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THE SIMPLEST EQUATION METHOD FOR SOLVING SOME
IMPORTANT NONLINEAR PARTIAL DIFFERENTIAL

EQUATIONS

M. Eslami and M. Mirzazadeh

Abstract. The simplest equation method presents a wide applicability to han-
dling nonlinear wave equations. In this paper, we establish travelling wave solutions
for some nonlinear evolution equations. The simplest equation method is used to
construct the travelling wave solutions of new Hamiltonian amplitude equation, (3 +
1)-dimensional generalized KP equation, Burgers-KP equation, coupled Higgs field
equation, generalized Zakharov System. New Hamiltonian amplitude equation is an
equation which governs certain instabilities of modulated wave trains, with the addi-
tional term −εuxt overcoming the ill-posedness of the unstable nonlinear Schrödinger
equation. It is a Hamiltonian analogue of the Kuramoto-Sivashinski equation which
arises in dissipative systems and is apparently not integrable.

2000 Mathematics Subject Classification: 35Q53, 35Q80, 35Q55, 35G25.

1. Introduction

Nonlinear phenomena play crucial roles in applied mathematics and physics. Cal-
culating exact and numerical solutions, in particular the traveling wave solutions
of nonlinear equations in mathematical physics, plays an important role in soliton
theory. Recently many new approaches for finding the exact solutions to nonlinear
equations have been proposed, such as ansatz method and topological solitons [1-4],
tanh method [5,6], multiple exp-function method [7], simplest equation method [8-
11], Hirotas direct method [12,13], transformed rational function method [14].
Using simplest equation method in work [15] exact solutions of the perturbed nonlin-
ear Schrödinger’s equation with Kerr law nonlinearity, the nonlinear Schrödinger’s
equation were obtained.
The paper is arranged as follows. In Section 2, we describe briefly the simplest
equation method. In Sections 3-7, we apply this method to new Hamiltonian ampli-
tude equation, (3 + 1)-dimensional generalized KP equation, Burgers-KP equation,
coupled Higgs field equation and generalized Zakharov System.
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2. The simplest equation method

Step 1. We first consider a general form of nonlinear equation

P (u, ux, ut, uxx, uxt, ...) = 0. (1)

Step 2. To find the traveling wave solution of Eq. (1) we introduce the wave
variable ξ = x− ct so that

u(x, t) = y(ξ). (2)

Based on this we use the following changes

∂

∂t
(.) = −c ∂

∂ξ
(.),

∂

∂x
(.) =

∂

∂ξ
(.), (3)

∂2

∂x2
(.) =

∂2

∂ξ2
(.)

and so on for other derivatives.
Using (3) changes the PDE (1) to an ODE

Q(y,
∂y

∂ξ
,
∂2y

∂ξ2
, ...) = 0, (4)

where y = y(ξ) is an unknown function, Q is a polynomial in the variable y and its
derivatives.
Step 3. The basic idea of the simplest equation method consists in expanding the
solutions y(ξ) of Eq. (4) in a finite series

y(ξ) =
l∑

i=0

aiz
i, al 6= 0, (5)

where the coefficients ai are independent of ξ and z = z(ξ) are the functions that
satisfy some ordinary differential equations.
In this paper, we use the Bernoulli equation [16] as simplest equation

dz

dξ
= az(ξ) + bz2(ξ), (6)

Eq. (6) admits the following exact solutions

z(ξ) =
a exp[a(ξ + ξ0)]

1− b exp[a(ξ + ξ0)]
, (7)
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for the case a > 0, b < 0 and

z(ξ) = − a exp[a(ξ + ξ0)]

1 + b exp[a(ξ + ξ0)]
, (8)

for the case a < 0, b > 0, where ξ0 is a constant of integration.
Remark 1. l is a positive integer, in most cases, that will be determined. To
determine the parameter l, we usually balance the linear terms of highest order in
the resulting equation with the highest order nonlinear terms.
Step 4. Substituting (5) into (4) with (6), then the left hand side of Eq. (4) is
converted into a polynomial in z(ξ), equating each coefficient of the polynomial to
zero yields a set of algebraic equations for ai, a, b, c.
Step 5. Solving the algebraic equations obtained in step 4, and substituting the
results into (5), then we obtain the exact traveling wave solutions for Eq. (1).

Remark 2. In Eq. (6), when a = A and b = −1 we obtain the Bernoulli equation

dz

dξ
= Az(ξ)− z2(ξ). (9)

Eq. (9) admits the following exact solutions

z(ξ) =
A

2
[1 + tanh(

A

2
(ξ + ξ0))], (10)

when A > 0, and

z(ξ) =
A

2
[1− tanh(

A

2
(ξ + ξ0))], (11)

when A < 0.
Remark 3. This method is a simple case of the Ma- Fuchssteiner method [16].

3. New Hamiltonian amplitude equation

A new Hamiltonian amplitude equation

iux + utt + 2σ|u|2u− εuxt = 0, (12)

where σ = ±1, ε << 1, was recently introduced by Wadati et al., [17].
By make the transformation

u(x, t) = ei(αx+βt)y(ξ), ξ = ik(x− λt), λ =
1− εβ

2β − εα
, (13)

Eq. (12) becomes

−k2(λ2 + ελ)yξξ − (α+ β2 − εβα)y + 2σy3 = 0. (14)
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For the solutions of Eq. (14), we make the following ansatz

y(ξ) =
l∑

i=0

aiz
i, al 6= 0, (15)

where ai are all real constants to be determined, l is a positive integer which can be
determined by balancing the highest order derivative term with the highest order
nonlinear term after substituting ansatz (15) into Eq. (14), where z satisfies Eq.
(6).
When balancing yξξ with y3 then gives l + 2 = 3l =⇒ l = 1. Therefore, we may
choose

y(ξ) = a0 + a1z(ξ). (16)

Substituting (16) along with (6) in Eq. (14) and then setting the coefficients of
zj(j = 3, 2, 1, 0) to zero in the resultant expression, we obtain a set of algebraic
equations involving a0, a1, a, b, α and β as

−2k2(λ2 + ελ)b2a1 + 2σa31 = 0, (17)

−3k2(λ2 + ελ)aba1 + 6σa0a
2
1 = 0,

−k2(λ2 + ελ)a2a1 + 6σa20a1 − (α+ β2 − εβα)a1 = 0,

2σa30 − (α+ β2 − εβα)a0 = 0.

With the aid of Maple, we shall find the special solution of the above system

a0 = ±

√
α+ β2 − εβα

2σ
, a = ±

√
2(α+ β2 − εβα)

k2λ(λ+ ε)
, b = ±

√
σ

k2λ(λ+ ε)
a1, (18)

where α, β and a1 are arbitrary constants.
Assuming a > 0 and choosing b < 0. Therefore, using solution (7) of Eq. (6), ansatz
(16) , we obtain the following traveling-wave solution of Eq. (14)

y(ξ) = ±

√
α+ β2 − εβα

2σ
(1 +

2a1
√
σ exp[

√
2(α+β2−εβα)
k2λ(λ+ε)

(ξ + ξ0)]

k
√
λ(λ+ ε)−

√
σa1 exp[

√
2(α+β2−εβα)
k2λ(λ+ε)

(ξ + ξ0)]

).

(19)
Then the exact solution to Eq. (12) can be written as

u(x, t) = ±

√
α+ β2 − εβα

2σ
(1+

2a1
√
σe

√
2(α+β2−εβα)
k2λ(λ+ε)

(ik(x−λt)+ξ0)

k
√
λ(λ+ ε)−

√
σa1e

√
2(α+β2−εβα)
k2λ(λ+ε)

(ik(x−λt)+ξ0)
)ei(αx+βt),

(20)
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where λ = 1−εβ
2β−εα .

Substituting (16) along with (9) in Eq. (14) and setting all the coefficients of powers
z to be zero, then we obtain a system of nonlinear algebraic equations and by solving
it, we obtain

a0 = ±

√
α+ β2 − εβα

2σ
, a1 = ±k

√
λ(λ+ ε)

σ
, A = −

√
2(α+ β2 − εβα)

k2λ(λ+ ε)
, (21)

where β, α and k are arbitrary constants.
Therefore, using solution (11) of Eq. (9), ansatz (16), we obtain the following exact
solution of Eq. (14)

y(ξ) = ±

√
α+ β2 − εβα

2σ
tanh[

√
α+ β2 − εβα
2k2λ(λ+ ε)

(ξ + ξ0)]. (22)

Then, the exact solution to Eq. (12) can be written as

u(x, t) = ±

√
α+ β2 − εβα

2σ
tanh[

√
α+ β2 − εβα
2k2λ(λ+ ε)

(ik(x− λt) + ξ0)]e
i(αx+βt), (23)

where λ = 1−εβ
2β−εα .

4. (3 + 1)-dimensional generalized KP equation

Let us consider the (3 + 1)-dimensional generalized KP equation [18, 19]

uxxxy + 3(uxuy)x + utx + uty − uzz = 0. (24)

We use the wave transformation

u(x, y, z, t) = y(ξ), ξ = kx+ αy + βz − γt, (25)

where k, α, β and γ are constants, all of them are to be determined.
Substituting (25) into (24), we obtain ordinary differential equation:

αk3yξξξξ + 6k2αyξyξξ − (kγ + αγ + β2)yξξ = 0. (26)

When balancing yξξξξ with yξyξξ then gives l+ 4 = l+ 1 + l+ 2 =⇒ l = 1. Therefore,
we may choose

y(ξ) = a0 + a1z(ξ). (27)

Substituting (27) along with (6) in Eq. (26) and then setting the coefficients of
zj(j = 5, 4, 3, 2, 1) to zero in the resultant expression, we obtain a set of algebraic
equations involving a0, a1, a, b, k, α, β and γ as

24αk3a1b
4 + 12k2αa21b

3 = 0, (28)
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60αk3b3aa1 + 30k2αab2a21 = 0,

−2(kγ + αγ + β2)a1b
2 + 50αk3b2a2a1 + 24k2αa2ba21 = 0,

−3(kγ + αγ + β2)aba1 + 15αk3a1ba
3 + 6k2αa3a21 = 0,

αk3a4a1 − (kγ + αγ + β2)a2a1 = 0.

With the aid of Maple, we shall find the special solution of the above system

a1 = −2kb, γ =
k3a2α− β2

k + α
, (29)

where a0, a, b, k, α and β are arbitrary constants.
Assuming a > 0 and choosing b < 0. Therefore, using solution (7) of Eq. (6), ansatz
(27) , we obtain the following exact solution of Eq. (26)

y(ξ) = a0 − 2kab
exp[a(ξ + ξ0)]

1− b exp[a(ξ + ξ0)]
. (30)

Then the exact traveling-wave solution to (3 + 1)-dimensional generalized KP equa-
tion can be written as

u(x, y, z, t) = a0 − 2kab
ea(kx+αy+βz−(

k3a2α−β2
k+α

)t+ξ0)

1− bea(kx+αy+βz−(
k3a2α−β2

k+α
)t+ξ0)

. (31)

When a0 = ξ0 = 0, a = 1, b = −1, we obtain the exact solution

u(x, y, z, t) = 2k
ekx+αy+βz−(

k3α−β2
k+α

)t

1 + ekx+αy+βz−(
k3α−β2
k+α

)t
. (32)

5. Burgers-KP equation

In this section we study the Burgers-KP equation [20]

(ut + uux + µuxx)x + λuyy = 0. (33)

We use the wave transformation

u(x, y, t) = y(ξ), ξ = kx+ αy − ct, (34)

where k, α and c are constants, all of them are to be determined.
Substituting (34) into (33), we obtain ordinary differential equation:

µk3yξξξ + (λα2 − ck)yξξ + k2(yξ)
2 + k2yyξξ = 0. (35)
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When balancing yξξξ with yyξξ then gives l + 3 = l + l + 2 =⇒ l = 1. Therefore, we
may choose

y(ξ) = a0 + a1z(ξ). (36)

Substituting (36) along with (6) in Eq. (35) and setting all the coefficients of powers
z to be zero, then we obtain a system of nonlinear algebraic equations and by solving
it, we obtain

a1 = −2µkb, c =
µk3a+ k2a0 + λα2

k
, (37)

where a0, a, b, k, α and β are arbitrary constants.
Assuming a > 0 and choosing b < 0. Therefore, using solution (7) of Eq. (6), ansatz
(36) , we obtain the following exact solution of Eq. (35)

y(ξ) = a0 − 2µkab
exp[a(ξ + ξ0)]

1− b exp[a(ξ + ξ0)]
. (38)

Then the exact traveling-wave solution to Burgers-KP equation can be written as

u(x, y, t) = a0 − 2µkab
ea(kx+αy−(

µk3a+k2a0+λα
2

k
)t+ξ0)

1− bea(kx+αy−(
µk3a+k2a0+λα

2

k
)t+ξ0)

. (39)

When a0 = ξ0 = 0, a = 1, b = −1, α = k, we obtain the exact solution

u(x, y, t) = 2µk
ekx+ky−(µk

2+λk)t

1 + ekx+ky−(µk2+λk)t
. (40)

6. Coupled Higgs field equation

The coupled Higgs field equation [21]

utt − uxx − αu+ β|u|2u− 2uv = 0, (41)

vtt + vxx − β(|u|2)xx = 0,

describes a system of conserved scalar nucleons interacting with a neutral scalar
meson. Here, real constant v represents a complex scalar nucleon field and u a real
scalar meson field. Eq. (12) is the coupled nonlinear Klein-Gordon equation for
α < 0, β < 0 and the coupled Higgs field equation for α > 0, β > 0. The existence
of N -soliton solutions for Eq. (12) has been shown by Hirota’s bilinear method [22].
To find exact solutions of coupled Higgs field equation (41), first we make the trans-
formation

u(x, t) = eiθf(ξ), v(x, t) = g(ξ), (42)
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where θ = kx+ωt, ξ = x+ ct, we have a relation k = ωc and reduce system (41) to
the following system of ordinary differential equations

(ω2(c2 − 1)− α)f(ξ) + (c2 − 1)f ′′(ξ) + βf3(ξ)− 2f(ξ)g(ξ) = 0, (43)

(c2 + 1)g′′(ξ)− β(f2(ξ))′′ = 0. (44)

Integrating Eq. (44) twice with respect to ξ, then we have

g(ξ) =
R+ βf2(ξ)

c2 + 1
, (45)

where R is the second integration constant and the first one is taken to zero.
Inserting Eq. (45) into Eq. (43) yields

(ω2(c2 − 1)− α− 2R

c2 + 1
)f(ξ) + (c2 − 1)f ′′(ξ) + β(1− 2

c2 + 1
)f3(ξ) = 0. (46)

When balancing f ′′ with f3 then gives l + 2 = 3l =⇒ l = 1. Therefore, we may
choose

f(ξ) = a0 + a1z(ξ). (47)

Substituting (47) into (46) using (6) yields a set of algebraic equations for a0, a1, ω, a, b, c, R :

2(c2 − 1)b2a1 + β(1− 2

c2 + 1
)a31 = 0, (48)

3(c2 − 1)aba1 + 3β(1− 2

c2 + 1
)a0a

2
1 = 0,

(c2 − 1)a2a1 + (ω2(c2 − 1)− α− 2R

c2 + 1
)a1 + 3β(1− 2

c2 + 1
)a20a1 = 0,

(ω2(c2 − 1)− α− 2R

c2 + 1
)a0 + β(1− 2

c2 + 1
)a30 = 0.

With the aid of Maple, we shall find the special solution of the above system

R = −1

4
(c2+1)((1−c2)(2ω2−a2)+2α), b = ±

√
− β

2(c2 + 1)
a1, a0 = ∓a

√
−c

2 + 1

2β
,

(49)
where a, c, ω and a1 are arbitrary constants.
Assuming a > 0 and choosing b < 0. Therefore, using solution (7) of Eq. (6), ansatz
(47) , we obtain the following exact solution of Eq. (46)

f(ξ) = a
√

2(c2 + 1)(
a1 exp(a(ξ + ξ0))√

2(c2 + 1)−
√
−βa1 exp(a(ξ + ξ0))

± i

2
√
β

). (50)
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Then the exact traveling-wave solution to coupled Higgs field equation can be written
as

u(x, t) = a
√

2(c2 + 1)(
a1e

a(x+ct+ξ0)√
2(c2 + 1)−

√
−βa1ea(x+ct+ξ0)

± i

2
√
β

)ei(ωcx+ωt). (51)

v(x, t) = −1

4
((1−c2)(2ω2−a2)+2α)+2a2β(

a1e
a(x+ct+ξ0)√

2(c2 + 1)−
√
−βa1ea(x+ct+ξ0)

± i

2
√
β

)2.

Substituting (47) along with (9) in Eq. (46) and setting all the coefficients of powers
z to be zero, then we obtain a system of nonlinear algebraic equations and by solving
it, we obtain

R = −1

4
(c2+1)((1−c2)(2ω2−A2)+2α), a0 = ±A

√
−c

2 + 1

2β
, a1 = ±

√
−2(c2 + 1)

β
,

(52)
where A, c and ω are arbitrary constants.
Assuming A < 0. Therefore, using solution (11) of Eq. (9), ansatz (47), we obtain
the following exact solution of Eq. (46)

f(ξ) = ±A
√
−c

2 + 1

2β
tanh(

A

2
(ξ + ξ0)). (53)

Then, the exact solution to coupled Higgs field equation can be written as

u(x, t) = ±A
√
−c

2 + 1

2β
tanh(

A

2
(x+ ct+ ξ0))e

i(ωcx+ωt), (54)

v(x, t) = −1

4
((1− c2)(2ω2 −A2) + 2α)− A2

2
tanh2(

A

2
(x+ ct+ ξ0)).

7. Generalized Zakharov System

In the interaction of laser-plasma the system of Zakharov equation plays an impor-
tant role. This system attracted many scientists wide interest and attention. In this
section, we consider the following generalized Zakharov system

iut + uxx − 2d1|u|2u+ 2uv = 0, (a) (55)

1

d22
vtt − vxx + µ(|u|2)xx = 0. (b)

where the real unknown function v(x, t) is the fluctuation in the ion density about its
equilibrium value, and the complex unknown function u(x, t) is the slowly varying
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envelope of highly oscillatory electron field.
The parameters d1, d2 and µ are real numbers, where d2 is proportional to the
electron sound speed. When d1 = 0, µ = 1, this system is reduced to the Classical
Zakharov system of plasma physics.When the sound speed d2 → ∞, the so-called
subsonic limit, the Zakharov system becomes the cubically nonlinear Schrodinger
equation.
If we set d2 = 1 and µ = 1, the generalized Zakharov system becomes [23]

iut + uxx − 2d1|u|2u+ 2uv = 0, (a) (56)

vtt − vxx + (|u|2)xx = 0. (b)

Let us assume the exact solutions of Eq. (56) in the form

u(x, t) = eiθy(ξ), v(x, t) = V (ξ), θ = αx+ βt, ξ = ik(x− 2αt), (57)

where α and β are real constants.
Substituting (57) into Eq. (56), we have

−(β + α2)y(ξ) + k2y′′(ξ)− 2d1y
3(ξ) + 2y(ξ)V (ξ) = 0, (a) (58)

(1− 4α2)V ′′(ξ)− (y2(ξ))′′ = 0. (b)

Integrating Eq. (58)(b) twice with respect to ξ, then we have

V (ξ) =
R+ y2(ξ)

1− 4α2
, (59)

where R is second integration constant and the first one is taken to zero.
Inserting Eq. (59) into Eq. (58)(a) yields

(
2R

1− 4α2
− β − α2)y(ξ) + k2y′′(ξ) + 2(

1

1− 4α2
− d1)y3(ξ) = 0. (60)

For the solutions of Eq. (60), we make the following ansatz

y(ξ) =
l∑

i=0

aiz
i, al 6= 0. (61)

where ai are all real constants to be determined, l is a positive integer which can be
determined by balancing the highest order derivative term with the highest order
nonlinear term after substituting ansatz (61) into Eq. (60), where z satisfies Eq.
(6).
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Balancing yξξ with y3 in (60) gives l+ 2 = 3l, so that l = 1. This suggests the choice
of y(ξ) in Eq. (60) as

y(ξ) = a0 + a1z(ξ). (62)

Substituting (62) along with (6) in Eq. (60) and then setting the coefficients of
zj(j = 3, 2, 1, 0) to zero in the resultant expression, we obtain a set of algebraic
equations involving a0, a1, a, b, α and β as 2k2b2a1 + 2( 1

1−4α2 − d1)a31 = 0,

3k2aba1 + 6(
1

1− 4α2
− d1)a0a21 = 0, (63)

k2a2a1 + (
2R

1− 4α2
− β − α2)a1 + 6(

1

1− 4α2
− d1)a20a1 = 0,

(
2R

1− 4α2
− β − α2)a0 + 2(

1

1− 4α2
− d1)a30 = 0.

Using Maple gives two sets of solutions

R =
1

4
(2α2+k2a2+2β)(1−4α2), b =

a1
k

√
1 + d1(4α2 − 1)

4α2 − 1
, a0 =

ka

2

√
4α2 − 1

1 + d1(4α2 − 1)
,

(64)
where k, a1, a, α and β are arbitrary constants.

R =
1

4
(2α2+k2a2+2β)(1−4α2), b = −a1

k

√
1 + d1(4α2 − 1)

4α2 − 1
, a0 = −ka

2

√
4α2 − 1

1 + d1(4α2 − 1)
,

(65)
where k, a1, a, α and β are arbitrary constants.
Assuming a > 0 and choosing b < 0 in case (64). Therefore, using solution (7) of
Eq. (6), ansatz (62) , we obtain the following traveling-wave solution of Eq. (60)

y1(ξ) = ka
√

4α2 − 1(
1

2
√

1 + d1(4α2 − 1)

+
a1 exp[a(ξ + ξ0)]

k
√

4α2 − 1− a1
√

1 + d1(4α2 − 1) exp[a(ξ + ξ0)]
). (66)

Assuming a < 0 and choosing b > 0 in case (65). Therefore, using solution (8) of
Eq. (6), ansatz (62) , we obtain the following traveling-wave solution of Eq. (60)

y2(ξ) = −ka
√

4α2 − 1(
1

2
√

1 + d1(4α2 − 1)

+
a1 exp[a(ξ + ξ0)]

k
√

4α2 − 1− a1
√

1 + d1(4α2 − 1) exp[a(ξ + ξ0)]
). (67)
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By using (59) and (66), (67) we have

V1,2(ξ) =
1

4
(2α2 + k2a2 + 2β)− k2a2( 1

2
√

1 + d1(4α2 − 1)

+
a1 exp[a(ξ + ξ0)]

k
√

4α2 − 1− a1
√

1 + d1(4α2 − 1) exp[a(ξ + ξ0)]
)2. (68)

Thus, we obtain the following traveling-wave solutions of generalized Zakharov sys-
tem (56)

u(x, t) = ±ka
√

4α2 − 1(
1

2
√

1 + d1(4α2 − 1)

+
a1exp[a(ik(x− 2αt) + ξ0)]

k
√

4α2 − 1− a1
√

1 + d1(4α2 − 1)exp[a(ik(x− 2αt) + ξ0)]
)ei(αx+βt),(69)

v(x, t) =
1

4
(2α2 + k2a2 + 2β)− k2a2( 1

2
√

1 + d1(4α2 − 1)

+
a1exp[a(ik(x− 2αt) + ξ0)]

k
√

4α2 − 1− a1
√

1 + d1(4α2 − 1)exp[a(ik(x− 2αt) + ξ0)]
)2.

Substituting (62) along with (9) in Eq. (60) and setting all the coefficients of powers
z to be zero, then we obtain a system of nonlinear algebraic equations and by solving
it, we obtain

a1 = ±k
√

4α2 − 1

1 + d1(4α2 − 1)
, A = ∓2a0

k

√
1 + d1(4α2 − 1)

4α2 − 1
, (70)

R =
β

2
− 2βα2 +

α2

2
− 2α4 − a20(1 + d1(4α

2 − 1)),

where β, α, a0 and k are arbitrary constants.
Therefore, using solution (11) of Eq. (9), ansatz (62) , we obtain the following exact
solution of Eq. (60)

y3,4(ξ) = ±a0 tanh(
a0
k

√
1 + d1(4α2 − 1)

4α2 − 1
(ξ + ξ0)). (71)

By using (59) and (71), we have

V3,4(ξ) =
β
2 − 2βα2 + α2

2 − 2α4 − a20(1 + d1(4α
2 − 1))

4α2 − 1

+
a20

4α2 − 1
tanh2(

a0
k

√
1 + d1(4α2 − 1)

4α2 − 1
(ξ + ξ0)). (72)
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Thus, we obtain the following traveling-wave solutions of generalized Zakharov sys-
tem (56)

u(x, t) = ±a0 tanh(
a0
k

√
1 + d1(4α2 − 1)

4α2 − 1
(ik(x− 2αt) + ξ0))e

i(αx+βt), (73)

v(x, t) =
β
2 − 2βα2 + α2

2 − 2α4 − a20(1 + d1(4α
2 − 1))

4α2 − 1

+
a20

4α2 − 1
tanh2(

a0
k

√
1 + d1(4α2 − 1)

4α2 − 1
(ik(x− 2αt) + ξ0)).
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