
Acta Universitatis Apulensis
ISSN: 1582-5329

No. 33/2013
pp. 145-157

ITERATED ORDER OF MEROMORPHIC SOLUTIONS OF
CERTAIN HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS

WITH MEROMORPHIC COEFFICIENTS OF FINITE ITERATED
ORDER

Jing He, Xiu-Min Zheng and Hui Hu

Abstract. In this paper, we investigate the iterated order of meromorphic
solutions of homogeneous and nonhomogeneous linear differential equations where
the coefficients are meromorphic functions satisfying certain growth conditions. And
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1. Introduction and main results

In this paper, we shall assume that the reader is familiar with the fundamental
results and the standard notations of the Nevanlinna’s value distribution theory
of meromorphic functions(see [6, 11, 15, 16]). Let us define inductively, for r ∈
[0,∞), exp1 r = er and expi+1 r = exp (expi r), i ∈ N. For all sufficiently large r, we
define log1 r = log r and logi+1 r = log (logi r), i ∈ N. We also denote exp0 r = r =
log r, log−1 r = exp1 r, and exp−1 r = log1 r. In order to express the rate of growth
of meromorphic functions of infinite order more precisely, we recall the following
definitions (see [2, 10, 12]).

Definition 1.1. The iterated p-order σp(f) of a meromorphic function f(z) is
defined by

σp(f) = lim
r→∞

logp T (r, f)

log r
, p ∈ N.

Remark 1.1. 1) If p = 1, the classical growth of order of an entire function
f(z) is defined by (see [6, 11])

σ(f) = lim
r→∞

log T (r, f)

log r
= lim

r→∞
log2M(r, f)

log r
.
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2) If p = 2, the hyper-order of an entire function f(z) is defined by (see [15])

σ2(f) = lim
r→∞

log2 T (r, f)

log r
= lim

r→∞
log3M(r, f)

log r
.

3) If f(z) is an entire function, then the iterated p-order of f(z) is defined by

σp(f) = lim
r→∞

logp T (r, f)

log r
= lim

r→∞

logp+1M(r, f)

log r
, p ∈ N.

Definition 1.2. The iterated p-lower order µp(f) of a meromorphic function f
is defined by

µp(f) = lim
r→∞

logp T (r, f)

log r
, p ∈ N.

Definition 1.3. The finiteness degree of the order of a meromorphic function
f(z) is defined by

i(f) =


0, if f is rational;
min{p ∈ N : σp(f) <∞}, if f is transcendental

and σp(f) <∞ for some p ∈ N ;
∞, if σp(f) =∞ for all p ∈ N .

Remark 1.2. Similarly, we can define the finiteness degree of the lower order
i(f) of a meromorphic function f(z) .

Definition 1.4. Let n(r, a) be the unintegrated counting function for the se-
quence of a-points of a meromorphic function f(z). The iterated convergence expo-
nent of the sequence of a-points is defined by

λp(f − a) = λp(f, a) = lim
r→∞

logp n(r, a)

log r
, p ∈ N,

where n(r, a) = n(r, a, f) = n(r, 1
f−a).

Remark 1.3. We also use the notation λp(f, a) to denote the iterated conver-
gence exponent of the sequence of distinct a-points. In the definition of the iterated
convergence exponent, we may replace n(r, a) with the integrated counting function
N(r, a), and we have

λp(f, a) = lim
r→∞

logp n(r, a)

log r
= lim

r→∞

logpN(r, 1
f−a)

log r
, p ∈ N,

where N(r, a) = N(r, a, f) = N(r, 1
f−a). If a = 0, the iterated convergence exponent

of the zeros is defined by

λp(f) = lim
r→∞

logp n(r, 1f )

log r
= lim

r→∞

logpN(r, 1f )

log r
, p ∈ N.
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If a =∞, the iterated convergence exponent of the poles is defined by

λp(
1

f
) = lim

r→∞

logp n(r, f)

log r
= lim

r→∞

logpN(r, f)

log r
, p ∈ N.

Definition 1.5. The finiteness degree of the convergence exponent is defined by

iλ(f, a) =


0, if n(r, a) = O(log r) ;
min{p ∈ N : λp(f, a) <∞}, if λp(f, a) <∞ for some p ∈ N ;
∞, if λp(f, a) =∞ for all p ∈ N .

Remark 1.4. If a = 0, then we set iλ(f, a) = iλ(f). If a = ∞, then we set
iλ(f, a) = iλ( 1

f ). Similarly, we can define the finiteness degree iλ(f, a) of λp(f, a).

Moreover, we define the linear measure of a set H ⊂ [0,∞) by m(H) =
∫
H dt

and the logarithmic measure of a set F ⊂ [1,+∞) by ml(F ) =
∫
F
dt
t (see [7]). The

upper and the lower densities of H are defined by (see [9])

densH = lim
r→∞

m(H ∩ [0, r])

r
, densH = lim

r→∞

m(H ∩ [0, r])

r
.

For almost four decades, the Nevanlinna’s value distribution theory has been a
useful tool in investigating the complex oscillation of differential equations. Recently,
the concepts of hyper-order (see [4, 15]) and iterated order (see [10, 11]) were used
to further investigate the growth of infinite order meromorphic solutions of complex
differential equations. The following results have been obtained.

Theorem A (see [9]) Let H be a set of complex numbers satisfying dens{|z| :
z ∈ H} > 0, and let A(z), B(z) be entire functions such that for some constants
α, β > 0,

|A(z)| ≤ exp{o(1)|z|β} and |B(z)| ≥ exp{(1 + o(1))α|z|β}

as z →∞ for z ∈ H. Then every solution of f 6≡ 0 of the equation

f ′′ +A(z)f ′ +B(z)f = 0 (1.1)

satisfies σ(f) = +∞ and σ2(f) ≥ β.

Theorem B (see [4]) Let H be a set of complex numbers satisfying dens{|z| :
z ∈ H} > 0, and let A(z), B(z) be entire functions, with σ(A) ≤ σ(B) = σ < +∞
such that for some real constant C(> 0) and for any given ε > 0,

|A(z)| ≤ exp{o(1)|z|σ−ε} and |B(z)| ≥ exp{(1 + o(1))C|z|σ−ε}
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as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of the equation (1.1) satisfies
σ(f) = +∞ and σ2(f) = σ.

Theorem C (see [1]) Let H be a set of complex numbers satisfying dens{|z| :
z ∈ H} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be entire functions such that for some
constants 0 ≤ β < α and µ > 0, we have

|A0(z)| ≥ exp{α|z|µ} and |Aj(z)| ≤ exp{β|z|µ}, j = 1, . . . , k − 1

as z →∞ for z ∈ H. Then every solution f 6≡ 0 of the equation

f (k) +Ak−1(z)f
(k−1) + . . .+A1(z)f

′ +A0(z)f = 0 (1.2)

satisfies σ(f) = +∞ and σ2(f) ≥ µ.

Theorem D (see [1]) Let H be a set of complex numbers satisfying dens{|z| :
z ∈ H} > 0, and let A0(z), A1(z), . . . , Ak−1(z) be entire functions with max{σ(Aj) :
j = 1, . . . , k − 1} ≤ σ(A0) = σ < +∞ such that for some real constants 0 ≤ β < α,
we have

|A0(z)| ≥ exp{α|z|σ−ε} and |Aj(z)| ≤ exp{(β|z|σ−ε}, j = 1, . . . , k − 1

as z → ∞ for z ∈ H. Then every solution f 6≡ 0 of the equation (1.2) satisfies
σ(f) = +∞ and σ2(f) = σ.

Let k ≥ 2 be an integer, A0(z), . . . , Ak−1(z), Ak(z) with A0(z) 6≡ 0 and Ak(z) 6≡ 0
be entire functions. It is well known that if Ak(z) ≡ 1, then all solutions of the linear
differential equation

Ak(z)f
(k) +Ak−1(z)f

(k−1) + . . .+A1(z)f
′ +A0(z)f = 0 (1.3)

are entire functions. We also know that if some of coefficients A0(z), . . . , Ak−1(z)
are transcendental and Ak(z) ≡ 1, then the equation (1.3) has at least one so-
lution of infinite order. But when Ak(z) is a nonconstant meromorphic function,
the equation (1.3) can possess meromorphic solutions. For example, the equation

z4

ez(z3−3z2+6z−6)f
′′′ − z3

ez(z2−2z+2)
f ′′ + f ′ + 1−z

z f = 0 has a meromorphic solution

f(z) = ez

z . Thus the natural question is: what conditions on A0(z), . . . , Ak(z) will
guarantee that every meromorphic solution f 6≡ 0 of (1.3) has an infinite order?
Recently, Chen [3] improved their results to the second order linear differential equa-
tions with meromorphic coefficients. Our main purpose of this paper is to improve
and generalize the results of Theorems C and D and Chen [3]. We obtain some re-
sults of iterated order of meromorphic solutions of the higher order linear differential
equations (1.2)-(1.5) and give some estimates of iterated convergence exponent.
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Theorem 1.1. Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0 and let A0(z), A1(z), . . . , Ak−1(z) be meromorphic functions of finite iterated
orders such that for some constants α2 > α1 ≥ 0, µ > 0, we have

|A0(z)| ≥ expp{α2|z|µ} and |Aj(z)| ≤ expp{α1|z|µ} (j = 1, . . . , k − 1)

as z →∞ for z ∈ H. If the equation (1.2) have meromorphic solutions, then every
meromorphic solution f( 6≡ 0) satisfies σp+1(f) ≥ µ. Furthermore, if max{|Aj(z)|, j =
0, 1, . . . , k − 1} ≤ expp{β|z|µ} as z → ∞, where β(> 0) is a constant , then every

meromorphic solution f(6≡ 0) with λp(
1
f ) < µp(f) satisfies i(f) = p+1 and σp+1(f) =

µ.

Theorem 1.2. Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0 and let A0(z), A1(z), . . . , Ak(z) be meromorphic functions of finite iter-
ated orders satisfying max{σp(Aj), j = 0, 1, . . . , k} = σ < ∞, such that for some
constants α2 > α1 ≥ 0 and for any given ε > 0, we have

|A0(z)| ≥ expp{α2|z|σ−ε} and |Aj(z)| ≤ expp{α1|z|σ−ε} (j = 1, . . . , k)

as z →∞ for z ∈ H. If the equation (1.3) have meromorphic solutions, then every
meromorphic solution f( 6≡ 0) satisfies σp+1(f) ≥ σ. Furthermore, if λp(

1
f ) < µp(f),

then i(f) = p+ 1 and σp+1(f) = σ.

Corollary 1.1. Let A0(z), . . . , Ak(z), H satisfy all of the hypothesis of Theorem
1.2, and let g(z)(6≡ 0) be a meromorphic function satisfying i(g) < p+1 or σp+1(g) <
σ. Then every meromorphic solution f(z)(6≡ 0) with λp(

1
f ) < µp(f) of the equation

(1.3) satisfies iλ(f − g) = p+ 1 and λp+1(f − g) = λp+1(f − g) = σp+1(f − g) = σ.

Theorem 1.3. Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0 and F (z)(6≡ 0) be a meromorphic function with |F (z)| ≤ expq{α|z|µ}
as z → ∞ or σq(F ) ≤ µ (0 < q ≤ p < ∞). Let A0(z), A1(z), . . . , Ak−1(z) be
meromorphic functions of finite iterated orders satisfying the following conditions:
(i)for some constants α2 > α1 ≥ 0, µ > 0,

|A0(z)| ≥ expp{α2|z|µ} and |Aj(z)| ≤ expp{α1|z|µ} (j = 1, . . . , k − 1)

as z →∞ for z ∈ H;
(ii)max{|Aj(z)|, j = 0, 1, . . . , k − 1} ≤ expp{β|z|µ} as z → ∞, where β(> 0) is a
constant.
If the equation

f (k) +Ak−1(z)f
(k−1) + . . .+A1(z)f

′ +A0(z)f = F (z) (1.4)
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have meromorphic solutions, then every meromorphic solution f(z)(6≡ 0) with λp(
1
f ) <

µp(f) satisfies i(f) = p+ 1 and σp+1(f) = µ, with at most one exceptional solution
f0(z) with i(f) < p+ 1 or σp+1(f0) < µ.

Theorem 1.4. Let H be a set of complex numbers satisfying dens{|z| : z ∈
H} > 0 and F (z)(6≡ 0) be a meromorphic function with σq(F ) ≤ σ (0 < q ≤ p <∞).
And let A0(z), A1(z), . . . , Ak(z) be meromorphic functions of finite iterated orders
satisfying the following conditions:
(i)for some constants α2 > α1 ≥ 0, and for any given ε > 0,

|A0(z)| ≥ expp{α2|z|σ−ε} and |Aj(z)| ≤ expp{α1|z|σ−ε} (j = 1, . . . , k)

as z →∞ for z ∈ H;
(ii)max{σp(Aj), j = 0, 1, . . . , k} = σ <∞.
If the equation

Ak(z)f
(k) +Ak−1(z)f

(k−1) + . . .+A1(z)f
′ +A0(z)f = F (z) (1.5)

have meromorphic solutions, then every meromorphic solution f(z) with λp(
1
f ) <

µp(f) satisfies λp+1(f) = λp+1(f) = σp+1(f) = σ, with at most one exceptional
solution.

Remark 1.5. If p < q in Theorems 1.3 or 1.4, then we can obtain σq+1(f) = µ or σ
respectively.

Corollary 1.2. Let A0(z), . . . , Ak(z), F (z), H satisfy all of the hypothesis of
Theorem 1.4, and let g(z)(6≡ 0) be a meromorphic function satisfying i(g) < p + 1
or σp+1(g) < σ, and F − [Ak(z)g

(k) + Ak−1(z)g
(k−1) + . . . + A0g] 6≡ 0. Then every

meromorphic solution f(z)(6≡ 0) with iλ(f) = i(f) = p+1 and λp+1(f) = λp+1(f) =
σp+1(f) = σ of the equation (1.5) satisfies iλ(f − g) = p + 1 and λp+1(f − g) =
λp+1(f − g) = σp+1(f − g) = σ.

2. Preliminary Lemmas

Lemma 2.1 (see [5]) Let f(z) be a meromorphic function, and let α > 1 and
ε > 0 be given real constants. Then there exist a constant C > 0 and a set E1 ⊂
[0,∞) having finite linear measure such that for all z satisfying |z| = r /∈ E1, we
have ∣∣∣∣∣f (j)(z)f(z)

∣∣∣∣∣ ≤ C[T (αr, f)rε log T (αr, f)]j (j ∈ N).

Lemma 2.2 (see [13]) Let f(z) = g(z)
d(z) , where g(z), d(z) are entire functions

of finite iterated order satisfying µp(g) = µp(f) ≤ σp(g) = σp(f) < ∞, 0 < p <
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∞, i(d) < p or σp(d) = β < µp(f). Let z be a point with |z| = r at which |g(z)| =
M(r, g) and νg(r) denote the central index of g, then the estimation

f (j)(z)

f(z)
=

(
νg(r)

z

)j
(1 + o(1)) (j ∈ N)

holds for all |z| = r outside a set E2 of r of finite logarithmic measure.

Lemma 2.3 (see [8,13]) Let g(z) be an entire function of finite iterated order
satisfying i(g) = p + 1, σp+1(g) = σ, µq+1(g) = µ, 0 < q ≤ p < ∞, and let νg(r) be
the central index of g, then we have

lim
r→∞

logp+1 νg(r)

log r
= σ, lim

r→∞

logq+1 νg(r)

log r
= µ.

Lemma 2.4 (see [11]) Let g : (0,+∞) → R, h : (0,+∞) → R be monotone
increasing functions such that (i) g(r) ≤ h(r)n.e or (ii) g(r) ≤ h(r) outside of an
exceptional set E3 of finite logarithmic measure. Then, for any α > 1, there exists
r0 > 0 such that g(r) ≤ h(αr) for all r > r0.

Lemma 2.5 (see [14]) Let f(z) be a meromorphic function of finite iterated
order with i(f) = p, p ∈ N. Then exist entire functions π1(z), π2(z) and D(z) such
that

f(z) =
π1(z)e

D(z)

π2(z)
, and σp(f) = max{σp(π1), σp(π2), σp(eD(z))}.

Moreover, for any given ε > 0, we have

exp{− expp−1{rσp(f)+ε}} ≤ |f(z)| ≤ expp{rσp(f)+ε}, (r /∈ E4),

where E4 is a set of r of finite linear measure.

Lemma 2.6 (see [13]) Let A0(z), A1(z), . . . , Ak−1(z), F (z)(6≡ 0) be meromorphic
functions and let f(z) be a meromorphic solution of (1.3) satisfying one of the
following conditions:

(i) max{i(F ) = q, i(Aj)(j = 0, . . . , k − 1)} < i(f) = p+ 1 (0 < p <∞),
(ii)b = max{σp+1(F ), σp+1(Aj)(j = 0, . . . , k−1)} < σp+1(f) = σ, then λp+1(f) =

λp+1(f) = σp+1(f) = σ.

Lemma 2.7 Let A0(z), A1(z), . . . , Ak(z), F (z)(6≡ 0) be meromorphic functions
and let f(z) be a meromorphic solution of (1.3) satisfying one of the following
conditions:

(i) max{i(F ) = q, i(Aj)(j = 0, . . . , k)} < i(f) = p+ 1 (0 < p <∞),
(ii)b = max{σp+1(F ), σp+1(Aj)(j = 0, . . . , k)} < σp+1(f) = σ, then λp+1(f) =

λp+1(f) = σp+1(f) = σ.
Proof. By using the same method of the proof of Lemma 2.6, we obtain the

conclusion of Lemma 2.7.
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3. Proof of Theorem 1.1-1.4

Proof of Theorem 1.1. Suppose that f(z)(6≡ 0) ia a meromorphic solution of
(1.2). It follows by (1.2) that

|A0(z)| ≤
∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣+ |Ak−1(z)|
∣∣∣∣∣f (k−1)(z)f(z)

∣∣∣∣∣+ . . .+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣ . (3.1)

Then by Lemma 2.1, there exists a set E1 ⊂ [0,∞) with finite linear measure such
that for all z satisfying |z| = r /∈ E1, we have∣∣∣∣∣f (j)(z)f(z)

∣∣∣∣∣ ≤ Cr[T (2r, f)]j+1 (j = 1, . . . , k), (3.2)

where C is a constant. By the hypothesis of Theorem 1.1, there exists a set H with
dens{|z| : z ∈ H} > 0 such that for all z →∞ for z ∈ H, we have

|A0(z)| ≥ expp{α2|z|µ} and |Aj(z)| ≤ expp{α1|z|µ} (j = 1, . . . , k − 1). (3.3)

By substituting (3.2) and (3.3) into (3.1), for all z satisfying z →∞ for z ∈ H and
|z| = r /∈ E1, we have

expp{α2|z|µ} ≤ kCr[T (2r, f)]k+1 expp{α1|z|µ}. (3.4)

Hence, there exists a set E ⊂ (0,∞) with positive upper density such that

(1− o(1)) expp{α2|z|µ} ≤ kCr[T (2r, f)]k+1 (3.5)

as r →∞ in E. By (3.5), we have σp+1(f) ≥ µ.
Furthermore, by the hypothesis of Theorem 1.1, for sufficiently large r, we have

max{|Aj(z)|, j = 0, 1, . . . , k − 1} ≤ expp{β|z|µ}, (3.6)

where β > 0 is a constant. By Hadamard factorization theorem, we can write f(z)

as f(z) = g(z)
d(z) , where g(z), d(z) are entire functions of finite iterated order satisfying

µp(g) = µp(f) ≤ σp(g) = σp(f), i(d) < p or σp(d) = λp(d) = λp(
1
f ) < µp(f). By

Lemma 2.2, there exists a set E2 having finite logarithmic measure such that for all
z satisfying |z| = r /∈ E2 and |g(z)| = M(r, g), we have∣∣∣∣∣f (j)(z)f(z)

∣∣∣∣∣ =

(
νg(r)

z

)j
(1 + o(1)) (j = 1, . . . , k). (3.7)
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It follows by (1.2) that∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣∣f (k−1)(z)f(z)

∣∣∣∣∣+ . . .+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣+ |A0(z)|. (3.8)

By substituting (3.6) and (3.7) into (3.8), we obtain

νg(r)|1 + o(1)| ≤ krk expp{β|z|µ}|1 + o(1)|, (3.9)

where z satisfies |z| = r /∈ [0, 1]∪E2, r →∞ and |g(z)| = M(r, g). By (3.9), Lemmas
2.3 and 2.4, we obtain σp+1(f) = σp+1(g) ≤ µ. Hence, every meromorphic solution
f( 6≡ 0) with λp(

1
f ) < µp(f) satisfies i(f) = p + 1 and σp+1(f) = µ. Theorem 1.1 is

thus proved.

Proof of Theorem 1.2. Assume that f( 6≡ 0) is a meromorphic solution of
equation (1.3). By using the same arguments as in Theorem 1.1, we get σp+1(f) ≥
σ − ε. And since ε is arbitrary, we get σp+1(f) ≥ σ.

On the other hand, by the hypothesis of Theorem 1.2 and Lemma 2.5, for any
given ε > 0, there exists a set E4 with a finite linear measure, for all z satisfying
|z| = r /∈ E4 such that

|Aj(z)| ≤ expp{rσ+ε} (j = 0, 1, . . . , k − 1) and |Ak(z)| ≥ exp{− expp−1{rσ+ε}}.
(3.10)

It follows by (1.3) that∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣ ≤ 1

|Ak(z)|

(
|Ak−1(z)|

∣∣∣∣∣f (k−1)(z)f(z)

∣∣∣∣∣+ . . .+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣+ |A0(z)|
)
.

(3.11)

By Hadamard factorization theorem, we can write f(z) as f(z) = g(z)
d(z) , where

g(z), d(z) are entire functions of finite iterated order satisfying µp(g) = µp(f) ≤
σp(g) = σp(f), i(d) < p or σp(d) = λp(d) = λp(

1
f ) < µp(f). By Lemma 2.2,

there exists a set E2 having finite logarithmic measure such that for all z satis-
fying |z| = r /∈ E2 and |g(z)| = M(r, g), we have (3.7). By substituting (3.7) and
(3.10) into (3.11), we obtain

νg(r)|1 + o(1)| ≤ krk expp{rσ+2ε}|1 + o(1)|, (3.12)

where z satisfying |z| = r /∈ [0, 1]∪E2 ∪E4 and |g(z)| = M(r, f), r →∞. By (3.12),
Lemmas 2.3 and 2.4, we obtain σp+1(f) = σp+1(g) ≤ σ + ε. Since ε is arbitrary, we
have σp+1(f) ≤ σ. Hence, we obtain i(f) = p + 1 and σp+1(f) = σ. Theorem 1.2 is
thus proved.
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Proof of Theorem 1.3. Case 1. We assume that |F (z)| ≤ expq{α|z|µ} as
z →∞.It follows by (1.4) that∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣ ≤ |Ak−1(z)|
∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣+ . . .+ |A1(z)|
∣∣∣∣f ′(z)f(z)

∣∣∣∣+ |A0(z)|+
∣∣∣∣F (z)

f(z)

∣∣∣∣ . (3.13)

By Hadamard factorization theorem, we can write f(z) as f(z) = g(z)
d(z) , where

g(z), d(z) are entire functions of finite iterated order such that µp(g) = µp(f) ≤
σp(g) = σp(f), σp(d) = λp(d) = λp(

1
f ) < µp(f), By Lemma 2.2, there exists a set

E2 having finite logarithmic measure such that for all z satisfying |z| = r /∈ E2 and
|g(z)| = M(r, g), we have (3.7). By Lemma 2.5, for any given ε > 0, there exists a
set E4 with finite linear measure such that for all z satisfying |z| = r /∈ E4, r → ∞
and |g(z)| = M(r, g), we have∣∣∣∣F (z)

f(z)

∣∣∣∣ =
|F (z)||d(z)|
|g(z)|

=
|F (z)||d(z)|
M(r, g)

≤
expq{α|z|µ} expp{rσp(d)+ε}

expp{rµp(g)−ε}

≤ expq{α|z|µ}. (3.14)

By the condition (ii) of hypothesis of Theorem 1.3, for sufficiently large r, we have
(3.6), where β(> 0) is a constant. By substituting (3.6),(3.7) and (3.14) into (3.13),
for z satisfying |z| = r /∈ [0, 1] ∪ E2 ∪ E4, r →∞ and |g(z)| = M(r, g), we have

νg(r)|1 + o(1)| ≤ (k + 1)rk expp{max{α, β}|z|µ}. (3.15)

Hence, by (3.15), Lemmas 2.3 and 2.4, we obtain σp+1(f) ≤ µ.
We assume that f0 is a meromorphic solution of the equation (1.4) and satisfies

i(f0) < p + 1 or σp+1(f0) < µ. If there exists another meromorphic solution f1
with i(f1) < p + 1 or σp+1(f1) < µ, then σp+1(f1 − f0) < µ. However, f1 − f0 is a
solution of the corresponding homogeneous equation (1.2) and by the first section of
hypothesis of Theorem 1.1, we can obtain σp+1(f1− f0) ≥ µ. This is a contradiction
with σp+1(f1−f0) < µ. Hence, every meromorphic solution f(z) with λp(

1
f ) < µp(f)

satisfies i(f) = p+1 and σp+1(f) = µ, with at most one exceptional solution f0 with
i(f) < p+ 1 and σp+1(f0) < µ.

Case 2. We assume that σq(F ) ≤ µ. By Lemma 2.5, for any given ε > 0, there
is a set E4 with finite linear measure such that for z satisfying |z| = r /∈ E4, r →∞,
we have

|F (z)| ≤ expp{rσq(F )+ε} ≤ expp{rµ+ε}. (3.16)

By using the same reasoning as in Case 1, we obtain i(f) < p+ 1 and σp+1(f) = µ,
with at most one exceptional solution f0 having i(f0) < p + 1 and σp+1(f) < µ.
Theorem 1.3 is thus proved.
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Proof of Theorem 1.4 Assume that f(6≡ 0) is a meromorphic solution of
equation (1.5). It follows by (1.5) that∣∣∣∣∣f (k)(z)f(z)

∣∣∣∣∣ ≤ |Ak−1(z)||Ak(z)|

∣∣∣∣∣f (k−1)(z)f(z)

∣∣∣∣∣+ . . .+
|A1(z)|
|Ak(z)|

∣∣∣∣f ′(z)f(z)

∣∣∣∣+ |A0(z)|
|Ak(z)|

+
1

|Ak(z)|

∣∣∣∣F (z)

f(z)

∣∣∣∣ .
(3.17)

By Hadamard factorization theorem, we can write f(z) as f(z) = g(z)
d(z) , where

g(z), d(z) are entire functions of finite iterated order such that µp(g) = µp(f) ≤
σp(g) = σp(f), σp(d) = λp(d) = λp(

1
f ) < µp(f), by Lemma 2.2, there exists a set

E2 having finite logarithmic measure such that for all z satisfying |z| = r /∈ E2 and
|g(z)| = M(r, g), we have (3.7). By Lemma 2.5 and the condition (ii) of hypothesis
of Theorem 1.4, for any given ε > 0, there exists a set E4 with finite linear measure
such that for all z satisfying |z| = r /∈ E4 and |g(z)| = M(r, g), for sufficiently large
r, we have (3.10) and

1

|Ak(z)|

∣∣∣∣F (z)

f(z)

∣∣∣∣ =
|F (z)||d(z)|
|Ak(z)||g(z)|

=
|F (z)||d(z)|
|Ak(z)|M(r, g)

≤
expp{rσ+ε} expp{rσp(d)+ε}

exp{− expp−1{rσ+ε}} expp{rµp(g)−ε}

≤ expp{rσ+2ε}. (3.18)

By substituting (3.7), (3.10) and (3.18) into (3.17), for z satisfying |z| = r /∈ [0, 1]∪
E2 ∪ E4, r →∞ and |g(z)| = M(r, g), we have

νg(r)|1 + o(1)| ≤ (k + 1)rk expp{rσ+2ε}|1 + o(1)|. (3.19)

Hence, by (3.19), Lemmas 2.3 and 2.4, we obtain σp+1(f) ≤ σ.
By using the same arguments as in Theorem 1.3, we get σp+1(f) = σ, with at

most one exceptional solution. Since σq(F ) ≤ σ,max{σp(Aj), j = 0, . . . , k} = σ,
and by Lemma 2.7, we obtain λp+1(f) = λp+1(f) = σp+1(f) = σ, with at most one
exceptional solution. Theorem 1.4 is thus proved.

4.Proofs of Corollaries 1.1 and 1.2

Proof of Corollary 1.1 Setting h = f − g. Since i(g) < p+ 1 or σp+1(g) < σ,
and by Theorem 1.2, we have σp+1(h) = σp+1(f) = σ and λp+1(h) = λp+1(f − g).
By substituting f = h+ g into (1.2), we get

Ak(z)h
(k)+Ak−1(z)h

(k−1)+. . .+A0(z)h = −[Ak(z)g
(k)+Ak−1(z)g

(k−1)+. . .+A0(z)g].

Set F (z) = Ak(z)g
(k) + Ak−1(z)g

(k−1) + . . . + A1(z)g
′ + A0(z)g. If F (z) ≡ 0, By

the first part of Theorem 1.2, we can get σp+1(g) ≥ σ. This is a contradiction with
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σp+1(g) < σ. So we have F (z) 6≡ 0. Since F (z) 6≡ 0 and σp+1(F ) < σ = σp+1(f),
and by Lemma 2.7, we obtain iλ(f − g) = p + 1 and λp+1(f − g) = λp+1(f − g) =
σp+1(f − g) = σ.

Proof Corollary 1.2 By using the similar proof of Corollary 1.1, we can get
the results of Corollary 1.2.
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