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EXISTENCE OF NONOSCILLATORY BOUNDED SOLUTIONS FOR
A SYSTEM OF SECOND-ORDER NONLINEAR NEUTRAL DELAY

DIFFERENTIAL EQUATIONS

Zhenyu Guo and Min Liu

Abstract. A system of second-order nonlinear neutral delay differential equa-
tions (

r1(t)
(
x1(t) + P1(t)x1(t− τ1)

)′)′
= F1

(
t, x2(t− σ1), x2(t− σ2)

)
,(

r2(t)
(
x2(t) + P2(t)x2(t− τ2)

)′)′
= F2

(
t, x1(t− σ1), x1(t− σ2)

)
,

where τi > 0, σ1, σ2 ≥ 0, ri ∈ C([t0,+∞),R+), Pi(t) ∈ C([t0,+∞),R), Fi ∈ C([t0,+∞)×
R2,R), i = 1, 2 is studied in this paper, and some sufficient conditions for existence of
nonoscillatory bounded solutions for this system are established by Krasnoselkii and
Schauder fixed point theorems, and expressed through several theorems according
to the range of the value of the functions P1(t), P2(t) and their combination.

2000 Mathematics Subject Classification: 34K15, 34C10.

1. Introduction and preliminaries

We investigate the following nonlinear differential system(
r1(t)

(
x1(t) + P1(t)x1(t− τ1)

)′)′
= F1

(
t, x2(t− σ1), x2(t− σ2)

)
,(

r2(t)
(
x2(t) + P2(t)x2(t− τ2)

)′)′
= F2

(
t, x1(t− σ1), x1(t− σ2)

)
,

which may be rewritten as(
ri(t)

(
xi(t) + Pi(t)xi(t− τi)

)′)′
= Fi

(
t, x3−i(t− σ1), x3−i(t− σ2)

)
, t ≥ t0,

(1.1)
where τi > 0, σ1, σ2 ≥ 0, ri ∈ C([t0,+∞),R+), Pi(t) ∈ C([t0,+∞),R), Fi ∈ C([t0,+∞)×
R2,R) and i = 1, 2.
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By applying Krasnoselkii and Schauder fixed point theorems and some new tech-
niques, we obtained a few sufficient conditions for the existence of a nonoscillatory
bounded solution of the system (1.1).

Lemma 1.1(Krasnoselskii Fixed Point Theorem)[4]Let Ω be a bounded
closed convex subset of a Banach space X and Q,S : Ω → X satisfy Qx + Sy ∈ Ω
for each x, y ∈ Ω. If Q is a contraction mapping and S is a completely continuous
mapping, then the equation Qx+ Sx = x has at least one solution in Ω.

Lemma 1.2(Schauder Fixed Point Theorem)[4]Let Ω be a closed, convex
and nonempty subset of a Banach space X and S : Ω→ Ω be a continuous mapping
such that SΩ is a relatively compact subset of X. Then S has at least one fixed point
in Ω. That is there exists an x ∈ Ω such that Sx = x.

2. Existence of nonoscillatory bounded solutions

In this section, a few sufficient conditions of the existence of nonoscillatory
bounded solutions for system (1.1) will be given.

Theorem 2.1Let functions hi, qi, ri ∈ C([t0,+∞),R+) and Pi(t) ∈ C([t0,+∞),R)
satisfy that

0 < Pi(t) ≤ Pi < 1, (2.1)∣∣Fi(t, u1, u2)− Fi(t, v1, v2)∣∣ ≤ hi(t) max
{
|ui − vi| : i = 1, 2

}
, (2.2)∣∣Fi(t, u1, u2)∣∣ ≤ qi(t), (2.3)∫ +∞

t0

Ri(t) max
{
hi(t), qi(t)

}
dt < +∞, (2.4)

where Ri(t) =
∫ t
t0

1
ri(s)

ds and i = 1, 2. Then the system (1.1) has a nonoscillatory
bounded solution.

Proof. In virtue of (2.4), a sufficiently large T > t0 can be chosen such that∫ +∞

T
Ri(t) max

{
hi(t), qi(t)

}
dt <

1− Pi
4

, (2.5)

where i = 1, 2.
Let C([t0,+∞),R2) be the set of all continuous vector functions x(t) = (x1(t), x2(t))

with the norm ||x|| = supt≥t0{|x1(t)|, |x2(t)|} < +∞. Obviously, C([t0,+∞),R2) is a
Banach space. Now, define a bounded, closed and convex subset Ω of C([t0,+∞),R2)
as following:

Ω =
{
x = (x1, x2) ∈ C([t0,+∞),R2) :

1− Pi
2
≤ xi(t) ≤ 1, i = 1, 2, t ≥ t0

}
.
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Let mappings Q = (Q1, Q2) and S = (S1, S2) : Ω→ C([t0,+∞),R2) be defined by

(Qix)(t) =


3−Pi
4 − Pi(t)xi(t− τi)
−
∫ t
T Ri(s)Fi(s, x3−i(s− σ1), x3−i(s− σ2))ds, t ≥ T

(Qix)(T ), t0 ≤ t < T

(2.6)

(Six)(t) =

{
−Ri(t)

∫ +∞
t Fi(s, x3−i(s− σ1), x3−i(s− σ2))ds, t ≥ T

(Six)(T ), t0 ≤ t < T
(2.7)

for all x ∈ Ω, where i = 1, 2.
(i) It is claimed that Qx+ Sy ∈ Ω for all x, y ∈ Ω, i.e. QΩ ∪ SΩ ⊂ Ω.
In fact, for each x, y ∈ Ω and t ≥ T , it follows from (2.3) and (2.5) that

(Qix)(t) + (Siy)(t) ≥3 + Pi
4
− Pixi(t− τi)

−
∫ t

T
Ri(s)|Fi(s, x3−i(s− σ1), x3−i(s− σ2))|ds

−Ri(t)
∫ +∞

t
|Fi(s, y3−i(s− σ1), y3−i(s− σ2))|ds

≥3 + Pi
4
− Pi −

∫ t

T
Ri(s)qi(s)ds−

∫ +∞

t
Ri(s)qi(s)ds

≥3 + Pi
4
− Pi −

∫ +∞

T
Ri(s)qi(s)ds

≥1− Pi
2

,

and

(Qix)(t) + (Siy)(t) ≤ 3 + Pi
4

+ 0 +

∫ +∞

T
Ri(s)qi(s)ds ≤ 1.

Thus, 1−Pi
2 ≤ (Qix)(t) + (Siy)(t) ≤ 1, i = 1, 2 for t ≥ t0.

(ii) It is declared that Q is a contraction mapping on Ω.
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In reality, for any x, y ∈ Ω and t ≥ T , it is easy to derive that∣∣(Qix)(t)− (Qiy)(t)
∣∣

≤Pi(t)
∣∣xi(t− τi)− yi(t− τi)∣∣+

∫ t

T
Ri(s)∣∣Fi(s, x3−i(s− σ1), x3−i(s− σ2))− Fi(s, y3−i(s− σ1), y3−i(s− σ2))∣∣ds

≤Pi
∣∣xi(t− τi)− yi(t− τi)∣∣

+

∫ t

T
Ri(s)hi(s) max

{
|x3−i(s− σj)− y3−i(s− σj)| : j = 1, 2

}
ds

≤Pi||x− y||+
∫ +∞

T
Ri(s)hi(s)ds||x− y||

≤ki||x− y||,

which implies that
||Qix−Qiy|| ≤ ki||x− y||.

It follows from ki = Pi +
∫ +∞
T Ri(s)hi(s)ds ≤ 1+3Pi

4 < 1 that Q is a contraction
mapping on Ω.

(iii) It can be asserted that S is completely continuous.
Firstly, we show S is continuous. Let xk = (x1k(t), x2k(t)) ∈ Ω and xik(t)→ xi(t)

as k → +∞. Since Ω is closed, x = (x1(t), x2(t)) ∈ Ω. For t ≥ T , (2.2) guarantees
that∣∣(Sixk)(t)− (Six)(t)

∣∣
≤Ri(t)

∫ +∞

t

∣∣Fi(s, x3−i k(s− σ1), x3−i k(s− σ2))− Fi(s, x3−i(s− σ1), x3−i(s− σ2))∣∣ds
≤
∫ +∞

t
Ri(s)hi(s) max

{
|x3−i k(s− σj)− x3−i(s− σj)| : j = 1, 2

}
ds

≤‖xk − x‖
∫ +∞

T
Ri(s)hi(s)ds.

This above inequality together with (2.4) implies that S is continuous.
Next, we prove SΩ is relatively compact. It is sufficient to show that the family of

functions {Sx : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,+∞). The
uniform boundedness is obvious. For the equicontinuity, according to Levitan’s result
[10], it is only need to prove that, for any given ε > 0, [t0,+∞) can be decomposed
into finite subintervals in such a way that on each subinterval all functions of the
family have change of amplitude less than ε. By (2.4), for any ε > 0, take T ′ ≥ T
large enough so that ∫ +∞

T ′
Ri(s)qi(s)ds <

ε

2
. (2.8)
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Then, for any x ∈ Ω and t2 > t1 ≥ T ′, (2.8) ensures that

∣∣(Six)(t2)− (Six)(t1)
∣∣ ≤Ri(t) ∫ +∞

t2

∣∣Fi(s, x3−i(s− σ1), x3−i(s− σ2))∣∣ds
+Ri(t)

∫ +∞

t1

∣∣Fi(s, x3−i(s− σ1), x3−i(s− σ2))∣∣ds
≤
∫ +∞

T ′
Ri(s)qi(s)ds+

∫ +∞

T ′
Ri(s)qi(s)ds

<
ε

2
+
ε

2
= ε.

For any x ∈ Ω and T ≤ t1 < t2 ≤ T ′, there exists δ > 0 such that if 0 < t2 − t1 < δ,
then ∣∣(Six)(t2)− (Six)(t1)

∣∣ ≤Ri(t)∫ t2

t1

∣∣Fi(s, x3−i(s− σ1), x3−i(s− σ2))∣∣ds
≤
∫ t2

t1

Ri(s)qi(s)ds < ε.

For any x ∈ S and t0 ≤ t1 < t2 ≤ T , it is easy to get that∣∣(Six)(t2)− (Six)(t1)
∣∣ = 0 < ε.

Consequently, {Six : x ∈ Ω} is uniformly bounded and equicontinuous on [t0,+∞).
Therefore SΩ is relatively compact. It follows from Lemma 1.1 that there is x0 ∈ Ω
such that Qx0 + Sx0 = x0. Obviously, x0(t) is a nonoscillatory bounded solution of
the system (1.1). This completes the proof.

Theorem 2.2Let functions hi, qi, ri ∈ C([t0,+∞),R+) and Pi(t) ∈ C([t0,+∞),R)
satisfy (2.2)∼(2.4) and

1 < ai ≤ Pi(t) ≤ bi < +∞, (2.9)

where i = 1, 2. Then the system (1.1) has a nonoscillatory bounded solution.
Proof. By (2.4), a sufficiently large T > t0 can be chosen such that∫ +∞

T
Ri(t)hi(t)dt < ai − 1, (2.10)

∫ +∞

T
Ri(t)qi(t)dt <

aibi − a2i − bi
2

, (2.11)

where i = 1, 2.
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Let C([t0,+∞),R2) be the set as in the proof of Theorem 2.1 and define a
bounded, closed and convex subset Ω of C([t0,+∞),R2) as following:

Ω =
{
x = (x1, x2) ∈ C([t0,+∞),R2) : ai ≤ xi(t) ≤ bi, i = 1, 2, t ≥ t0

}
.

Let mappings Q = (Q1, Q2) and S = (S1, S2) : Ω→ C([t0,+∞),R2) be defined as

(Qix)(t) =


a2i+aibi+bi

2ai
− xi(t+τi)

Pi(t+τi)
− 1

Pi(t+τi)∫ t+τi
T Ri(s)Fi(s, x3−i(s− σ1), x3−i(s− σ2))ds, t ≥ T

(Qix)(T ), t0 ≤ t < T

(2.12)

(Six)(t) =

{
−Ri(t+τi)
Pi(t+τi)

∫ +∞
t+τi

Fi(s, x3−i(s− σ1), x3−i(s− σ2))ds, t ≥ T
(Six)(T ), t0 ≤ t < T

(2.13)
for all x ∈ Ω, where i = 1, 2.

Proceeding similarly as what we did in Theorem 2.1, we prove that the system
(1.1) has a nonoscillatory bounded solution. The proof is completed.

Theorem 2.3Let functions hi, qi, ri ∈ C([t0,+∞),R+) and Pi(t) ∈ C([t0,+∞),R)
satisfy (2.2)∼(2.4),

0 < P1(t) ≤ P1 < 1, (2.14)

and
1 < a2 ≤ P2(t) ≤ b2 < +∞. (2.15)

Then the system (1.1) has a nonoscillatory bounded solution.
Proof. By (2.4), a sufficiently large T > t0 can be chosen such that∫ +∞

T
R1(t) max

{
h1(t), q1(t)

}
dt <

1− P1

4
, (2.16)

∫ +∞

T
R2(t)h2(t)dt < a2 − 1, (2.17)∫ +∞

T
R2(t)q2(t)dt <

a2b2 − a22 − b2
2

. (2.18)

Let C([t0,+∞),R2) be the set as in the proof of Theorem 2.1 and define a
bounded, closed and convex subset Ω of C([t0,+∞),R2) as following:

Ω =
{
x = (x1, x2) ∈ C([t0,+∞),R2) :

1− P1

2
≤ x1(t) ≤ 1, a2 ≤ x2(t) ≤ b2, t ≥ t0

}
.
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Let mappings Q = (Q1, Q2) and S = (S1, S2) : Ω→ C([t0,+∞),R2) be defined as

(Q1x)(t) =


3−P1

4 − P1(t)x1(t− τ1)
−
∫ t
T R1(s)F1(s, x2(s− σ1), x2(s− σ2))ds, t ≥ T

(Q1x)(T ), t0 ≤ t < T

(2.19)

(S1x)(t) =

{
−R1(t)

∫ +∞
t F1(s, x2(s− σ1), x2(s− σ2))ds, t ≥ T

(S1x)(T ), t0 ≤ t < T
(2.20)

(Q2x)(t) =


a22+a2b2+b2

2a2
− x2(t+τ2)

P2(t+τ2)
− 1

P2(t+τ2)∫ t+τ2
T R2(s)F2(s, x1(s− σ1), x1(s− σ2))ds, t ≥ T

(Q2x)(T ), t0 ≤ t < T

(2.21)

(S2x)(t) =

{
−R2(t+τ2)
P2(t+τ2)

∫ +∞
t+τ2

F2(s, x1(s− σ1), x1(s− σ2))ds, t ≥ T
(S2x)(T ), t0 ≤ t < T

(2.22)

for all x ∈ Ω.
Proceeding similarly as in the proof of Theorem 2.1 and 2.2, we obtain that the

system (1.1) has a nonoscillatory bounded solution. This completes the proof.
Theorem 2.4Let functions hi, qi, ri ∈ C([t0,+∞),R+) and Pi(t) ∈ C([t0,+∞),R)

satisfy (2.2), (2.3),
Pi(t) ≡ −1, (2.23)

and ∫ +∞

t0

t|R′i(t)|
∫ +∞

t
max{qi(s), hi(s)}dsdt < +∞, (2.24)

where i = 1, 2. Then the system (1.1) has a nonoscillatory bounded solution.
Proof. According to a known result (Theorem 3.2.6 in [4]), (2.24) is equivalent

to the condition
∞∑
j=0

∫ +∞

t0+jτi

|R′i(t)|
∫ +∞

t
max{qi(s), hi(s)}dsdt < +∞, i = 1, 2. (2.25)

By (2.25), a sufficiently large T > t0 can be chosen such that

∞∑
j=1

∫ +∞

T+jτi

|R′i(t)|
∫ +∞

t
max{qi(s), hi(s)}dsdt < 1, i = 1, 2. (2.26)

Let C([t0,+∞),R2) be the set as in the proof of Theorem 2.1 and define a bounded,
closed and convex subset Ω of C([t0,+∞),R2) as following:

Ω =
{
x = (x1, x2) ∈ C([t0,+∞),R2) : 1 ≤ xi(t) ≤ 3, i = 1, 2, t ≥ t0

}
.
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Let mapping S = (S1, S2) : Ω→ C([t0,+∞),R2) be defined as

(Six)(t) =


2−

∑∞
j=1

∫ +∞
t+jτi

R′i(s)∫ +∞
s Fi(u, x3−i(u− σ1), x3−i(u− σ2))duds, t ≥ T

(Six)(T ), t0 ≤ t < T

(2.27)

for all x ∈ Ω, where i = 1, 2.
Similarly to the proof in Theorem 2.1, we get that SΩ ⊂ Ω, S is a continuous

mapping on Ω, and SΩ is a relatively compact subset. Applying Lemma 1.2, we
could find a x0 = (x01, x02) ∈ Ω such that Sx0 = x0. That is

x0i(t) =


2−

∑∞
j=1

∫ +∞
t+jτi

R′i(s)∫ +∞
s Fi(u, x0 3−i(u− σ1), x0 3−i(u− σ2))duds, t ≥ T

x0i(T ), t0 ≤ t < T

(2.28)

where i = 1, 2. For t ≥ T ,

x0i(t)− x0i(t− τi) =

∫ +∞

t
R′i(s)

∫ +∞

s
Fi(u, x0 3−i(u− σ1), x0 3−i(u− σ2))duds.

Then,

(
x0i(t)− x0i(t− τi)

)′
= −R′i(t)

∫ +∞

t
Fi(u, x0 3−i(u− σ1), x0 3−i(u− σ2))du,

which we can rewrite it as

ri(t)
(
x0i(t) + Pi(t)x0i(t− τi)

)′
= −

∫ +∞

t
Fi(u, x0 3−i(u− σ1), x0 3−i(u− σ2))du.

Finding the derivative,(
ri(t)

(
x0i(t) + Pi(t)x0i(t− τi)

)′)′
= Fi

(
t, x0 3−i(t− σ1), x0 3−i(t− σ2)

)
.

Therefore, x0(t) is a bounded nonoscillatory solution of the system (1.1). This
completes the proof.

Remark 2.5 Proceeding as before, we can prove that no matter Pi(t) belongs
to which cases:
(1) 0 < Pi(t) ≤ Pi < 1,
(2) 1 < ai ≤ Pi(t) ≤ bi < +∞,
(3) Pi(t) ≡ −1,
(4) −1 < Pi ≤ Pi(t) < 0,
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(5) −∞ < ai ≤ Pi(t) ≤ bi < −1,
(6) any combination of the above,
the system (1.1) has a bounded nonoscillatory solution.
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