FROM CONFORMAL DEFORMATIONS OF THE JET BERWALD-MOR METRIC TO SOME NON-ISOTROPIC GEOMETRICAL EINSTEIN-LIKE EQUATIONS

Mircea Neagu

Abstract. In this paper we develop on the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$ the Finslerlike geometry (in the sense of distinguished (d-) connection, d-torsions, d-curvatures and some gravitational-like and electromagnetic-like geometrical models) attached to the (t, x)-conformal deformation of the Berwald-Moór metric.

2010 Mathematics Subject Classification: 53C60, 53C80, 83C22.

1.Introduction

The geometric-physical Berwald-Moór structure ([5], [11], [10]) was intensively investigated by P.K. Rashevski [17] and further substantiated and developed by D.G. Pavlov, G.I. Garas'ko and S.S. Kokarev ([15], [6], [16]). At the same time, the physical studies of Asanov [1] or Garas'ko and Pavlov ([7], [14]) emphasize the importance of the Finsler geometry characterized by the total equality in rights of all non-isotropic directions in the theory of space-time structure, gravitation and electromagnetism. For such a reason, one underlines the important role played by the classical Berwald-Moór metric

$$
F: T M \rightarrow \mathbb{R}, \quad F(y)=\sqrt[n]{y^{1} y^{2} \ldots y^{n}}, \quad n \geq 2
$$

whose tangent Finslerian geometry is studied by geometers as Matsumoto and Shimada [8] or Balan [3]. In such a perspective, according to the recent geometricphysical ideas proposed by Garas'ko ([6], [7]), we consider that a Finsler-like geometricphysical study for the conformal deformations of the jet Berwald-Moór structure is required. Consequently, we investigate on the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$ the Finsler-like geometry (together with some gravitational-like and electromagnetic-like geometrical models) of the (t, x)-conformal deformation of the Berwald-Moor metriq ${ }^{1}$

$$
\begin{equation*}
\stackrel{*}{F}(t, x, y)=e^{\sigma(x)} \sqrt{h^{11}(t)} \cdot\left[y_{1}^{1} y_{1}^{2} \ldots y_{1}^{n}\right]^{\frac{1}{n}}, \tag{1}
\end{equation*}
$$

[^0]where $\sigma(x)$ is a smooth non-constant function on $M^{n}, h^{11}(t)$ is the dual of a Riemannian metric $h_{11}(t)$ on \mathbb{R}, and
$$
(t, x, y)=\left(t, x^{1}, x^{2}, \ldots, x^{n}, y_{1}^{1}, y_{1}^{2}, \ldots, y_{1}^{n}\right)
$$
are the coordinates of the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$, which transform by the rules (the Einstein convention of summation is assumed everywhere):
\[

$$
\begin{equation*}
\widetilde{t}=\widetilde{t}(t), \quad \widetilde{x}^{i}=\widetilde{x}^{i}\left(x^{j}\right), \quad \widetilde{y}_{1}^{i}=\frac{\partial \widetilde{x}^{i}}{\partial x^{j}} \frac{d t}{d \widetilde{t}} \cdot y_{1}^{j} \tag{2}
\end{equation*}
$$

\]

where $i, j=\overline{1, n}$, $\operatorname{rank}\left(\partial \widetilde{x}^{i} / \partial x^{j}\right)=n$ and $\tilde{d t} / d t \neq 0$. Note that the particular jet Finsler-like geometries (together with their corresponding jet geometrical gravitational field-like theories) of the (t, x)-conformal deformations of the Berwald-Moór metrics of order three and four are now completely developed in the papers [12] and [13].

Based on the geometrical ideas promoted by Miron and Anastasiei in the classical Lagrangian geometry of tangent bundles [9], together with those used by Asanov in the geometry of 1-jet spaces [2], the differential geometry (in the sense of d-connections, d-torsions, d-curvatures, gravitational and electromagnetic geometrical theories) produced by an arbitrary jet rheonomic Lagrangian function $L: J^{1}\left(\mathbb{R}, M^{n}\right) \rightarrow \mathbb{R}$ is now exposed in the monograph [4]. In what follows, we apply the general jet geometrical results from book [4] to the (t, x)-conformal deformed jet Berwald-Moór metric (1).

2.THE CANONICAL NONLINEAR CONNECTION

Let us rewrite the (t, x)-conformal deformed jet Berwald-Moór metric (1) in the form

$$
\stackrel{*}{F}(t, x, y)=e^{\sigma(x)} \sqrt{h^{11}(t)} \cdot\left[G_{1[n]}(y)\right]^{1 / n}
$$

where $G_{1[n]}(y)=y_{1}^{1} y_{1}^{2} \ldots y_{1}^{n}$. Hereinafter, the fundamental metrical d-tensor produced by the metric (1) is given by the formula ${ }^{2}$ (see [4])

$$
\begin{gather*}
\stackrel{*}{g}_{i j}(t, x, y) \stackrel{\text { def }}{=} \frac{h_{11}(t)}{2} \frac{\partial^{2} \stackrel{*}{F}^{2}}{\partial y_{1}^{i} \partial y_{1}^{j}} \Rightarrow \\
\stackrel{*}{g}_{i j}(t, x, y):=\stackrel{*}{g}_{i j}(x, y)=\frac{e^{2 \sigma(x)}}{n}\left(\frac{2}{n}-\delta_{i j}\right) \frac{G_{1[n]}^{2 / n}}{y_{1}^{i} y_{1}^{j}}, \tag{3}
\end{gather*}
$$

[^1]where we have no sum by i or j. Moreover, the matrix $\stackrel{*}{g}=\left(\stackrel{*}{g}_{i j}\right)$ admits the inverse $\stackrel{*}{g}^{-1}=\left({ }_{g}^{*} j k\right)$, whose entries are
\[

$$
\begin{equation*}
\stackrel{*}{g}^{j k}=e^{-2 \sigma(x)}\left(2-n \delta^{j k}\right) G_{1[n]}^{-2 / n} y_{1}^{j} y_{1}^{k}(\text { no sum by } j \text { or } k) \tag{4}
\end{equation*}
$$

\]

Let us consider that the Christoffel symbol of the Riemannian metric $h_{11}(t)$ on \mathbb{R} is

$$
\mathrm{K}_{11}^{1}=\frac{h^{11}}{2} \frac{d h_{11}}{d t},
$$

where $h^{11}=1 / h_{11}>0$. Then, using a general formula from [4] and taking into account that we have

$$
\frac{\partial G_{1[n]}}{\partial y_{1}^{i}}=\frac{G_{1[n]}}{y_{1}^{i}},
$$

we find the following geometrical result:
Proposition 1.For the (t, x)-conformal deformed Berwald-Moór metric (1), the energy action functional

$$
\stackrel{*}{\mathbf{E}}(t, x(t))=\int_{a}^{b} \stackrel{*}{F^{2}}(t, x, y) \sqrt{h_{11}} d t=\int_{a}^{b} e^{2 \sigma(x)}\left[y_{1}^{1} y_{1}^{2} \ldots y_{1}^{n}\right]^{2 / n} \cdot h^{11} \sqrt{h_{11}} d t
$$

where $y=d x / d t$, produces on the 1-jet space $J^{1}\left(R, M^{n}\right)$ the canonical nonlinear connection

$$
\begin{equation*}
\stackrel{*}{\Gamma}=\left(M_{(1) 1}^{(i)}=-\mathrm{K}_{11}^{1} y_{1}^{i}, \quad N_{(1) j}^{(i)}=n \sigma_{i} y_{1}^{i} \delta_{j}^{i}\right), \tag{5}
\end{equation*}
$$

where $\sigma_{i}=\partial \sigma / \partial x^{i}$.
Proof. For the energy action functional \mathbf{E}, the associated Euler-Lagrange equations can be written in the equivalent form (see [4])

$$
\begin{equation*}
\frac{d^{2} x^{i}}{d t^{2}}+2 H_{(1) 1}^{(i)}\left(t, x^{k}, y_{1}^{k}\right)+2 G_{(1) 1}^{(i)}\left(t, x^{k}, y_{1}^{k}\right)=0 \tag{6}
\end{equation*}
$$

where the local components

$$
H_{(1) 1}^{(i)} \stackrel{\text { def }}{=}-\frac{1}{2} \mathrm{~K}_{11}^{1}(t) y_{1}^{i}
$$

and

$$
\begin{aligned}
G_{(1) 1}^{(i)} \stackrel{\text { def }}{=} & \frac{h_{11}{ }^{*}{ }^{i p}}{4}\left[\frac{\partial^{2} F^{2}}{\partial x^{r} \partial y_{1}^{p}} y_{1}^{r}-\frac{\partial F^{2}}{\partial x^{p}}+\frac{\partial^{2} F^{2}}{\partial t \partial y_{1}^{p}}+\right. \\
& \left.+\frac{\partial F^{2}}{\partial y_{1}^{p}} \mathrm{~K}_{11}^{1}(t)+2 h^{11} \mathrm{~K}_{11}^{1} \stackrel{*}{p r} y_{1}^{r}\right]=\frac{n}{2} \sigma_{i}\left(y_{1}^{i}\right)^{2}
\end{aligned}
$$

represent, from a geometrical point of view, a spray on the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$.
Therefore, the canonical nonlinear connection associated to this spray has the local components (see [4])

$$
\begin{aligned}
& M_{(1) 1}^{(i)} \stackrel{\text { def }}{=} 2 H_{(1) 1}^{(i)}=-\mathrm{K}_{11}^{1} y_{1}^{i}, \\
& N_{(1) j}^{(i)} \stackrel{\text { def }}{=} \frac{\partial G_{(1) 1}^{(i)}}{\partial y_{1}^{j}}=n \sigma_{i} y_{1}^{i} \delta_{j}^{i} .
\end{aligned}
$$

3.The Cartan $\stackrel{*}{\Gamma}$-Linear connection. Its d-torsions and d-curvatures

The nonlinear connection (5) produces the dual adapted bases of d-vector fields (no sum by i)

$$
\begin{equation*}
\left\{\frac{\delta}{\delta t}=\frac{\partial}{\partial t}+\mathrm{K}_{11}^{1} y_{1}^{p} \frac{\partial}{\partial y_{1}^{p}} ; \frac{\delta}{\delta x^{i}}=\frac{\partial}{\partial x^{i}}-n \sigma_{i} y_{1}^{i} \frac{\partial}{\partial y_{1}^{i}} ; \frac{\partial}{\partial y_{1}^{i}}\right\} \subset \mathcal{X}(E) \tag{7}
\end{equation*}
$$

and d-covector fields (no sum by i)

$$
\begin{equation*}
\left\{d t ; d x^{i} ; \delta y_{1}^{i}=d y_{1}^{i}-\mathrm{K}_{11}^{1} y_{1}^{i} d t+n \sigma_{i} y_{1}^{i} d x^{i}\right\} \subset \mathcal{X}^{*}(E) \tag{8}
\end{equation*}
$$

where $E=J^{1}\left(\mathbb{R}, M^{n}\right)$. The naturalness of the geometrical adapted bases (7) and (8) is coming from the fact that, via a transformation of coordinates (2), their elements transform as the classical tensors. Therefore, the description of all subsequent geometrical objects on the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$ (e.g., the Cartan canonical linear connection, its torsion and curvature etc.) will be given in local adapted components. Consequently, by direct computations, we obtain the following geometrical result:
Proposition 2.The Cartan canonical $\stackrel{*}{\Gamma}$-linear connection, produced by the (t, x) conformal deformed Berwald-Moór metric (1), has the following adapted local components (no sum by i, j or k):

$$
\begin{equation*}
C \stackrel{*}{\Gamma}=\left(\mathrm{K}_{11}^{1}, G_{j 1}^{k}=0, L_{j k}^{i}=n \delta_{j}^{i} \delta_{k}^{i} \sigma_{i}, C_{j(k)}^{i(1)}=\mathrm{C}_{j k}^{i} \cdot \frac{y_{1}^{i}}{y_{1}^{j} y_{1}^{k}}\right), \tag{9}
\end{equation*}
$$

where

$$
\mathrm{C}_{j k}^{i}=-\frac{2}{n^{2}}+\frac{\delta_{j}^{i}+\delta_{k}^{i}+\delta_{j k}}{n}-\delta_{j}^{i} \delta_{k}^{i} .
$$

Proof. The adapted components of the Cartan canonical connection are given by the formulas (see [4])

$$
\begin{aligned}
& G_{j 1}^{k} \stackrel{\text { def }}{=} \frac{\stackrel{*}{g}^{k m}}{2} \frac{\delta_{g_{m j}}^{*}}{\delta t}=0, \\
& L_{j k}^{i} \stackrel{\text { def }}{=} \frac{\stackrel{* i m}{g}}{2}\left(\frac{\delta g_{j m}^{*}}{\delta x^{k}}+\frac{\delta \stackrel{g}{g m}_{*}}{\delta x^{j}}-\frac{\delta_{g}^{*}}{\delta x^{m}}\right)=n \delta_{j}^{i} \delta_{k}^{i} \sigma_{i}, \\
& C_{j(k)}^{i(1)} \stackrel{\text { def }}{=} \frac{\stackrel{*}{g} i m}{2}\left(\frac{\partial{ }_{g}^{*}}{\partial y_{1}^{k}}+\frac{\partial^{*}}{\partial y_{1 m}^{j}}-\frac{\partial_{g}^{*}}{\partial y_{1}^{m}}\right)=\frac{\stackrel{*}{i m}_{i m}^{2}}{2} \frac{\stackrel{*}{g}_{j m}}{\partial y_{1}^{k}}=\mathrm{C}_{j k}^{i} \cdot \frac{y_{1}^{i}}{y_{1}^{j} y_{1}^{k}},
\end{aligned}
$$

where we also used the equality

$$
\frac{\delta \stackrel{*}{g}_{j m}}{\delta x^{k}}=n \delta_{j k} \stackrel{*}{g}_{j m} \sigma_{k}+n \delta_{m k} \stackrel{*}{g}_{j m} \sigma_{k} .
$$

Remark 3. It is important to note that the vertical d-tensor $C_{j(k)}^{i(1)}$ also has the properties (see also [8], [12] and [13]):

$$
\begin{equation*}
C_{j(k)}^{i(1)}=C_{k(j)}^{i(1)}, \quad C_{j(m)}^{i(1)} y_{1}^{m}=0, \quad C_{j(m)}^{m(1)}=0, \quad C_{i(k) \mid m}^{m(1)}=0, \tag{10}
\end{equation*}
$$

with sum by m, where

$$
C_{i(k) \mid j}^{l(1)} \stackrel{\text { def }}{=} \frac{\delta C_{i(k)}^{l(1)}}{\delta x^{j}}+C_{i(k)}^{r(1)} L_{r j}^{l}-C_{r(k)}^{l(1)} L_{i j}^{r}-C_{i(r)}^{l(1)} L_{k j}^{r} .
$$

Proposition 4.The Cartan canonical connection of the (t, x)-conformal deformed Berwald-Moór metric (1) has two effective local torsion d-tensors:

$$
\begin{gathered}
R_{(1) i j}^{(r)}=n\left(\delta_{i}^{r} \sigma_{r j}-\delta_{j}^{r} \sigma_{r i}\right) y_{1}^{r}, \\
P_{i(j)}^{r(1)}=\left(-\frac{2}{n^{2}}+\frac{\delta_{i}^{r}+\delta_{j}^{r}+\delta_{i j}}{n}-\delta_{i}^{r} \delta_{j}^{r}\right) \cdot \frac{y_{1}^{r}}{y_{1}^{i} y_{1}^{j}},
\end{gathered}
$$

where $\sigma_{p q}:=\left(\partial^{2} \sigma\right) /\left(\partial x^{p} \partial x^{q}\right)$.
Proof. Generally, an h-normal Γ-linear connection on the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$ has eight effective local d-tensors of torsion (for more details, see [4]). For the Cartan canonical connection (9) these reduce only to two (the other six are zero):

$$
R_{(1) i j}^{(r)} \stackrel{\text { def }}{=} \frac{\delta N_{(1) i}^{(r)}}{\delta x^{j}}-\frac{\delta N_{(1) j}^{(r)}}{\delta x^{i}},
$$

$$
P_{i(j)}^{r(1)} \stackrel{\text { def }}{=} C_{i(j)}^{r(1)} .
$$

Proposition 5.The Cartan canonical connection of the (t, x)-conformal deformed Berwald-Moór metric (1) has three effective local curvature d-tensors:

$$
\begin{gathered}
R_{i j k}^{l}=\frac{\partial L_{i j}^{l}}{\partial x^{k}}-\frac{\partial L_{i k}^{l}}{\partial x^{j}}+L_{i j}^{r} L_{r k}^{l}-L_{i k}^{r} L_{r j}^{l}+C_{i(r)}^{l(1)} R_{(1) j k}^{(r)}, \\
P_{i j(k)}^{l(1)}=-C_{i(k) \mid j}^{l(1)}, \\
S_{i(j)(k)}^{l(1)(1)} \stackrel{\text { def }}{=} \frac{\partial C_{i(j)}^{l(1)}}{\partial y_{1}^{k}}-\frac{\partial C_{i(k)}^{l(1)}}{\partial y_{1}^{j}}+C_{i(j)}^{r(1)} C_{r(k)}^{l(1)}-C_{i(k)}^{r(1)} C_{r(j)}^{l(1)} .
\end{gathered}
$$

Proof. Generally, an h-normal Γ-linear connection on the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$ has five effective local d-tensors of curvature (for more details, see [4]). For the Cartan canonical connection (9) these reduce only to three (the other two are zero); these are

$$
\begin{aligned}
& R_{i j k}^{l} \stackrel{\text { def }}{=} \frac{\delta L_{i j}^{l}}{\delta x^{k}}-\frac{\delta L_{i k}^{l}}{\delta x^{j}}+L_{i j}^{r} L_{r k}^{l}-L_{i k}^{r} L_{r j}^{l}+C_{i(r)}^{l(1)} R_{(1) j k}^{(r)}, \\
& P_{i j(k)}^{l(1)} \stackrel{\text { def }}{=} \frac{\partial L_{i j}^{l}}{\partial y_{1}^{k}}-C_{i(k) \mid j}^{l(1)}+C_{i(r)}^{l(1)} P_{(1) j(k)}^{(r)(1)}=-C_{i(k) \mid j}^{l(1)}, \\
& S_{i(j)(k)}^{l(1)(1)} \stackrel{\text { def }}{=} \frac{\partial C_{i(j)}^{l(1)}}{\partial y_{1}^{k}}-\frac{\partial C_{i(k)}^{l(1)}}{\partial y_{1}^{j}}+C_{i(j)}^{r(1)} C_{r(k)}^{l(1)}-C_{i(k)}^{r(1)} C_{r(j)}^{l(1)},
\end{aligned}
$$

where we used the equality

$$
P_{(1) j(k)}^{(r)(1)} \stackrel{\text { def }}{=} \frac{\partial N_{(1) j}^{(r)}}{\partial y_{1}^{k}}-L_{j k}^{r}=0 .
$$

4. Gravitational-Like geometrical model associated to the (T, x)-Conformal deformation of the Berwald-Moór metric

The (t, x)-conformal deformed Berwald-Moór metric (1) produces on the 1-jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$ the adapted metrical d-tensor (sum by i and j)

$$
\begin{equation*}
\mathbf{G}=h_{11} d t \otimes d t+\stackrel{*}{g}_{i j} d x^{i} \otimes d x^{j}+h^{11} \stackrel{g}{g}_{i j}^{*} \delta y_{1}^{i} \otimes \delta y_{1}^{j} \tag{11}
\end{equation*}
$$

where $\stackrel{*}{g}_{i j}$ is given by (3), and we have

$$
\delta y_{1}^{i}=d y_{1}^{i}-\mathrm{K}_{11}^{1} y_{1}^{i} d t+n \sigma_{i} y_{1}^{i} d x^{i} \text { (no sum by } i \text {). }
$$

From an abstract physical point of view, the metrical d-tensor (11) may be regarded as a "non-isotropic gravitational potential". In our geometric-physical approach, one postulates that the non-isotropic gravitational potential \mathbf{G} is governed by the following geometrical Einstein-like equations:

$$
\begin{equation*}
\operatorname{Ric}(C \stackrel{*}{\Gamma})-\frac{\mathrm{Sc}(C \stackrel{*}{\Gamma})}{2} \mathbf{G}=\mathcal{K} \mathcal{T}, \tag{12}
\end{equation*}
$$

where

- Ric $(C \stackrel{*}{\Gamma})$ is the Ricci d-tensor associated to the Cartan canonical linear connection (9);
- $\operatorname{Sc}(C \stackrel{*}{\Gamma})$ is the scalar curvature;
- \mathcal{K} is the Einstein constant and \mathcal{T} is the intrinsic non-isotropic stress-energy d-tensor of matter.

Therefore, using the adapted basis of vector fields (7), we can locally describe the global geometrical Einstein-like equations (12). Consequently, some direct computations lead to:
Lemma 6. The Ricci tensor of the Cartan canonical connection $C \stackrel{*}{\Gamma}$ of the (t, x) conformal deformed Berwald-Moór metric (1) has the following two effective local Ricci d-tensors (no sum by i, j, k or l):

$$
\begin{align*}
& R_{i j}= \begin{cases}-\sigma_{i j}-\sum_{\substack{m=1 \\
m \neq j}}^{n} \sigma_{j m} \frac{y_{1}^{m}}{y_{1}^{i}}, & i \neq j \\
0, & i=j,\end{cases} \tag{13}\\
& S_{(i)(j)}^{(1)(1)}=\left[\frac{2}{n^{2}}-\frac{1}{n}+\left(1-\frac{2}{n}\right) \delta_{i j}\right] \cdot \frac{1}{y_{1}^{i} y_{1}^{j}} .
\end{align*}
$$

Proof. Generally, the Ricci tensor of the Cartan canonical connection $C \Gamma$ produced by an arbitrary jet Lagrangian function is determined by six effective local Ricci
d-tensors (for more details, see [4]). For our particular Cartan canonical connection (9) these reduce only to the following two (the other four are zero):

$$
\begin{aligned}
R_{i j} & \stackrel{\text { def }}{=} R_{i j m}^{m}=\frac{\partial L_{i j}^{m}}{\partial x^{m}}-\frac{\partial L_{i m}^{m}}{\partial x^{j}}+L_{i j}^{r} L_{r m}^{m}-L_{i m}^{r} L_{r j}^{m}+C_{i(r)}^{m(1)} R_{(1) j m}^{r r} \\
S_{(i)(j)}^{(1)(1)} & \stackrel{\text { def }}{=} S_{i(j)(m)}^{m(1)(1)}=\frac{\partial C_{i(j)}^{m(1)}}{\partial y_{1}^{m}}-\frac{\partial C_{i(m)}^{m(1)}}{\partial y_{1}^{j}}+C_{i(j)}^{r(1)} C_{r(m)}^{m(1)}-C_{i(m)}^{r(1)} C_{r(j)}^{m(1)}= \\
& =\frac{\partial C_{i(j)}^{m(1)}}{\partial y_{1}^{m}}-C_{i(m)}^{r(1)} C_{r(j)}^{m(1)},
\end{aligned}
$$

with sum by r and m.
Lemma 7. The scalar curvature of the Cartan canonical connection $C \stackrel{*}{\Gamma}$ of the (t, x) conformal deformed Berwald-Moór metric (1) has the value

$$
S c(C \stackrel{*}{\Gamma})=-e^{-2 \sigma} G_{1[n]}^{-2 / n}\left[4 n Y_{11}+\left(n^{2}-3 n+2\right) h_{11}\right],
$$

where

$$
Y_{11}=\sum_{\substack{p, q=1 \\ p<q}}^{n} \sigma_{p q} y_{1}^{p} y_{1}^{q} .
$$

Proof. The scalar curvature of the Cartan canonical connection (9) is given by the formula (for more details, see [4]): Sc $(C \stackrel{*}{\Gamma})={ }^{*} g^{p q} R_{p q}+h_{11}{ }^{*} p q S_{(p)(q)}^{(1)(1)}$.

The local description in the adapted basis of vector fields (7) of the global geometrical Einstein-like equations (12) is given by (for more details, see [4]):
Proposition 8.The geometrical Einstein-like equations of the (t, x)-conformal deformed Berwald-Moór metric (1) are locally described by

$$
\left\{\begin{array}{l}
e^{-2 \sigma} G_{1[n]}^{-2 / n}\left[2 n Y_{11}+\frac{n^{2}-3 n+2}{2} h_{11}\right] h_{11}=\mathcal{K} \mathcal{T}_{11} \tag{14}\\
R_{i j}+e^{-2 \sigma} G_{1[n]}^{-2 / n}\left[2 n Y_{11}+\frac{n^{2}-3 n+2}{2} h_{11}\right] \stackrel{*}{g}_{i j}=\mathcal{K} \mathcal{T}_{i j} \\
S_{(i)(j)}^{(1)(1)}+e^{-2 \sigma} G_{1[n]}^{-2 / n}\left[2 n Y_{11}+\frac{n^{2}-3 n+2}{2} h_{11}\right] h^{11} \stackrel{g}{g}_{i j}^{*}=\mathcal{K} \mathcal{T}_{(i)(j)}^{(1)(1)} \\
0=\mathcal{T}_{1 i}, \quad 0=\mathcal{T}_{i 1}, \quad 0=\mathcal{T}_{(i) 1}^{(1)} \\
0=\mathcal{T}_{1(i)}^{(1)}, \quad 0=\mathcal{T}_{i(j)}^{(1)}, \quad 0=\mathcal{T}_{(i) j}^{(1)} .
\end{array}\right.
$$

Corollary 9. The non-isotropic stress-energy d-tensor of matter T satisfies the following geometrical conservation laws (sum by m):

$$
\left\{\begin{array}{l}
\mathcal{T}_{1 / 1}^{1}+\mathcal{T}_{1 \mid m}^{m}+\left.\mathcal{T}_{(1) 1}^{(m)}\right|_{(m)} ^{(1)}=0 \\
\mathcal{T}_{i / 1}^{1}+\mathcal{T}_{i \mid m}^{m}+\left.\mathcal{T}_{(1) i}^{(m)}\right|_{(m)} ^{(1)}=E_{i \mid m}^{m} \\
\mathcal{T}_{(i) / 1}^{1(1)}+\mathcal{T}_{(i) \mid m}^{m(1)}+\left.\mathcal{T}_{(1)(i)}^{(m)(1)}\right|_{(m)} ^{(1)}=\frac{2 e^{-2 \sigma} G_{1[n]}^{-2 / n}}{\mathcal{K}} \cdot\left[n \frac{\partial Y_{11}}{\partial y_{1}^{i}}-2 \frac{Y_{11}}{y_{1}^{i}}\right],
\end{array}\right.
$$

where (sum by r):

$$
\begin{aligned}
& \mathcal{T}_{1}^{1} \stackrel{\text { def }}{=} h^{11} \mathcal{T}_{11}=\mathcal{K}^{-1} e^{-2 \sigma} G_{1[n]}^{-2 / n}\left[2 n Y_{11}+\frac{n^{2}-3 n+2}{2} h_{11}\right], \\
& \mathcal{T}_{1}^{m} \stackrel{\text { def }}{=}{ }_{g}{ }^{m r} \mathcal{T}_{r 1}=0, \quad \mathcal{T}_{(1) 1}^{(m)} \stackrel{\text { def }}{=} h_{11}{ }^{*} g^{m r} \mathcal{T}_{(r) 1}^{(1)}=0, \quad \mathcal{T}_{i}^{1} \stackrel{\text { def }}{=} h^{11} \mathcal{T}_{1 i}=0, \\
& \mathcal{T}_{i}^{m} \stackrel{\text { def }}{=}{ }^{*} m r \\
& g_{r i}:=E_{i}^{m}=\mathcal{K}^{-1}\left[\stackrel{*}{g}^{m r} R_{r i}+\right. \\
& \left.\quad+e^{-2 \sigma} G_{1[n]}^{-2 / n}\left(2 n Y_{11}+\frac{n^{2}-3 n+2}{2} h_{11}\right) \delta_{i}^{m}\right], \\
& \mathcal{T}_{(1) i}^{(m)} \stackrel{\text { def }}{=} h_{11} \stackrel{*}{g}{ }^{m r} \mathcal{T}_{(r) i}^{(1)}=0, \quad \mathcal{T}_{(i)}^{1(1)} \stackrel{\text { def }}{=} h^{11} \mathcal{T}_{1(i)}^{(1)}=0, \quad \mathcal{T}_{(i)}^{m(1)} \stackrel{\text { def }}{=}{ }_{g}{ }^{*} m r \\
& \mathcal{T}_{r(i)}^{(1)}=0, \\
& \mathcal{T}_{(1)(i)}^{(m)(1)} \stackrel{\text { def }}{=} h_{11} \stackrel{*}{g}{ }^{m r} \mathcal{T}_{(r)(i)}^{(1)(1)}=\frac{e^{-2 \sigma} G_{1[n]}^{-2 / n}}{\mathcal{K}} \cdot\left[\frac{n-2}{n} h_{11} \frac{y_{1}^{m}}{y_{1}^{i}}+\right. \\
& \left.\quad+\left(2 n Y_{11}+\frac{n^{2}-5 n+6}{2} h_{11}\right) \delta_{i}^{m}\right],
\end{aligned}
$$

and we also have (summation by m and r, but no sum by i)

$$
\begin{aligned}
& \mathcal{T}_{1 / 1}^{1}=\frac{\delta \mathcal{T}_{1}^{1}}{\delta t}, \quad \mathcal{T}_{1 \mid m}^{m} \stackrel{\text { def }}{=} \frac{\delta \mathcal{T}_{1}^{m}}{\delta x^{m}}+\mathcal{T}_{1}^{r} L_{r m}^{m}, \\
& \left.\mathcal{T}_{(1) 1}^{(m)}\right|_{(m)} ^{(1)} \stackrel{\text { def }}{=} \frac{\partial \mathcal{T}_{(1) 1}^{(m)}}{\partial y_{1}^{m}}+\mathcal{T}_{(1) 1}^{(r)} C_{r(m)}^{m(1)}=\frac{\partial \mathcal{T}_{(1) 1}^{(m)}}{\partial y_{1}^{m}}, \\
& \mathcal{T}_{i / 1}^{1} \stackrel{\text { def }}{=} \frac{\delta \mathcal{T}_{i}^{1}}{\delta t}+\mathcal{T}_{i}^{1} \mathrm{~K}_{11}^{1}-\mathcal{T}_{r}^{1} G_{i 1}^{r}=\frac{\delta \mathcal{T}_{i}^{1}}{\delta t}+\mathcal{T}_{i}^{1} \mathrm{~K}_{11}^{1},
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{T}_{i \mid m}^{m} \stackrel{\text { def }}{=} \frac{\delta \mathcal{T}_{i}^{m}}{\delta x^{m}}+\mathcal{T}_{i}^{r} L_{r m}^{m}-\mathcal{T}_{r}^{m} L_{i m}^{r}=E_{i \mid m}^{m}:=\frac{\delta E_{i}^{m}}{\delta x^{m}}+n E_{i}^{m} \sigma_{m}-n E_{i}^{i} \sigma_{i} \\
& \left.\mathcal{T}_{(1) i}^{(m)}\right|_{(m)} ^{(1)} \stackrel{\text { def }}{=} \frac{\partial \mathcal{T}_{(1) i}^{(m)}}{\partial y_{1}^{m}}+\mathcal{T}_{(1) i}^{(r)} C_{r(m)}^{m(1)}-\mathcal{T}_{(1) r}^{(m)} C_{i(m)}^{r(1)}=\frac{\partial \mathcal{T}_{(1) i}^{(m)}}{\partial y_{1}^{m}}-\mathcal{T}_{(1) r}^{(m)} C_{i(m)}^{r(1)} \\
& \mathcal{T}_{(i) / 1}^{1(1)} \stackrel{\text { def }}{=} \frac{\delta \mathcal{T}_{(i)}^{1(1)}}{\delta t}+2 \mathcal{T}_{(i)}^{1(1)} \mathrm{K}_{11}^{1}, \quad \mathcal{T}_{(i) \mid m}^{m(1)} \stackrel{\text { def }}{=} \frac{\delta \mathcal{T}_{(i)}^{m(1)}}{\delta x^{m}}+\mathcal{T}_{(i)}^{r(1)} L_{r m}^{m}-\mathcal{T}_{(r)}^{m(1)} L_{i m}^{r} \\
& \mathcal{T}_{(1)(i)}^{(m)(1)} \left\lvert\,{ }_{(m)}^{(1)} \stackrel{\text { def }}{=} \frac{\partial \mathcal{T}_{(1)(i)}^{(m)(1)}}{\partial y_{1}^{m}}+\mathcal{T}_{(1)(i)}^{(r)(1)} C_{r(m)}^{m(1)}-\mathcal{T}_{(1)(r)}^{(m)(1)} C_{i(m)}^{r(1)}=\frac{\partial \mathcal{T}_{(1)(i)}^{(m)(1)}}{\partial y_{1}^{m}}\right.
\end{aligned}
$$

Proof. The local Einstein-like equations (14), together with some direct computations, lead us to what we were looking for. Also note that we have (summation by m and r)

$$
\mathcal{T}_{(1)(r)}^{(m)(1)} C_{i(m)}^{r(1)}=0
$$

5.ELECTROMAGNETIC-LIKE GEOMETRICAL MODEL ASSOCIATED TO THE (T,X)-CONFORMAL DEFORMATION OF THE BERWALD-MOÓR METRIC

In book [4], a geometrical theory for electromagnetism was also created, using only a given Lagrangian function L on the 1 -jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$. In the background of the jet single-time (one-parameter) Lagrange geometry from [4], one works with the non-isotropic electromagnetic distinguished 2 -form (sum by i and j)

$$
\mathbf{F}=F_{(i) j}^{(1)} \delta y_{1}^{i} \wedge d x^{j}
$$

where (sum by m and r)

$$
F_{(i) j}^{(1)}=\frac{h^{11}}{2}\left[\stackrel{*}{g}_{j m} N_{(1) i}^{(m)}-\stackrel{*}{g}_{i m} N_{(1) j}^{(m)}+\left(\stackrel{*}{g}_{i r} L_{j m}^{r}-\stackrel{*}{g}_{j r} L_{i m}^{r}\right) y_{1}^{m}\right]
$$

This is characterized by some natural geometrical Maxwell-like equations (for more details, see [9] and [4]).
Remark 10. The Lagrangian function that governs the movement law of a particle of mass $m \neq 0$ and electric charge e, which is displaced concomitantly into an environment endowed both with a gravitational field and an electromagnetic one, is given by

$$
\begin{equation*}
L\left(t, x^{k}, y_{1}^{k}\right)=m c h^{11}(t) \varphi_{i j}\left(x^{k}\right) y_{1}^{i} y_{1}^{j}+\frac{2 e}{m} A_{(i)}^{(1)}\left(t, x^{k}\right) y_{1}^{i} \tag{15}
\end{equation*}
$$

where

- the semi-Riemannian metric $\varphi_{i j}(x)$ represents the isotropic gravitational potential;
- $A_{(i)}^{(1)}(t, x)$ are the components of a d-tensor on the 1 -jet space $J^{1}\left(\mathbb{R}, M^{n}\right)$ representing the electromagnetic potential.

Note that the jet Lagrangian function (15) is a natural extension of the Lagrangian (defined on the tangent bundle) used in electrodynamics by Miron and Anastasiei [9]. In our jet geometrical formalism applied to Lagrangian (15), the electromagnetic-like components become classical ones (see [4]):

$$
F_{(i) j}^{(1)}=-\frac{e}{2 m}\left(\frac{\partial A_{(i)}^{(1)}}{\partial x^{j}}-\frac{\partial A_{(j)}^{(1)}}{\partial x^{i}}\right) .
$$

Moreover, the second set of geometrical Maxwell-like equations reduce to the classical ones too (for more details, see [9], [4]):

$$
\sum_{\{i, j, k\}} F_{(i) j \mid k}^{(1)}=0
$$

where

$$
F_{(i) j \mid k}^{(1)}=\frac{\partial F_{(i) j}^{(1)}}{\partial x^{k}}-F_{(m) j}^{(1)} \gamma_{i k}^{m}-F_{(i) m}^{(1)} \gamma_{j k}^{m} .
$$

Also, the geometrical Einstein-like equations attached to the Lagrangian (15) (see [9], [4]) are the same with the famous classical ones (associated to the semi-Riemannian metric $\left.\varphi_{i j}(x)\right)$. In author's opinion, these facts suggest some kind of naturalness for the present abstract Lagrangian non-isotropic electromagnetic and gravitational geometrical theories.

Via some direct calculations, we easily deduce that the (t, x)-conformal deformed Berwald-Moór metric (1) produces null non-isotropic electromagnetic components:

$$
F_{(i) j}^{(1)}=0 .
$$

It follows that our conformal deformed Berwald-Moór geometrical electromagneticlike theory is trivial. This fact probably suggests that the (t, x)-conformal deformed Berwald-Moór geometrical structure (1) has rather gravitational connotations than electromagnetic ones.

As a conclusion, it is possible for the recent Voicu-Siparov approach of the electromagnetism in spaces with anisotropic metrics (that electromagnetic approach is
different from the electromagnetic theory exposed above, and it is developed in the paper [18]) to give other interesting electromagnetic-geometrical results for spaces endowed with the Berwald-Moór geometrical structure.

Open problem. The author of this paper believes the finding of some possible real physical interpretations for the present non-isotropic Berwald-Moór geometrical approach of gravity and electromagnetism may be an open problem for physicists.

References

[1] G.S. Asanov, Finslerian Extension of General Relativity, Reidel, Dordrecht, 1984.
[2] G.S. Asanov, Jet extension of Finslerian gauge approach, Fortschritte der Physik, Vol. 38, No. 8, (1990), 571-610.
[3] V. Balan, Notable submanifolds in Berwald-Moór spaces, BSG Proceedings, No. 17, Geometry Balkan Press, Bucharest, (2010), 21-30.
[4] V. Balan, M. Neagu, Jet Single-Time Lagrange Geometry and Its Applications, John Wiley \& Sons, Inc., Hoboken, New Jersey, 2011.
[5] L. Berwald, Über Finslersche und Cartansche Geometrie II, Compositio Math., Vol. 7, (1940), 141-176.
[6] G.I. Garas'ko, Foundations of Finsler Geometry for Physicists (in Russian), Tetru Eds, Moscow, 2009.
[7] G.I. Garas'ko, The extension of the conformal transformation concept (in Russian), Hypercomplex Numbers in Geometry and Physics 1 (3), Vol. 2, (2005), 16-25. [8] M. Matsumoto, H. Shimada, On Finsler spaces with 1-form metric. II. BerwaldMoór's metric $L=\left(y^{1} y^{2} \ldots y^{n}\right)^{\frac{1}{n}}$, Tensor N.S., No. 32, (1978), 275-278.
[9] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Academic Publishers, Dordrecht, 1994.
[10] A. Moór, Ergänzung zu meiner Arbeit: Über die Dualität von Finslerschen und Cartanschen Räumen, Acta Math., Vol. 91, (1954), 187-188.
[11] A. Moór, Über die Dualität von Finslerschen und Cartanschen Räumen, Acta Math., Vol. 88, (1952), 347-370.
[12] M. Neagu, Jet Finslerian geometry for the x-dependent conformal deformation of the rheonomic Berwald-Moór metric of order three, Analele Universităţii de Vest din Timişoara, Seria Matematică - Informatică, Vol. 49, No. 2, (2011), 89-100.
[13] M. Neagu, Jet Finsler-like geometry for the x-dependent conformal deformation of a one-parameter family of Berwald-Moór metrics of order four, Bulletin of the Transilvania University of Braşov, Series III: Mathematics, Informatics, Physics, Vol. 4 (53), No. 2, (2011), 31-42.
[14] D.G. Pavlov, Four-dimensional time, Hypercomplex Numbers in Geometry and Physics 1 (1), Vol. 1, (2004), 31-39.
M. Neagu - From conformal deformations of the jet Berwald-Mor metric to some...
[15] D.G. Pavlov, Generalization of the axioms of scalar product, Hypercomplex Numbers in Geometry and Physics 1 (1), Vol. 1, (2004), 5-18.
[16] D.G. Pavlov, S.S. Kokarev, Conformal gauges of the Berwald-Moór geometry and their induced non-linear symmetries (in Russian), Hypercomplex Numbers in Geometry and Physics 2 (10), Vol. 5, (2008), 3-14.
[17] P.K. Rashevsky, Polymetric Geometry (in Russian), In: "Proc. Sem. on Vector and Tensor Analysis and Applications in Geometry, Mechanics and Physics" (Ed. V.F. Kagan), Vol. 5, M-L, OGIZ, 1941.
[18] N. Voicu, S. Siparov, A new approach to electromagnetism in anisotropic spaces, BSG Proceedings, No. 17, Geometry Balkan Press, Bucharest, (2010), 250-260.

Mircea Neagu
Department of Mathematics and Informatics
University Transilvania of Braşov
Blvd. Iuliu Maniu, No. 50, Braşov 500091, Romania
email:mircea.neagu@unitbv.ro

[^0]: ${ }^{1}$ We assume that we have $y_{1}^{1} y_{1}^{2} \ldots y_{1}^{n}>0$. This is a domain of existence where we can y differentiate the Finsler-like function $\stackrel{*}{F}(t, x, y)$.

[^1]: ${ }^{2}$ Throughout this paper the Latin letters i, j, k, m, r, \ldots take values in the set $\{1,2, \ldots n\}$.

