TOPOLOGICAL GT-ALGEBRAS

MAHBOOBEH MOHAMADHASANI AND MASOUD HAVESHKI

ABSTRACT. We introduce the notion of topological GT-algebras and find some properties of this structure.

2000 Mathematics Subject Classification: 03G25,54E15,54H99.

1. INTRODUCTION

The variety of Tarski algebras was introduced by J. C. Abbott in [1]. These algebras are an algebraic counterpart of the $\{\vee, \rightarrow\}$ -fragment of the propositional classical calculus. S. A. Celani [3] introduced Tarski algebras with a modal operator as a generalization of the concept of the Boolean algebra with a modal operator which he researched into these fragments of the algebraic viewpoint. Kim et al. [6] established a new algebra called GT-algebra, which is a generalization of Tarski algebra, and gave a method to construct a GT-algebras from a quasi-ordered set.In [4], we introduced a topology induced by uniformity in GT-algebras and we proved that the GT-algebraic operation \rightarrow is continuous with respect to this topology. Generally, in this paper some topologies are studied with a special property, which is continuity \rightarrow with respect to them. We prove some properties of topological GT-algebras. We give a characterization of a topological GT-algebra in terms of neighborhoods.

2. Periliminiaries

Definition 2.1.[6] A Generalized Tarski algebra (GT-algebra, for short) is an algebra $(A, \rightarrow, 1)$ with a binary operation \rightarrow , and a constant 1 such that: (T1)($\forall a \in A$) (1 $\rightarrow a = a$), (T2) ($\forall a \in A$) (a $\rightarrow a = 1$), (T3) ($\forall a, b, c \in A$)(a $\rightarrow (b \rightarrow c) = (a \rightarrow b) \rightarrow (a \rightarrow c)$). Given a GT-algebra A, if it satisfies the condition (T4) ($\forall a, b \in A$)((a $\rightarrow b$) $\rightarrow b = (b \rightarrow a) \rightarrow a$),

we call the algebra a Tarski algebra. In a Tarski algebra A we can define an order relation \leq by setting $a \leq b$ if and only if $a \rightarrow b = 1$. It is well known that (A, \leq) is an ordered set.[3]

A reflexive transitive relation \Re on a set X is called a quasi-ordering of X and the couple (X, \Re) is called a quasi-ordered set [2]. Note that If A is a GT-algebra, then the relation \leq by setting $x \leq y$ if and only if $x \rightarrow y = 1$, for any $x, y \in A$ is a quasi-ordering of A; with respect to this quasi-ordering 1 is the greatest element of A [7].

Definition 2.2.[6] A GT-filter of a GT-algebra A is a nonempty subset F of A such that for all $a, b \in A$, we have (F1) $b \in F \Rightarrow a \rightarrow b \in F$, (F2) $a \rightarrow b \in F, a \in F \Rightarrow b \in F$.

Theorem 2.3.[6] Let F be a non-empty subset of a GT-algebra A. Then F is a GT-filter of A if and only if $1 \in F$ and (F2).

Let X be a nonempty set and U, V be any subset of $X \times X$. Define $U \circ V = \{(x, y) \in X \times X \mid (z, y) \in U \text{ and } (x, z) \in V, \text{ for some } z \in X\},$ $U^{-1} = \{(x, y) \in X \times X \mid (y, x) \in U\},$ $\Delta = \{(x, x) \in X \times X \mid x \in X\}.$

Definition 2.4.[5] By a uniformity on X we shall mean a nonempty collection \mathcal{K} of subsets of $X \times X$ which satisfies the following conditions:

 $\begin{array}{l} (U_1) \ \Delta \subseteq U \ \text{for any } U \in \mathcal{K}, \\ (U_2) \ \text{if } U \in \mathcal{K}, \ \text{then } U^{-1} \in \mathcal{K}, \\ (U_3) \ \text{if } U \in \mathcal{K}, \ \text{then there exist a } V \in \mathcal{K} \text{such that } V \circ V \subseteq U, \\ (U_4) \ \text{if } U, V \in \mathcal{K}, \ \text{then } U \cap V \in \mathcal{K}, \\ (U_5) \ \text{if } U \in \mathcal{K}, \ \text{and } U \subseteq V \subseteq X \times X \ \text{then } V \in \mathcal{K}. \end{array}$

The pair (X, \mathcal{K}) is called a *uniform structure* (uniform space).

Theorem 2.5.[4] Let Λ be an arbitrary family of normal GT-filters of A which is closed under intersection. If $U_F = \{(x, y) \in A \times A \mid x \equiv_F y\}$ and $\mathcal{K}^* = \{U_F \mid F \in \Lambda\}$, then \mathcal{K}^* satisfies the conditions (U_1) - (U_4) .

Theorem 2.6.[4] Let $\mathcal{K} = \{U \subseteq A \times A \mid U_F \subseteq U \text{ for some } U_F \in \mathcal{K}^*\}$. Then \mathcal{K} satisfies a uniformity on A and the pair (A,\mathcal{K}) is a uniform structure.

Let $x \in A$ and $U \in \mathcal{K}$. Define

$$U[x] := \{ y \in A \mid (x, y) \in U \}.$$

Theorem 2.7.[4] Given a GT-algebra A, then

$$T = \{ G \subseteq A \mid \forall x \in G, \exists U \in \mathcal{K}, U[x] \subseteq G \}$$

is a topology on A.

Note that for any x in A, U[x] is an open neighborhood of x.

Definition 2.8.[4] Let (A, \mathcal{K}) be a uniform structure. Then the topology T is called the uniform topology on A induced by \mathcal{K} .

Theorem 2.9.[4] The pair (A, T) is a topological GT-algebra, where T is uniform topology on A.

3. Topological GT-Algebra

Let A be a GT-algebra and C, D subsets of A. Then we define $C \to D$ as follows:

$$C \to D = \{x \to y \mid x \in C, y \in D\}$$

Let A be a GT- algebra and T a topology defined on the set A. Then we say that the pair (A, T) is a topological GT-algebra if the GT-algebraic operation \rightarrow is continuous with respect to T. The continuity of the GT-algebraic operation \rightarrow is equivalent to having the following properties satisfied:

Let O be an open set and $a, b \in A$ such that $a \to b \in O$. Then there are O_1 and O_2 such that $a \in O_1, b \in O_2$ and $O_1 \to O_2 \subseteq O$.

Example 3.1. Let $A = \{a, b, c, 1\}$. Define \rightarrow as follow:

\rightarrow	a	b	c	1
a	1	b	1	1
b	a	1	1	1
c	a	b	1	1
1	a	b	c	1

Easily we can check that $(A, \rightarrow, 1)$ is a *GT*-algebra.

Consider

$$T = \{\{a\}, \{1, c\}, \{b\}, \{a, b\}, \{a, c, 1\}, \{a, b, c, 1\}, \emptyset, \{b, 1, c\}\}$$

Then (A, T) is a uniform topological space[4]. Hence by Theorem 2.9, (A, T) is a topological GT-algebra.

Definition 3.2. A topological GT-algebera A is called discrete if every element admits a neighborhood consisting of that element only.

Theorem 3.3. If $\{1\}$ is an open set in a topological Tarski algebra (A, τ) , then (A, τ) is discrete.

Proof. Since $x \to x = 1 \in \{1\}$ and $\{1\}$ is an open set, there exist neighborhoods U and V of x such that $U \to V = \{1\}$. Let $W = U \cap V$ then $W \to W \subseteq U \to V = \{1\}$ and so $W \to W = \{1\}$. We show that $W = \{x\}$. Let $y \in W$ then $x \to y = y \to x = 1$, that is, y = x.

Theorem 3.4. Let (A, τ) be a topological Hausdorff GT-algebra. Then $\{1\}$ is closed subset in A.

Proof. Let A be Hausdorff, we show that $A - \{1\}$ is open. Let $x \in A - \{1\}$ then $x \neq 1$. Since A is Hausdorff, there exist neighborhoods U and V of x, 1 respectively such that $U \cap V = \emptyset$. Hence $1 \notin U$, that is, $U \subset A - \{1\}$. This implies $A - \{1\}$ is open, that is, $\{1\}$ is closed.

Corollary 3.5. Let (A, τ) be a topological Tarski algebra. Then $\{1\}$ is closed in A if and only if A is Hausdorff.

Proof. Let (A, τ) be a topological Hausdorff Tarski algebra. By Theorem 3.4, $\{1\}$ is closed subset in A. Let $\{1\}$ be closed and $x \neq y, x, y \in A$. Then $x \to y \neq 1$ or $y \to x \neq 1$. Let $x \to y \neq 1$, Since $A - \{1\}$ is open, there exist neighborhoods U and V of x and y such that $U \to V \subseteq A - \{1\}$. Then $U \cap V = \emptyset$ because if $U \cap V \neq \emptyset$ then there exist $x \in U \cap V$ and so $1 = x \to x \in U \to V$, that is, $U \to V \not\subseteq A - \{1\}$ and so this is a contradiction. Therefore A is Hausdorff.

Theorem 3.6. Let F be an GT-filter of topological GT-algebra A. If 1 is an interior point of F, then F is open.

Proof. Let $x \in F$, since $x \to x = 1 \in F$ and 1 is an interior point of F, there exist neighborhood U of 1 such that $x \to x = 1 \in U \subseteq F$. Then there exist neighborhoods W and W' of x such that $W \to W' \subseteq F$. Now for all $y \in W', x \to y \in W \to W' \subseteq F$. Since $x \in F$ we get $y \in F$. Hence $x \in W' \subseteq F$, that is, F is open.

Theorem 3.7. Let A be a topological GT-algebra and B an open set in A which is a subalgebra of A. Then B is a topological GT-algebra.

Proof. We show that the GT-operation \rightarrow is continuous in the topological space B. For all $x, y \in B$ and every neighborhood W_B of $x \rightarrow y$ in space B may be written as the follow $W_B = W \cap B$, for some an neighborhood W of $x \rightarrow y$ in the space A. Since A is a topological GT-algebra hence there exist neighborhoods U of x and V of y such that $U \rightarrow V \subseteq W$. Now let $U_B = U \cap B$ and $V_B = V \cap B$. Then U_B and V_B are neighborhoods of x and y in the topological space B. Since $U_B \rightarrow V_B = (U \cap B) \rightarrow (V \cap B) \subseteq W$ and $U_B \rightarrow V_B = (U \cap B) \rightarrow (V \cap B) \subseteq B$ then $U_B \rightarrow V_B \subseteq W \cap B = W_B$. Hence the operation \rightarrow is continuous in the topological space B.

Theorem 3.8. Let A be a topological GT-algebra. If F be an open subset in A which is a GT-filter then it is a closed subset in A.

Proof. Let F be a GT-filter which is an open subset in A and $x \in A - F$. Since F is open and $x \to x = 1 \in F$ there exists neighborhood U such that $x \to x = 1 \in U \subseteq F$. Hence there exist neighborhoods W and W' of x such that $W \to W' \subseteq U$. Let $W_0 = W \cap W'$, then $W_0 \to W_0 \subseteq U$ and $x \in W_0$. We show that $W_0 \subseteq A - F$. If $W_0 \not\subseteq A - F$ then there exist $y \in W_0 \cap F$. We have for all $z \in W_0, y \to z \in W_0 \to W_0 \subseteq U \subseteq F$. Since $y \in F$ we get $z \in F$ and so $W_0 \subseteq F$. This is a contradiction.

Theorem 3.9. Let topological GT-algebra A with the system $\{U\}$ of neighborhoods of 0 is Hausdorff, then $\bigcap U = \{0\}$.

Proof. Let $0 \neq x \in \bigcap U$. Since A is Hausdorff there exist neighborhood U of 0 such that $x \notin U$ and so $x \notin \bigcap U$. This is a contradiction.

References

- J. C. Abbott, Semi-boolean algebras, Mathematicki Vensik, 4(19), (1976), 177-198.
- [2] G. Birkhoff, Lattice Theory, Amer. Math. Soc. Colloq. Publ., 25, second edition 1948; third edition, 1967.
- [3] S. A. Celani, Modal Tarski algebras, Reports on the Mathematical Logic, 39, (2005), 113-126.
- [4] M. Haveshki and M. Mohamadhasani, Uniform topology on GT-algebras, International Mathematical Forum, 5, no. 35, (2010), 1705 - 1714.
- [5] K. D. Joshi, Introduction to general topology, New Age International Publisher, India, 1997.
- [6] J. Kim, Y. Kim, and E. H. Roh, A not on *GT*-algebras, J. Korean Soc. Math. Educ. Ser. B: Pure. Appl. Math. 16, no. 1, (2009), 59-68.,
- [7] J. Kim, Y. Kim, and E. H. Roh, Smarandache GT-algebras, Journal of the Chungcheong Mathematical Society, Volume 22, No. 2, June 2009.

Mahboobeh Mohamadhasani Department of Mathematics University of Hormozgan P.O. Box 3995, Bandarabbas, Iran email:ma.mohamadhasani@gmail.com m.mohamadhasani@hormozgan.ac.ir

Masoud Haveshki Department of Mathematics University of Hormozgan P.O. Box 3995, Bandarabbas, Iran email:ma.haveshki@gmail.com m.haveshki@hormozgan.ac.ir