(r), h; I) ≤ sup

|δ|≤h
|∆(2k+2)

δ f (r)(x)|

≤ C.hβ(k+1).

i.e. f (r) ∈ Liz (β, k + 1, I ′).
Conversely, suppose that f (r) ∈ Liz (β, k + 1, I ′) and fη,2k+r+2 be the
(2k + r + 2)th order Steklov mean corresponding to f as defined in . Hence
fη,2k+r+2(x) ∈ G2k+r+2 (I ′), by property (b) of Lemma 1 we have

‖f (2k+2+r)
η,2k+r+2 (x)‖C(I′) ≤ Cη−(2k+r+2)ω2k+r+2(f, η; I)

≤ Cη−(2k+r+2)ηrω2k+2(f
(r), η; I)

≤ Cη−(2k+2)+β(k+1).

Using property (c) of Lemma 1, we get

‖f (r)η,2k+r+2(x)− f (r)‖C(I′) ≤ Cω2k+2(f
(r), η; I)) ≤ Cnβ(k+1),

which implies that f ∈ Cr0(β, k + 1, I ′).
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Theorem 2. [5] Let p ∈ N, 1 ≤ p ≤ 2k + 2 and f ∈ LB[0, 1]. If f (p+r) exists and is
continuous on (a− η, b+ η) ⊂ [0, 1], η > 0 then

∥∥P (r)
n (f, k, .)− f (r)

∥∥
C(I)
≤ max

{
C1n

−p/2ω
(
f (p+r), n−1/2

)
, C2n

−(k+1)
}
,

where C1 = C1(k, p, r), C2 = C2(k, p, r, f) and ω
(
f (p+r), δ

)
is the modulus of

continuity of f (p+r) on (a− η, b+ η).

3. Main Result

Theorem 3. Let f ∈ LB[0, 1] and 0 < α < 2. Then, in the following statements,
the implications (i) ⇒ (ii) ⇔ (iii) ⇒ (iv) hold:

(i) ‖P (r)
n (f, k, .)− f (r)‖C[a1,b1] = O(n−α(k+1)/2);

(ii) f ∈ Liz(α, k, a2, b2);

(iii) (a) for m < α(k + 1) < m + 1, m = 0, 1, ....2k − 1, f (m) exists and belongs to
the class Lip(αk −m, a2, b2),
(b) for α(k + 1) = m + 1, m = 0, 1, ....2k − 2, f (m) exists and belongs to the
class Lip∗(1, a2, b2);

(iv) ‖P (r)
n (f, .)− f(.)‖C[a3,b3] = O(n−α(k+1)/2).

Proof. To show (i)⇒ (ii) we reassume that a1 < a′ < a′′ < a2, b2 < b′ < b′′ < b′ <
b1, I = [a′, b′] and I ′′ = [a′′, b′′]. Writing τ = β(k + 1), we first consider the case
0 < τ ≤ 1.
Let g ∈ C∞0 be such that suppg ⊂ I ′′ and g(x) = 1 on I2. Writing D ≡ d

dx , then for
x ∈ I ′ we have

P (r)
n (fg, k, x)− (fg)(r)(x) = Dr{Pn((fg)(t)− (fg)(x), k, x)}

= Dr{Pn((f(t)(g(t)− g(x)), k, x)}
+ Dr{Pn((g(x)(f(t)− f(x)), k, x)}
= Γ1 + Γ2, say.
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Using Leibnitz theorem

Γ1 =

k∑
j=0

C(j, k)Dr

{∫ 1

0
Wdjn(t, x)f(t)(g(t)− g(x))dt

}

=

k∑
j=0

C(j, k)

r∑
i=0

(
r

i

)∫ 1

0
W

(i)
djn

(t, x)Dr−i{f(t)(g(t)− g(x))}dt

= −
r−1∑
i=0

(
r

i

)
g(r−i)(x)P (i)

n (f, k, x)

+
k∑
j=0

C(j, k)

∫ 1

0
W

(r)
djn

(t, x)f(t)(g(t)− g(x))dt

= J1 + J2, say.

By Theorem 2, we have

J1 = −
r−1∑
i=0

(
r

i

)
g(r−i)(x)f (i)(x) +O(n−τ/2), uniformly on I ′.

Next, we estimate J2. By Taylor’s expansion of f and g at t = x, we have

f(t) =
r∑
i=0

f (i)(x)

i!
(t− x)i + o(t− x)r

and

g(t) =
r+1∑
i=0

g(i)(x)

i!
(t− x)i + o(t− x)r+1.

Hence, by using Schwarz inequality and Lemma 4 we obtain

J2 =
r∑
i=1

f (r−i)(x)g(i)(x)

i!(r − i)!
r! +O(n−1/2)

=
r∑
i=1

g(i)(x)f (r−i)(x) +O(n−τ/2),

uniformly on I ′.
Hence, Γ1 = O(n−τ/2),uniformly on I ′.
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Again, by Leibnitz theorem,Theorem 2 and hypothesis (i) we obtain

Γ2 =
k∑
j=0

C(j, k)
r∑
i=0

(
r

i

)∫ 1

0
W

(i)
djn

(t, x)Dr−i{g(x)(f(t)− f(x))}dt

=
r∑
i=0

(
r

i

)
g(r−i)(x)P (i)

n (f, k, x)− (fg)(r)(x)

= O(n−τ/2), uniformly on I ′.

Combining the estimates of Γ1 and Γ2 we obtain

‖P (r)
n (fg, k, .)− (fg)(r)‖C(I′) = O(n−τ/2).

Thus, by Lemma 5 and 7 we have

(fg)(r) ∈ Liz(β, k + 1, I ′′).

Hence, f (r) ∈ Liz(β, k + 1, I2) (in view of g(x) = 1 on I2).
This completes the proof of the implication (i)⇒ (ii) when 0 < τ ≤ 1.

Now to prove the implication (i) ⇒ (ii) for 0 < τ < 2k + 2, it is sufficient to
assume it for τ ∈ (m − 1,m) and prove it for τ ∈ [m,m + 1), m = 1, 2, ..., 2k + 1.
Since, the result holds for τ ∈ (m− 1,m), therefore f (m+r−1) exists and belongs to
Lip(1− δ; [z1, w1]) for any interval [z1, w1] ⊂ (a1, b1) and δ > 0.
Let z2, w2 be such that I2 ⊂ (z2, w2) and [z2, w2] ⊂ (z1, w1). Let g ∈ C∞0 be such
that g(x) = 1 on I2 and supp g ∈ (z2, w2). Then, we have

‖P (r)
n (fg, k, .)− (fg)(r)‖C[z2,w2] ≤ ‖Dr{Pn(g(x)(f(t)− f(x)), k, .}‖C[z2,w2]

+ ‖Dr{Pn(f(t)(g(t)− g(x)), k, .}‖C[z2,w2]

= Σ3 + Σ4, say.

Now, by Leibnitz theorem, Theorem 2 and assumption that (i) holds, we have

Σ3 = ‖Dr{g(x)Pn(f(t), k, .} − (fg)(r)‖C[z2,w2]

=

∥∥∥∥∥
r∑
i=0

(
r

i

)
g(r−i)P (i)

n (f, k, .)− (fg)(r)

∥∥∥∥∥
C[z2,w2]

=

∥∥∥∥∥
r∑
i=0

(
r

i

)
g(r−i)f (i) − (fg)(r)

∥∥∥∥∥
C[z2,w2]

+O(n−τ/2)

= O(n−τ/2).
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Again, using Leibnitz theorem and Theorem 1, we obtain

Σ4 =

∥∥∥∥− r−1∑
i=0

(
r

i

)
g(r−i)(x)P (i)

n (f(t), k, .) + P (r)
n (f(t)(g(t)− g(x))χ2(t), k, .)

∥∥∥∥
C[z2,w2]

+ o(n−(k+1))

= ‖J3 + J4‖C[z2,w2] + o(n−(k+1)), say,

where χ2(t) is the characteristic function of the interval [z1, w1].
Then, by Theorem 2, we get

J3 = −
r−1∑
i=0

(
r

i

)
g(r−i)(x)f (i)(x) +O

(
n−(k+1)

)
,

uniformly on [z2, w2].
Since, by the induction hypothesis f (m+r−1) exists and belongs to Lip(1−δ; [z1, w1])
for any δ > 0, by Taylor’s expansion of f about t = x, we obtain

J4 =
k∑
j=0

C(j, k)
m+r−1∑
i=0

f (i)(x)

i!

∫ 1

0
W

(r)
djn

(t, x)(t− x)i(g(t)− g(x))χ2(t) dt

+
k∑
j=0

C(j, k)

∫ 1

0
W

(r)
djn

(t, x)

(
f (m+r−1)(ξ)− f (m+r−1)(x)

(m+ r − 1)!

)
×

(t− x)m+r−1(g(t)− g(x))χ2(t)dt

= J5 + J6, say.

Using Theorem 1, we have

J5 =
k∑
j=0

C(j, k)
m+r−1∑
i=0

f (i)(x)

i!

∫ 1

0
W

(r)
djn

(t, x)(t− x)i(g(t)− g(x)) dt+ o
(
n−(k+1)

)
= J7 + o

(
n−(k+1)

)
, say.

Since g ∈ C∞0 , therefore we can write
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J7 =
k∑
j=0

C(j, k)
m+r−1∑
i=0

f (i)(x)

i!

m+r+1∑
p=1

g(p)(x)

p!

∫ 1

0
W

(r)
djn

(t, x)(t− x)i+p dt

+
k∑
j=0

C(j, k)
m+r−1∑
i=0

f (i)(x)

i!

∫ 1

0
W

(r)
djn

(t, x) ε(t, x)(t− x)i+m+r+1 dt

= J8 + J9, say,

where ε(t, x)→ 0 as t→ x.
By Lemma 4 and Theorem 1, we obtain

J8 =

r∑
i=1

g(i)(x)f (r−i)(x)

i!(r − i)!
r! +O

(
n−(k+1)

)
=

r∑
i=1

(
r

i

)
g(i)(x)f (r−i)(x) +O

(
n−(k+1)

)
,

uniformly on [z2, w2].
To estimate J9, it is sufficient to treat it without linear combination. Let

J ≡ P (r)
n (ε(t, x)(t− x)i+m+r+1;x).

By using Lemma 2 we have

|J | ≤
∑

2p+j≤r
p,j≥0

np
|qp,j,r(x)|
xr(1− x)r

n∑
ν=1

|ν − nx|j pn,ν(x)×

1∫
0

pn−1,ν−1(t)|ε(t, x)||t− x|i+m+r+1 dt

+
(n+ r − 1)!

(n− 1)!
(1− x)−n−r|ε(0, x)|xi+m+r+1

= J10 + J11, say.

Since ε(t, x) → 0 as t → x, for a given ε′ > 0 we can find a δ > 0 such that
|ε(t, x)| < ε′ whenever 0 < |t − x| < δ and for |t − x| ≥ δ, |ε(t, x)| ≤ K for some
K > 0. Hence
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|J10| ≤
∑

2p+j≤r
p,j≥0

np
|qp,j,r(x)|
xr(1− x)r

n∑
ν=1

|k − nx|j pn,ν(x)×

[
ε

∫
|t−x|<δ

pn−1,ν−1(t)|t− x|i+m+r+1 dt+
1

δs

∫
|t−x|≥δ

pn−1,ν−1(t)K|t− x|s dt
]
,

for any s > 0

= J12 + J13, say.

Let C1 = sup 2p+j≤r
p,j≥0

|qp,j,r(x)| /xr(1− x)r.

Applying Schwarz inequality for integration and then for summation and Lemma 4,
3 we have

|J12| ≤ C1ε
′
∑

2p+j≤p
p,j≥0

np

(
n∑
ν=1

(ν − nx)2j pn,ν(x)

)1/2

×
(∫ 1

0
pn−1,ν−1(t)dt

)1/2

 n∑
ν=1

pn,ν(x)

∫
|t−x|<δ

pn−1,ν−1(t)(t− x)2i+2m+2r+2 dt


1/2

≤ C1ε
′
∑

2p+j≤r
p,j≥0

np O(nj/2) O(n−(i+m+r+1)/2)

= ε′ O(n−(i+m+1)/2), i ∈ N0

= ε′ O(n−(m+1)/2).

Next, again applying Schwarz inequality for integration and then for summation and
Lemma 4, 3, on choosing s to be any positive integer > m+ r + 1, we have
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J13 ≤ C1

∑
2p+j≤r
p,j≥0

np+1
n∑
ν=1

pn,ν(x)|ν − nx|j
(∫ 1

0
pn−1,ν−1(t)(t− x)2sdt

)1/2

≤ C1

∑
2p+j≤r
p,j≥0

np

(
n∑
ν=1

pn,ν(x)(ν − nx)2j

)1/2

×

(
n

n∑
ν=1

pn,ν(x)

∫ 1

0
pn−1,ν−1(t)(t− x)2sdt

)1/2

≤ C1

∑
2p+j≤r
p,j≥0

np O(nj/2) O(n−s/2)

= O(n(r−s)/2)

= o(n−(m+1)/2).

Combining the estimates of J12 and J13, we get

J10 = ε′O(n−(m+1)/2) + o(n−(m+1)/2, uniformly on [z2, w2].

Clearly,

J11 = O(n−s) (for any s > 0)

= O(n−τ/2), uniformly on [z2, w2].

Therefore,
J9 = O(n−τ/2), uniformly on [z2, w2].

Next, using the mean value theorem, Schwarz inequality for integration and then
for summation and Lemma 4, 3 for any δ > 0 we have
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|J6| ≤

≤
k∑
j=0

|C(j, k)|
∫ 1

0

∣∣∣W (r)
djn

(t, x)
∣∣∣{

|f (m+r−1)(ξ)− f (m+r−1)(x)|
(m+ r − 1)!

|t− x|m+r|g′(η)|χ2(t)

}
dt

≤ M‖g′‖C[z2,w2]

k∑
j=0

|C(j, k)|
∫ 1

0

∣∣∣W (r)
djn

(t, x)
∣∣∣ |t− x|1−δ||t− x|m+rχ2(t) dt

≤ M‖g′‖C[z2,w2]

k∑
j=0

|C(j, k)|
[
dj

n∑
ν=1

|p(r)djn(x)|
∫ 1

0
pn−1,ν−1(t)|t− x|m+r+1−δχ2(t) dt

+
(djn+ r − 1)!

(djn− 1)!
(1− x)−djn−rxm+r+1−δ

]
. = O(n(−(m+1−δ)/2) +O(n−s), for any s > 0

= O(n−τ/2), on choosing 0 < δ ≤ m+ 1− τ(> 0).

Combining the above estimates, we get

‖M (r)
n (fg, k, .)− (fg)(r)‖C[z2,w2] = O(n−τ/2).

Since suppfg ⊂ (z2, w2) by Lemmas 5 and 7 it follows that
(fg)(r) ∈ Liz(β, k + 1; z2, w2). Since g(x) = 1 on I2, it follows that
f (r) ∈ Liz(β, k + 1; I2).
This completes the proof of (i)→ (ii).
The equivalence of (ii) and (iii) is well known [2].
The implication (iii)→ (iv) follows from Theorem 2.
This completes the proof of the inverse theorem.
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