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ANALYTICAL TREATMENT OF THE COUPLED HIGGS
EQUATION AND THE MACCARI SYSTEM VIA EXP-FUNCTION

METHOD

jalil manafian heris and isa zamanpour

Abstract. In this article, He’s Exp-function method (EFM) is used to con-
struct solitary and soliton solutions of the nonlinear evolution equation. This tech-
nique is straightforward and simple to use and is a powerful method to overcome
some difficulties in the nonlinear problems. This method is developed for searching
exact traveling wave solutions of the nonlinear partial differential equations. The
EFM presents a wider applicability for handling nonlinear wave equations. Also,
it is shown that EFM, with the help of symbolic computation, provides a straight-
forward and powerful mathematical tool for solving nonlinear evolution equations.
Application of Exp function method to coupled Higgs equation and the Maccari
system illustrates its effectiveness.
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1. Introduction

The investigation of exact travelling wave solutions to nonlinear wave equations
plays an important role in the study of nonlinear physical phenomena. In the recent
decade, the study of nonlinear partial differential equations in modelling physical
phenomena, has become an important tool. Here, we use of an effective method
for constructing a range of exact solutions for following nonlinear partial differential
equations that proposed by J. H. He [1]. In this article an application of the proposed
method to two complex coupled equations is illustrated. We consider the coupled
Higgs field equation [2,3] in the form

utt − uxx − au + b|u|2u− 2uv = 0, (1)

vtt + vxx − b(|u|2)xx = 0,

where Eq. (1) is the coupled Higgs field equation for a ≥ 0, b > 0 [2, 3]. Here, we
choose a = 0 and b = 1. N-soliton solutions to the system Eq. (1) are obtained in
[2].
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More general travelling wave solutions constructed by Bekir and Zhao of Eq. (1)
in [4, 5]. We next consider the following Maccari new integrable (2 + 1)-dimensional
nonlinear system [6]

iut + uxx + uv = 0, (2)

vt + vy + (|u|2)x = 0.

Also, more general travelling wave solutions constructed by Bekir and Zhao of Eq.
(2) in [4, 5]. Several powerful methods have been proposed to obtain exact solutions
of nonlinear partial differential equations, such as inverse scattering method [7], the
tanh method [8, 9], tanh-coth method [10], the homotopy perturbation method [11,
12], the homotopy analysis method [13, 14] and variational iteration method [15].
In recent years, the direct search for exact solutions of PDEs has become more and
more attractive partly due to the availability of computer symbolic systems like
Maple or Mathematica, which allows us to perform the complicated and tedious
algebraic calculations on computer. In particular, one of the most effective direct
methods to construct exact solutions of PDEs is the EFM, which was first proposed
by He in [1]. The EFM can be used to seek solitary solutions, periodic solutions and
compacton-like solutions of nonlinear differential equations. Wu and He [16] have
used the Exp-function method to give new periodic solutions for nonlinear evolution
equations. Dehghan and et. al [17] have applied the EFM and its application for
solving a partial differential equation arising in biology and population genetics. The
EFM has recently been solved by Zhang [18] to high-dimensional nonlinear evolu-
tion equation. The new exact solutions of modified KdV and the generalized KdV
equations with Exp-function method have been obtained by Manafian and Bagheri
[19]. The proposed method not only gives a unified formulation to construct various
travelling wave solutions, but also provides a rule to classify the types of solutions
according to the given parameters. Furthermore, the proposed method is readily
computerizable in solving equation by using symbolic software like Mathematica or
Maple. Our aim of this paper is to obtain analytical solutions of the coupled Higgs
equation and the Maccari system, and to determine the accuracy of the Exp–function
method in solving these kinds of problems. The article is organized as follows: in
Section 2, first we briefly give the steps of the EFM and apply the method to solve
the nonlinear partial differential equations. In Section 3, the application of the EFM
to the couple Higgs equation will be introduced briefly. Also, Section 4 by using the
results obtained in Section 2, the corresponding solutions of the Maccari system can
be obtained. Finally some references are given at the end of this paper.
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2. Basic idea of the Exp–function method

We first consider the nonlinear equation of the form

N (u,ut, ux,uy, uxx, uyy,utt, utx, ...) = 0, (3)

and introduce a transformation

u(x, y, t) = u(η), η = x + y + ct, (4)

where c is constant to be determined later. Therefore Eq. (3) is reduced to an ODE
as follows

M(u, cu′,u′,u′, u′′, ...) = 0. (5)

The EFM is based on the assumption that travelling wave solutions as in ([?]) can
be expressed in the form

u(η) =

∑d
n=−c an exp(nη)∑q

m=−p bm exp(mη)
, (6)

where c, d, p and q are positive integers which could be freely chosen and an’ and
bm’ are unknown constants to be determined. To determine the values of c and p, we
balance the linear term of highest order in Eq. (5) with the highest order nonlinear
term. Also to determine the values of d and q, we balance the linear term of lowest
order in Eq. (5) with the lowest order nonlinear term.

3. Application to the coupled Higgs equation

In this section we employ the EFM to the following coupled Higgs equation

utt − uxx + |u|2u− 2uv = 0, (7)

vtt + vxx − (|u|2)xx = 0.

We begin first with the coupled Higgs Eq. (7). Using the wave variables as follow

u = eiθU(η), v = V(η), θ = px + rt, η = x + ct, (8)

Eq. (7) are carried to ODEs

(c2 − 1)U′′ + (p2 − r2)U− 2UV + U3 = 0, (9)

(c2 + 1)V′′ − 2(U′)2 − 2UU′′ = 0.
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Integrating the second equation in the system and neglecting the constant of inte-
gration we find

(c2 + 1)V = U2. (10)

Substituting Eq. (10) into the first equation of the system we get

(c4 − 1)U′′ + (c2 + 1)(p2 − r2)U + (c2 − 1)U3 = 0. (11)

In order to determine values of c and p, we balance the linear term of the highest
order U′′ with the highest order nonlinear term U3 in Eq. (11), to get

U′′ =
c1 exp((c + 3p)η) + ...

c2 exp(4pη) + ...
, (12)

U3 =
c3 exp(3cη) + ...

c4 exp(3pη) + ...
=

c3 exp((3c + p)η) + ...

c4 exp(4pη) + ...
, (13)

respectively. Balancing highest order of the Exp–function in (12) and (13), we get

c + 3p = 3c + p, (14)

which leads to the result c = p. Similarly to determine values of d and q, for the
terms U′′ and U3 in Eq. (11) by simple calculation, we have

U′′ =
...+ d1 exp(−(d + 3q)η)

...+ d2 exp(−4qη)
, (15)

U3 =
...+ d3 exp(−3dη)

...+ d4 exp(−3qη)
=
...+ d3 exp(−(3d + q)η)

...+ d4 exp(−4qη)
, (16)

respectively. Balancing highest order of the Exp–function in (15) and (16), we obtain

−(d + 3q) = −(3d + q), (17)

which leads to the result d = q.

Case 1: p = c = 1 and q = d = 1.
For simplicity, we set p = c = 1 and d = q = 1. Then Eq. (6) reduces to

U(η) =
a1 exp(η) + a0 + a−1 exp(−η)

b1 exp(η) + b0 + b−1 exp(−η)
. (18)

Substituting (18) into Eq. (11), and by using the well-known Maple software, we
have

1

A
[C3 exp(3η) + C2 exp(2η) + C1 exp(η) + C0 + C−1 exp(−η)+ (19)
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C−2 exp(−2η) + C−3 exp(−3η)] = 0,

where

A = [b−1 exp(−η) + b0 + b1 exp(η)]3, (20)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to be zero,
we obtain the following set of algebraic equations for a1, a0, a−1,b1, b0,b−1 and c, as

C3 = 0,C2 = 0,C1 = 0,
C0 = 0,
C−3 = 0,C−2 = 0,C−1 = 0.

(21)

Solving the system of algebraic equations with the help of Maple gives the following
set of non-trivial solutions
(I) The first set is:

a1 = 0, a−1 = a−1, p = p, b0 = b0, b−1 = −a−1b0

a0
, b1 = 0, c2 + 1 = c2 + 1,

(22)

a0 = a0, r = r, c4 − 1 = 2(c2 + 1)(p2 − r2), c2 − 1 = −b2
0(c

2 + 1)(p2 − r2)

a20
,

U1(x, t) =
a0
b0

a−1 exp(−x + ct) + a0
−a−1 exp(−x + ct) + a0

, c =
√

1 + 2(p2 − r2).

If we choose a0 = a−1, then we can obtain

u1(x, t) = i
√

1 + (p2 − r2)ei(px+rt) coth

(
x +

√
1 + 2(p2 − r2)t

2

)
,

v1(x, t) = −1

2
coth2

(
x +

√
1 + 2(p2 − r2)t

2

)
.

(II) The second set is:

a1 = 0, a−1 = 0, p = p, b1 = b1, b−1 = b−1, a0 = a0, c2 + 1 = c2 + 1,
(23)

b0 = 0, r = r, c4 − 1 = (c2 + 1)(r2 − p2), c2 − 1 = −8(c2 + 1)b1b−1(p
2 − r2)

a20
,

U2(x, t) =
a0

b−1 exp(−x + ct) + b1 exp(x− ct)
, c =

√
1 + (r2 − p2).

If we choose b1 = b−1, then we can obtain

u2(x, t) =
√

2(2 + (r2 − p2))ei(px+rt)sech

(
x +

√
1 + (r2 − p2)t

)
,
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v2(x, t) = 2sech2
(

x +
√

1 + (r2 − p2)t

)
.

(III) The third set is:

a1 = a1, a0 = 0, p = p, a−1 = a−1, b−1 = b−1, b1 = −b−1a1
a−1

, c2 + 1 = c2 + 1,

(24)

b0 = 0, r = r, c4 − 1 =
1

2
(c2 + 1)(p2 − r2), c2 − 1 = −

(c2 + 1)b2
−1(p

2 − r2)

a2−1
,

U3(x, t) =
a−1
b−1

a−1 exp(−x− ct) + a1 exp(x + ct)

a−1 exp(−x− ct)− a1 exp(x + ct)
, c =

√
1 +

p2 − r2

2
.

If we choose a1 = a−1, then we can obtain

u3(x, t) = −i
√

4 + p2 − r2ei(px+rt) coth

x +

√
1 +

p2 − r2

2
t

 ,

v3(x, t) = −2 coth2

x +

√
1 +

p2 − r2

2
t

 .
(IV) The fourth set is:

a1 = −4a−1b2
1

b2
0

, b0 = b0, p = p, a−1 = a−1, b−1 =
1

4

b2
0

b1
, b1 = b1, c2 + 1 = c2 + 1,

(25)

a0 = 0, r = r, c4 − 1 = 2(c2 + 1)(p2 − r2), c2 − 1 = − 1

16

(c2 + 1)b4
0(p

2 − r2)

b2
1a

2
−1

,

U4(x, t) =
4a−1b1

b2
0

b2
0 exp(−x− ct)− 4b2

1 exp(x + ct)

b2
0 exp(−x− ct) + 4b0b1 + 4b2

1 exp(x + ct)
, c =

√
1 + 2(p2 − r2).

If we choose b0 = 2b1, then we can obtain

u4(x, t) = −i
√

1 + (p2 − r2)ei(px+rt) tanh

(
x +

√
1 + 2(p2 − r2)t

2

)
,

v4(x, t) = −1

2
tanh2

(
x +

√
1 + 2(p2 − r2)t

2

)
.
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(V) The fifth set is:

a1 = a1, b−1 = −1

4

−a21b2
0 + b2

1a20
a21b1

, c2 + 1 = c2 + 1, a−1 =
1

4

−a21b2
0 + b2

1a20
a1b2

1

,

(26)

p = p, b0 = b0, r = r, a0 = a0, c4 − 1 = 2(c2 + 1)(p2 − r2),

c2 − 1 = −(c2 + 1)b2
1(p

2 − r2)

a21
, b1 = b1, a−1 = 0,

U5(x, t) =
1

b1

−a1b−1 exp(−x− ct) + a0b1 + a1b1 exp(x + ct)

b−1 exp(−x− ct) + b0 + b1 exp(x + ct)
, c =

√
1 + 2(p2 − r2).

If we choose b1 = b−1, b0 = 2b1 and a0 = 4a1 then we can obtain

u5(x, t) = i
√

1 + (p2 − r2)ei(px+rt)

[
tanh

(
x +

√
1 + 2(p2 − r2)t

2

)

+sech2

(
x +

√
1 + 2(p2 − r2)t

2

)]
,

v5(x, t) = −1

2

[
tanh

(
x +

√
1 + 2(p2 − r2)t

2

)
+ sech2

(
x +

√
1 + 2(p2 − r2)t

2

)]2
.

4. Application to the Maccari system

We next apply the EFM to the Maccari system

iut + uxx + uv = 0, (27)

vt + vy + (|u|2)x = 0.

We begin first with the Maccari system Eq. (27). Using the wave variables as follow

u = eiθU(η), v = V(η), θ = px + qy + rt, η = x + y + ct, (28)

Eq. (27) are carried to ODEs

U′′ − (r + p2)U + UV = 0, (29)

(c + 1)V′ + 2UU′ = 0.
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Integrating the second equation in the system and neglecting the constant of inte-
gration we find

−(c + 1)V = U2. (30)

Substituting Eq. (30) into the first equation of the system we obtain

(c + 1)U′′ − (c + 1)(r− p2)U−U3 = 0. (31)

Case 1: p = c = 1 and q = d = 1.
If we set p = c = 1 and d = q = 1. Then Eq. (6) reduces to

U(η) =
a1 exp(η) + a0 + a−1 exp(−η)

b1 exp(η) + b0 + b−1 exp(−η)
. (32)

Substituting (32) into Eq. (31), we have

1

A
[C3 exp(3η) + C2 exp(2η) + C1 exp(η) + C0 + C−1 exp(−η) (33)

+C−2 exp(−2η) + C−3 exp(−3η)] = 0,

where

A = (b−1 exp(−η) + b0 + b1 exp(η))3, (34)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to be zero,
we have

C3 = 0,C2 = 0,C1 = 0,
C0 = 0,
C−3 = 0,C−2 = 0,C−1 = 0.

(35)

Solving the system of algebraic equations we get

(I) The first set is:

a1 = 0, a−1 = 0, b0 = 0, c + 1 = −1

8

a20
b1b−1

, b−1 = b−1, b1 = b1, r = p2 − 1,

(36)

p = p, U1(x, y, t) =
a0

b−1 exp(−x− y − ct) + b1 exp(x + y + ct)
, c = −1− a20

8b2
1

.

If we choose a0 = 2b1 = 2b−1, then we can obtain

u1(x, y, t) = ei[px+qy+(p2−1)t]sech

(
x + y − 3

2
t

)
,
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v1(x, y, t) = 2sech2
(

x + y − 3

2
t

)
.

(II) The second set is:

a1 = a1, a−1 = 0, p = p, b1 = −a1b0

a0
, b−1 = 0, a0 = a0, c + 1 =

2a20
b2
0

,

(37)

b0 = b0, r =
1

2
+ p2, U2(x, y, t) = −a0

b0

a0 + a1 exp(x + y + ct)

−a0 + a1 exp(x + y + ct)
, c =

2a20
b2
0

− 1.

If we choose a0 = b0 = a1, then we can obtain

u2(x, y, t) = −e
1
2
i(2px+2qy+(2p2+1)t) coth

(
x + y + t

2

)
,

v2(x, y, t) = −1

2
coth2

(
x + y + t

2

)
.

(III) The third set is:

a1 =
1

4

b2
−1a

2
0 − b2

0a
2
−1

b2
−1a−1

, a0 = a0, p = p, a−1 = a−1, b−1 = b−1,

(38)

b1 = −1

4

b2
−1a

2
0 − b2

0a
2
−1

b−1a2−1
, c + 1 =

2a2−1
b2
−1

, b0 = b0, r =
1

2
+ p2,

U3(x, y, t) =
a−1b−1 exp(−x− y − ct) + a0b−1 − a−1b1 exp(x + y + ct)

b2
−1 exp(−x− y − ct) + b0b−1 + b1b−1 exp(x + y + ct)

, c =
2a2−1
b2
−1
− 1.

If we choose b1 = b−1, a0 = a−1 and b0 = 2
√

b1b−1 then we can obtain

u3(x, y, t) =

√
c + 1

2
e

1
2
i(2px+2qy+(2p2+1)t)

[
− tanh

(
x + y + ct

2

)
+ sech2

(
x + y + ct

2

)]
,

v3(x, y, t) = −1

2

[
− tanh

(
x + y + ct

2

)
+ sech2

(
x + y + ct

2

)]2
.

(IV) The fourth set is:

a1 = a1, b0 = 0, p = p, a−1 = a−1, b−1 = b−1, b1 = −b−1a1
a−1

, c + 1 =
1

2

a2−1
b2
−1
,

(39)

a0 = 0, r = p2 + 2, U4(x, y, t) = −a−1
b−1

a−1 exp(−x− y − ct) + a1 exp(x + y + ct)

−a−1 exp(−x− y − ct) + a1 exp(x + y + ct)
,
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If we choose a1 = a−1 = b−1, then we can obtain

u4(x, y, t) = −ei(px+qy+(p2+2)t) coth

(
2x + 2y − t

2

)
,

v4(x, y, t) = −2 coth2
(

2x + 2y − t

2

)
.

Case 2: p = c = 2 and q = d = 2.
Since the values of c and d can be freely chosen, we set p = c = 2 and d = q = 2.
Then the trial function, Eq. (6) becomes

U(η) =
a2 exp(2η) + a1 exp(η) + a0 + a−1 exp(−η) + a−2 exp(−2η)

b2 exp(2η) + b1 exp(η) + b0 + b−1 exp(−η) + b−2 exp(−2η)
. (40)

According to above procedure, substituting (40) into Eq. (31), we obtain

1

A
[C6 exp(6η) + C5 exp(5η) + C4 exp(4η) + C3 exp(3η) + C2 exp(2η) + C1 exp(η)

(41)
+C0 + C−1 exp(−η) + C−2 exp(−2η) + C−3 exp(−3η)

+C−4 exp(−4η) + C−5 exp(−5η) + C−6 exp(−6η)] = 0,

where

A = (b−2 exp(−2η) + b−1 exp(−η) + b0 + b1 exp(η) + b2 exp(2η))3,
(42)

and Cn’ are coefficients of exp(nη)’. Equating the coefficients of exp(nη) to be zero,
we have

C6 = 0,C5 = 0,C4 = 0,C3 = 0,C2 = 0,C1 = 0,
C0 = 0,
C−6 = 0,C−5 = 0,C−4 = 0,C−3 = 0,C−2 = 0,C−1 = 0.

(43)

By the same manipulation as illustrated above, we obtain

(I) The first set is:

a1 = a1, a−1 = 0, a−2 = 0, b0 = −1

8

a21
(c + 1)b2

, c + 1 = c + 1, b−1 = 0,

(44)
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b1 = 0, r = p2 − 1, b−2 = 0, p = p, a2 = 0, b2 = b2,

U1(x, t) =
8a1b2(c + 1) exp(x + y + ct)

−a21 + 8b2
2(c + 1) exp(2x + 2y + 2ct)

, c = −1− a21
8b0b2

.

If we choose a1
b2

= 2
√

2(c + 1), then we can obtain

u1(x, t) =
√

2(c + 1)ei(px+qy+(p2−1)t)csch (x + y + ct) ,

v1(x, t) = 2csch2 (x + y + ct) .

(II) The second set is:

a1 = a1, a−1 = −a1b−1
b1

, a−2 = 0, b0 = 0, c + 1 =
1

2

a21
b2
1

, b−1 = b−1, (45)

b1 = b1, r = p2 + 2, b−2 = 0,p = p, a2 = 0, b2 = 0,

U2(x, t) =
a1
b1

−b−1 exp(−x− y − ct) + b1 exp(x + y + ct)

b−1 exp(−x− y − ct) + b1 exp(x + y + ct)
, c =

1

2

a21
b2
1

− 1.

If we choose b1 = b−1, then we can obtain

u2(x, t) =
√

2(c + 1)ei(px+qy+(p2+2)t) tanh (x + y + ct) ,

v2(x, t) = −2 tanh2 (x + y + ct) .

(III) The third set is:

a1 = 0, a−1 = 0, a−2 = 0, b0 = 0, c + 1 = − 1

32

a20
b2b−2

, b−1 = 0,

(46)

b1 = 0, r = p2 − 4, b−2 = b−2, p = p, a2 = 0, b2 = b2,

U3(x, t) =
a0

b−1 exp(−x− y − ct) + b1 exp(x + y + ct)
, c = −1− 1

32

a20
b2b−2

.

If we choose b2 = b−2, then we can obtain

u3(x, t) = −2i
√

2(c + 1)ei(px+qy+(p2−4)t)sech (2x + 2y + 2ct) ,

v3(x, t) = 8sech2 (2x + 2y + 2ct) .
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(IV) The fourth set is:

a1 = 0, a−1 = 0, a−2 = −b−2a2
b2

, b0 = 0, c + 1 =
1

8

a22
b2
2

, b−1 = 0,

(47)
b1 = 0, r = p2 + 8, b−2 = b−2,p = p, a2 = a2, b2 = b2,

U4(x, t) =
a2
b2

−b−2 exp(−2x− 2y − 2ct) + b2 exp(2x + 2y + 2ct)

b−2 exp(−2x− 2y − 2ct) + b2 exp(2x + 2y + 2ct)
, c =

1

8

a22
b2
2

− 1.

If we choose b2 = b−2, then we can obtain

u4(x, t) = −
√

8(c + 1)ei(px+qy+(p2+8)t) coth (2x + 2y + 2ct) ,

v4(x, t) = −8 coth2 (2x + 2y + 2ct) .

(V) The fifth set is:

a1 = a1, a−1 = 0, a−2 = −a1b−2

b1
, b0 = 0, c + 1 =

2

9

a21
b2
1

, b−1 = 0, (48)

b1 = b1, r = p2 +
9

2
, b−2 = b−2, p = p, a2 = 0, b2 = 0,

U5(x, t) =
a1
b1

−b−2 exp(−2x− 2y − 2ct) + b1 exp(x + y + ct)

b−2 exp(−2x− 2y − 2ct) + b1 exp(x + y + ct)
, c =

2

9

a21
b2
1

− 1.

If we choose b1 = b−2, then we can obtain

u5(x, t) = 3

√
(c + 1)

2
e

1
2
i(2px+2qy+(2p2+9)t) tanh

(
3x + 3y + 3ct

2

)
,

v5(x, t) = −9

2
tanh2

(
3x + 3y + 3ct

2

)
.

(VI) The sixth set is:

a1 =
a2b1

b2
, a−1 =

a−2b2

b1
, a−2 = a−2, b0 = 0, c + 1 =

2

9

a22
b2
2

, b−1 =
b2
2a−2

b1a2
,

(49)

b1 = b1, r = p2 +
9

2
, b−2 = −a−2b2

a2
, p = p, a2 = a2, b2 = b2,

U6(x, t) =
a2
b2

a−2b2 exp(−2x− 2y − 2ct) + a2b1 exp(x + y + ct)

−a−2b2 exp(−2x− 2y − 2ct) + a2b1 exp(x + y + ct)
, c =

2

9

a22
b2
2

− 1.
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If we choose a2b1
a−2b2

= 1, then we can obtain

u6(x, t) = 3

√
(c + 1)

2
e

1
2
i(2px+2qy+(2p2+9)t) coth

(
3x + 3y + 3ct

2

)
,

v6(x, t) = −9

2
coth2

(
3x + 3y + 3ct

2

)
.

The results obtained in the above are exact solutions of the couple Higgs equation
and the Maccari system. In this article we investigated two systems of two complex
coupled equations. The Exp-function method has been successfully applied to obtain
some new generalized solitonary solutions to the couple Higgs equation and the
Maccari system. Here, we have used the EFM to derive exact solutions with distinct
physical structures. Some of these results are in agreement with the results reported
specially by [?, ?]. Comparing our results and Bekir’s and Zhao’s results then it can
be seen that the results are same. Also, new results are formally developed in this
article. It can be concluded that the Exp-function method is a very powerful and
efficient technique in finding exact solutions for wide classes of problems.
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