FROM CONFORMAL DEFORMATIONS OF THE JET BERWALD-MOR METRIC TO SOME NON-ISOTROPIC GEOMETRICAL EINSTEIN-LIKE EQUATIONS

MIRCEA NEAGU

ABSTRACT. In this paper we develop on the 1-jet space $J^1(\mathbb{R}, M^n)$ the Finslerlike geometry (in the sense of distinguished (d-) connection, d-torsions, d-curvatures and some gravitational-like and electromagnetic-like geometrical models) attached to the (t, x)-conformal deformation of the Berwald-Moór metric.

2010 Mathematics Subject Classification: 53C60, 53C80, 83C22.

1.INTRODUCTION

The geometric-physical Berwald-Moór structure ([5], [11], [10]) was intensively investigated by P.K. Rashevski [17] and further substantiated and developed by D.G. Pavlov, G.I. Garas'ko and S.S. Kokarev ([15], [6], [16]). At the same time, the physical studies of Asanov [1] or Garas'ko and Pavlov ([7], [14]) emphasize the importance of the Finsler geometry characterized by the total equality in rights of all non-isotropic directions in the theory of space-time structure, gravitation and electromagnetism. For such a reason, one underlines the important role played by the classical Berwald-Moór metric

$$F:TM\to \mathbb{R}, \qquad F(y)=\sqrt[n]{y^1y^2...y^n}, \qquad n\geq 2,$$

whose tangent Finslerian geometry is studied by geometers as Matsumoto and Shimada [8] or Balan [3]. In such a perspective, according to the recent geometricphysical ideas proposed by Garas'ko ([6], [7]), we consider that a Finsler-like geometricphysical study for the conformal deformations of the jet Berwald-Moór structure is required. Consequently, we investigate on the 1-jet space $J^1(\mathbb{R}, M^n)$ the Finsler-like geometry (together with some gravitational-like and electromagnetic-like geometrical models) of the (t, x)-conformal deformation of the Berwald-Moór metric¹

$${}^{*}_{F}(t,x,y) = e^{\sigma(x)} \sqrt{h^{11}(t)} \cdot \left[y_{1}^{1} y_{1}^{2} \dots y_{1}^{n}\right]^{\frac{1}{n}}, \qquad (1)$$

¹We assume that we have $y_1^1 y_1^2 \dots y_n^n > 0$. This is a domain of existence where we can ydifferentiate the Finsler-like function $\overset{*}{F}(t, x, y)$.

where $\sigma(x)$ is a smooth non-constant function on M^n , $h^{11}(t)$ is the dual of a Riemannian metric $h_{11}(t)$ on \mathbb{R} , and

$$(t, x, y) = (t, x^1, x^2, ..., x^n, y_1^1, y_1^2, ..., y_1^n)$$

are the coordinates of the 1-jet space $J^1(\mathbb{R}, M^n)$, which transform by the rules (the Einstein convention of summation is assumed everywhere):

$$\widetilde{t} = \widetilde{t}(t), \quad \widetilde{x}^i = \widetilde{x}^i(x^j), \quad \widetilde{y}_1^i = \frac{\partial \widetilde{x}^i}{\partial x^j} \frac{dt}{d\widetilde{t}} \cdot y_1^j,$$
(2)

where $i, j = \overline{1, n}$, rank $(\partial \tilde{x}^i / \partial x^j) = n$ and $d\tilde{t}/dt \neq 0$. Note that the particular jet Finsler-like geometries (together with their corresponding jet geometrical gravitational field-like theories) of the (t, x)-conformal deformations of the Berwald-Moór metrics of order three and four are now completely developed in the papers [12] and [13].

Based on the geometrical ideas promoted by Miron and Anastasiei in the classical Lagrangian geometry of tangent bundles [9], together with those used by Asanov in the geometry of 1-jet spaces [2], the differential geometry (in the sense of d-connections, d-torsions, d-curvatures, gravitational and electromagnetic geometrical theories) produced by an arbitrary jet rheonomic Lagrangian function $L: J^1(\mathbb{R}, M^n) \to \mathbb{R}$ is now exposed in the monograph [4]. In what follows, we apply the general jet geometrical results from book [4] to the (t, x)-conformal deformed jet Berwald-Moór metric (1).

2. The canonical nonlinear connection

Let us rewrite the (t, x)-conformal deformed jet Berwald-Moór metric (1) in the form

$${}^{*}_{F}(t,x,y) = e^{\sigma(x)} \sqrt{h^{11}(t)} \cdot \left[G_{1[n]}(y)\right]^{1/n}$$

where $G_{1[n]}(y) = y_1^1 y_1^2 \dots y_1^n$. Hereinafter, the fundamental metrical d-tensor produced by the metric (1) is given by the formula² (see [4])

$${}^{*}_{g_{ij}}(t,x,y) \stackrel{def}{=} \frac{h_{11}(t)}{2} \frac{\partial^2 F^2}{\partial y_1^i \partial y_1^j} \Rightarrow$$

$${}^{*}_{g_{ij}}(t,x,y) := {}^{*}_{g_{ij}}(x,y) = \frac{e^{2\sigma(x)}}{n} \left(\frac{2}{n} - \delta_{ij}\right) \frac{G_{1[n]}^{2/n}}{y_1^i y_1^j},$$

$$(3)$$

²Throughout this paper the Latin letters i, j, k, m, r, \dots take values in the set $\{1, 2, \dots n\}$.

where we have no sum by i or j. Moreover, the matrix $\overset{*}{g} = (\overset{*}{g}_{ij})$ admits the inverse $\overset{*}{g}^{-1} = (\overset{*}{g}^{jk})$, whose entries are

$${}^{*jk}_{jk} = e^{-2\sigma(x)} (2 - n\delta^{jk}) G_{1[n]}^{-2/n} y_1^j y_1^k \text{ (no sum by } j \text{ or } k).$$
(4)

Let us consider that the Christoffel symbol of the Riemannian metric $h_{11}(t)$ on \mathbb{R} is

$$\mathbf{K}_{11}^1 = \frac{h^{11}}{2} \frac{dh_{11}}{dt}$$

where $h^{11} = 1/h_{11} > 0$. Then, using a general formula from [4] and taking into account that we have

$$\frac{\partial G_{1[n]}}{\partial y_1^i} = \frac{G_{1[n]}}{y_1^i},$$

we find the following geometrical result:

Proposition 1. For the (t, x)-conformal deformed Berwald-Moór metric (1), the energy action functional

$$\overset{*}{\mathbf{E}}(t,x(t)) = \int_{a}^{b} F^{2}(t,x,y)\sqrt{h_{11}}dt = \int_{a}^{b} e^{2\sigma(x)} \left[y_{1}^{1}y_{1}^{2}...y_{1}^{n}\right]^{2/n} \cdot h^{11}\sqrt{h_{11}}dt,$$

where y = dx/dt, produces on the 1-jet space $J^{1}(R, M^{n})$ the canonical nonlinear connection

$$\overset{*}{\Gamma} = \left(M_{(1)1}^{(i)} = -\kappa_{11}^1 y_1^i, \ N_{(1)j}^{(i)} = n\sigma_i y_1^i \delta_j^i \right), \tag{5}$$

where $\sigma_i = \partial \sigma / \partial x^i$.

Proof. For the energy action functional $\mathbf{\tilde{E}}$, the associated Euler-Lagrange equations can be written in the equivalent form (see [4])

$$\frac{d^2x^i}{dt^2} + 2H_{(1)1}^{(i)}\left(t, x^k, y_1^k\right) + 2G_{(1)1}^{(i)}\left(t, x^k, y_1^k\right) = 0,\tag{6}$$

where the local components

$$H_{(1)1}^{(i)} \stackrel{def}{=} -\frac{1}{2} \kappa_{11}^1(t) y_1^i$$

and

$$G_{(1)1}^{(i)} \stackrel{def}{=} \frac{h_{11}g^{ip}}{4} \left[\frac{\partial^2 F^2}{\partial x^r \partial y_1^p} y_1^r - \frac{\partial F^2}{\partial x^p} + \frac{\partial^2 F^2}{\partial t \partial y_1^p} + \frac{\partial F^2}{\partial y_1^p} \kappa_{11}^1(t) + 2h^{11}\kappa_{11}^1g_{pr}^*y_1^r \right] = \frac{n}{2}\sigma_i (y_1^i)^2$$

represent, from a geometrical point of view, a spray on the 1-jet space $J^1(\mathbb{R}, M^n)$.

Therefore, the *canonical nonlinear connection* associated to this spray has the local components (see [4])

$$\begin{split} M_{(1)1}^{(i)} &\stackrel{def}{=} 2H_{(1)1}^{(i)} = -\mathbf{K}_{11}^{1}y_{1}^{i}, \\ N_{(1)j}^{(i)} &\stackrel{def}{=} \frac{\partial G_{(1)1}^{(i)}}{\partial y_{1}^{j}} = n\sigma_{i}y_{1}^{i}\delta_{j}^{i}. \end{split}$$

3. The Cartan Γ -linear connection. Its d-torsions and d-curvatures

The nonlinear connection (5) produces the dual *adapted bases* of d-vector fields (no sum by i)

$$\left\{\frac{\delta}{\delta t} = \frac{\partial}{\partial t} + \kappa_{11}^1 y_1^p \frac{\partial}{\partial y_1^p} \; ; \; \frac{\delta}{\delta x^i} = \frac{\partial}{\partial x^i} - n\sigma_i y_1^i \frac{\partial}{\partial y_1^i} \; ; \; \frac{\partial}{\partial y_1^i}\right\} \subset \mathcal{X}(E) \tag{7}$$

and d-covector fields (no sum by i)

$$\left\{ dt \; ; \; dx^{i} \; ; \; \delta y_{1}^{i} = dy_{1}^{i} - \kappa_{11}^{1} y_{1}^{i} dt + n \sigma_{i} y_{1}^{i} dx^{i} \right\} \subset \mathcal{X}^{*}(E), \tag{8}$$

where $E = J^1(\mathbb{R}, M^n)$. The naturalness of the geometrical adapted bases (7) and (8) is coming from the fact that, via a transformation of coordinates (2), their elements transform as the classical tensors. Therefore, the description of all subsequent geometrical objects on the 1-jet space $J^1(\mathbb{R}, M^n)$ (e.g., the Cartan canonical linear connection, its torsion and curvature etc.) will be given in local adapted components. Consequently, by direct computations, we obtain the following geometrical result:

Proposition 2. The Cartan canonical $\overset{*}{\Gamma}$ -linear connection, produced by the (t, x)conformal deformed Berwald-Moór metric (1), has the following adapted local components (no sum by i, j or k):

$$C\Gamma = \left(\kappa_{11}^{1}, \ G_{j1}^{k} = 0, \ L_{jk}^{i} = n\delta_{j}^{i}\delta_{k}^{i}\sigma_{i}, \ C_{j(k)}^{i(1)} = \mathsf{C}_{jk}^{i} \cdot \frac{y_{1}^{i}}{y_{1}^{j}y_{1}^{k}}\right),\tag{9}$$

where

$$\mathbf{C}^i_{jk} = -\frac{2}{n^2} + \frac{\delta^i_j + \delta^i_k + \delta_{jk}}{n} - \delta^i_j \delta^i_k.$$

Proof. The adapted components of the Cartan canonical connection are given by the formulas (see [4])

$$\begin{split} G_{j1}^{k} &\stackrel{def}{=} \frac{g^{km}}{2} \frac{\delta g^{*}_{mj}}{\delta t} = 0, \\ L_{jk}^{i} &\stackrel{def}{=} \frac{g^{im}}{2} \left(\frac{\delta g^{*}_{jm}}{\delta x^{k}} + \frac{\delta g^{*}_{km}}{\delta x^{j}} - \frac{\delta g^{*}_{jk}}{\delta x^{m}} \right) = n \delta_{j}^{i} \delta_{k}^{i} \sigma_{i}, \\ C_{j(k)}^{i(1)} &\stackrel{def}{=} \frac{g^{im}}{2} \left(\frac{\partial g^{*}_{jm}}{\partial y_{1}^{k}} + \frac{\partial g^{*}_{km}}{\partial y_{1}^{j}} - \frac{\partial g^{*}_{jk}}{\partial y_{1}^{m}} \right) = \frac{g^{im}}{2} \frac{\partial g^{*}_{jm}}{\partial y_{1}^{k}} = \mathbf{C}_{jk}^{i} \cdot \frac{y_{1}^{i}}{y_{1}^{j} y_{1}^{k}}, \end{split}$$

where we also used the equality

$$\frac{\delta g_{jm}}{\delta x^k} = n \delta_{jk} g_{jm}^* \sigma_k + n \delta_{mk} g_{jm}^* \sigma_k.$$

Remark 3. It is important to note that the vertical d-tensor $C_{j(k)}^{i(1)}$ also has the properties (see also [8], [12] and [13]):

$$C_{j(k)}^{i(1)} = C_{k(j)}^{i(1)}, \quad C_{j(m)}^{i(1)} y_1^m = 0, \quad C_{j(m)}^{m(1)} = 0, \quad C_{i(k)|m}^{m(1)} = 0,$$
 (10)

with sum by m, where

$$C_{i(k)|j}^{l(1)} \stackrel{def}{=} \frac{\delta C_{i(k)}^{l(1)}}{\delta x^j} + C_{i(k)}^{r(1)} L_{rj}^l - C_{r(k)}^{l(1)} L_{ij}^r - C_{i(r)}^{l(1)} L_{kj}^r.$$

Proposition 4. The Cartan canonical connection of the (t, x)-conformal deformed Berwald-Moór metric (1) has two effective local torsion d-tensors:

$$R_{(1)ij}^{(r)} = n \left(\delta_i^r \sigma_{rj} - \delta_j^r \sigma_{ri}\right) y_1^r,$$
$$P_{i(j)}^{r(1)} = \left(-\frac{2}{n^2} + \frac{\delta_i^r + \delta_j^r + \delta_{ij}}{n} - \delta_i^r \delta_j^r\right) \cdot \frac{y_1^r}{y_1^i y_1^j},$$

where $\sigma_{pq} := \left(\partial^2 \sigma\right) / \left(\partial x^p \partial x^q\right)$.

Proof. Generally, an *h*-normal Γ -linear connection on the 1-jet space $J^1(\mathbb{R}, M^n)$ has eight effective local d-tensors of torsion (for more details, see [4]). For the Cartan canonical connection (9) these reduce only to two (the other six are zero):

$$R_{(1)ij}^{(r)} \stackrel{def}{=} \frac{\delta N_{(1)i}^{(r)}}{\delta x^{j}} - \frac{\delta N_{(1)j}^{(r)}}{\delta x^{i}},$$

M. Neagu - From conformal deformations of the jet Berwald-Mor metric to some...

$$P_{i(j)}^{r(1)} \stackrel{def}{=} C_{i(j)}^{r(1)}.$$

Proposition 5. The Cartan canonical connection of the (t, x)-conformal deformed Berwald-Moór metric (1) has three effective local curvature d-tensors:

$$\begin{split} R_{ijk}^{l} &= \frac{\partial L_{ij}^{l}}{\partial x^{k}} - \frac{\partial L_{ik}^{l}}{\partial x^{j}} + L_{ij}^{r} L_{rk}^{l} - L_{ik}^{r} L_{rj}^{l} + C_{i(r)}^{l(1)} R_{(1)jk}^{(r)}, \\ P_{ij(k)}^{l} &= -C_{i(k)|j}^{l(1)}, \\ S_{i(j)(k)}^{l(1)(1)} &\stackrel{def}{=} \frac{\partial C_{i(j)}^{l(1)}}{\partial y_{1}^{k}} - \frac{\partial C_{i(k)}^{l(1)}}{\partial y_{1}^{j}} + C_{i(j)}^{r(1)} C_{r(k)}^{l(1)} - C_{i(k)}^{r(1)} C_{r(j)}^{l(1)}. \end{split}$$

Proof. Generally, an *h*-normal Γ -linear connection on the 1-jet space $J^1(\mathbb{R}, M^n)$ has five effective local d-tensors of curvature (for more details, see [4]). For the Cartan canonical connection (9) these reduce only to three (the other two are zero); these are

$$\begin{split} R_{ijk}^{l} &\stackrel{def}{=} \frac{\delta L_{ij}^{l}}{\delta x^{k}} - \frac{\delta L_{ik}^{l}}{\delta x^{j}} + L_{ij}^{r} L_{rk}^{l} - L_{ik}^{r} L_{rj}^{l} + C_{i(r)}^{l(1)} R_{(1)jk}^{(r)}, \\ P_{ij(k)}^{l} &\stackrel{def}{=} \frac{\partial L_{ij}^{l}}{\partial y_{1}^{k}} - C_{i(k)|j}^{l(1)} + C_{i(r)}^{l(1)} P_{(1)j(k)}^{(r)} = -C_{i(k)|j}^{l(1)}, \\ S_{i(j)(k)}^{l(1)(1)} &\stackrel{def}{=} \frac{\partial C_{i(j)}^{l(1)}}{\partial y_{1}^{k}} - \frac{\partial C_{i(k)}^{l(1)}}{\partial y_{1}^{j}} + C_{i(j)}^{r(1)} C_{r(k)}^{l(1)} - C_{i(k)}^{r(1)} C_{r(j)}^{l(1)}, \end{split}$$

where we used the equality

$$P_{(1)j(k)}^{(r) (1)} \stackrel{def}{=} \frac{\partial N_{(1)j}^{(r)}}{\partial y_1^k} - L_{jk}^r = 0.$$

4. Gravitational-like geometrical model associated to the (T, x)-conformal deformation of the Berwald-Moór metric

The (t, x)-conformal deformed Berwald-Moór metric (1) produces on the 1-jet space $J^1(\mathbb{R}, M^n)$ the adapted metrical d-tensor (sum by *i* and *j*)

$$\mathbf{G} = h_{11}dt \otimes dt + \overset{*}{g}_{ij}dx^{i} \otimes dx^{j} + h^{11}\overset{*}{g}_{ij}\delta y_{1}^{i} \otimes \delta y_{1}^{j}, \tag{11}$$

where $\overset{*}{g}_{ij}$ is given by (3), and we have

$$\delta y_1^i = dy_1^i - \kappa_{11}^1 y_1^i dt + n\sigma_i y_1^i dx^i$$
 (no sum by *i*).

From an abstract physical point of view, the metrical d-tensor (11) may be regarded as a "non-isotropic gravitational potential". In our geometric-physical approach, one postulates that the non-isotropic gravitational potential \mathbf{G} is governed by the following geometrical Einstein-like equations:

$$\operatorname{Ric} (C\Gamma)^{*} - \frac{\operatorname{Sc} (C\Gamma)^{*}}{2} \mathbf{G} = \mathcal{KT}, \qquad (12)$$

where

- Ric $(C\Gamma)$ is the *Ricci d-tensor* associated to the Cartan canonical linear connection (9);
- Sc $(C\Gamma)$ is the scalar curvature;
- \mathcal{K} is the *Einstein constant* and \mathcal{T} is the intrinsic *non-isotropic stress-energy d-tensor of matter*.

Therefore, using the adapted basis of vector fields (7), we can locally describe the global geometrical Einstein-like equations (12). Consequently, some direct computations lead to:

Lemma 6. The Ricci tensor of the Cartan canonical connection $C\Gamma$ of the (t, x)conformal deformed Berwald-Moór metric (1) has the following two effective local
Ricci d-tensors (no sum by i, j, k or l):

$$R_{ij} = \begin{cases} -\sigma_{ij} - \sum_{\substack{m=1\\m \neq j}}^{n} \sigma_{jm} \frac{y_1^m}{y_1^i}, & i \neq j \\ 0, & i = j, \end{cases}$$

$$S_{(i)(j)}^{(1)(1)} = \left[\frac{2}{n^2} - \frac{1}{n} + \left(1 - \frac{2}{n}\right)\delta_{ij}\right] \cdot \frac{1}{y_1^i y_1^j}.$$
(13)

Proof. Generally, the Ricci tensor of the Cartan canonical connection $C\Gamma$ produced by an arbitrary jet Lagrangian function is determined by *six* effective local Ricci d-tensors (for more details, see [4]). For our particular Cartan canonical connection (9) these reduce only to the following *two* (the other four are zero):

$$\begin{aligned} R_{ij} &\stackrel{def}{=} & R^m_{ijm} = \frac{\partial L^m_{ij}}{\partial x^m} - \frac{\partial L^m_{im}}{\partial x^j} + L^r_{ij}L^m_{rm} - L^r_{im}L^m_{rj} + C^{m(1)}_{i(r)}R^{(r)}_{(1)jm}, \\ S^{(1)(1)}_{(i)(j)} &\stackrel{def}{=} & S^{m(1)(1)}_{i(j)(m)} = \frac{\partial C^{m(1)}_{i(j)}}{\partial y^m_1} - \frac{\partial C^{m(1)}_{i(m)}}{\partial y^j_1} + C^{r(1)}_{i(j)}C^{m(1)}_{r(m)} - C^{r(1)}_{i(m)}C^{m(1)}_{r(j)} = \\ &= & \frac{\partial C^{m(1)}_{i(j)}}{\partial y^m_1} - C^{r(1)}_{i(m)}C^{m(1)}_{r(j)}, \end{aligned}$$

with sum by r and m.

Lemma 7. The scalar curvature of the Cartan canonical connection $C\Gamma$ of the (t, x)conformal deformed Berwald-Moór metric (1) has the value

Sc
$$(C\Gamma)^* = -e^{-2\sigma}G_{1[n]}^{-2/n} \left[4nY_{11} + \left(n^2 - 3n + 2\right)h_{11}\right],$$

where

$$Y_{11} = \sum_{\substack{p,q=1\\p < q}}^{n} \sigma_{pq} y_1^p y_1^q.$$

Proof. The scalar curvature of the Cartan canonical connection (9) is given by the formula (for more details, see [4]): Sc $(C\Gamma)^* = g^{pq}R_{pq} + h_{11}g^{pq}S^{(1)(1)}_{(p)(q)}$.

The local description in the adapted basis of vector fields (7) of the global geometrical Einstein-like equations (12) is given by (for more details, see [4]): **Proposition 8.** The geometrical Einstein-like equations of the (t, x)-conformal deformed Berwald-Moór metric (1) are locally described by

$$\begin{pmatrix}
e^{-2\sigma}G_{1[n]}^{-2/n} \left[2nY_{11} + \frac{n^2 - 3n + 2}{2}h_{11} \right] h_{11} = \mathcal{KT}_{11} \\
R_{ij} + e^{-2\sigma}G_{1[n]}^{-2/n} \left[2nY_{11} + \frac{n^2 - 3n + 2}{2}h_{11} \right]_{ij}^* = \mathcal{KT}_{ij} \\
S_{(i)(j)}^{(1)(1)} + e^{-2\sigma}G_{1[n]}^{-2/n} \left[2nY_{11} + \frac{n^2 - 3n + 2}{2}h_{11} \right] h_{11}^{11}g_{ij}^* = \mathcal{KT}_{(i)(j)}^{(1)(1)} \\
0 = \mathcal{T}_{1i}, \quad 0 = \mathcal{T}_{i1}, \quad 0 = \mathcal{T}_{(i)1}^{(1)} \\
0 = \mathcal{T}_{1(i)}^{(1)}, \quad 0 = \mathcal{T}_{i(j)}^{(1)}, \quad 0 = \mathcal{T}_{(i)j}^{(1)}.
\end{cases}$$
(14)

Corollary 9. The non-isotropic stress-energy d-tensor of matter T satisfies the following geometrical conservation laws (sum by m):

$$\begin{cases} \mathcal{T}_{1/1}^{1} + \mathcal{T}_{1|m}^{m} + \mathcal{T}_{(1)1}^{(m)}|_{(m)}^{(1)} = 0 \\ \mathcal{T}_{i/1}^{1} + \mathcal{T}_{i|m}^{m} + \mathcal{T}_{(1)i}^{(m)}|_{(m)}^{(1)} = E_{i|m}^{m} \\ \mathcal{T}_{(i)/1}^{1(1)} + \mathcal{T}_{(i)|m}^{m(1)} + \mathcal{T}_{(1)(i)}^{(m)(1)}|_{(m)}^{(1)} = \frac{2e^{-2\sigma}G_{1[n]}^{-2/n}}{\mathcal{K}} \cdot \left[n\frac{\partial Y_{11}}{\partial y_{1}^{i}} - 2\frac{Y_{11}}{y_{1}^{i}}\right], \end{cases}$$

where (sum by r):

$$\begin{split} \mathcal{T}_{1}^{1} \stackrel{def}{=} h^{11} \mathcal{T}_{11} &= \mathcal{K}^{-1} e^{-2\sigma} G_{1[n]}^{-2/n} \left[2nY_{11} + \frac{n^{2} - 3n + 2}{2} h_{11} \right], \\ \mathcal{T}_{1}^{m} \stackrel{def}{=} g^{mr} \mathcal{T}_{r1} &= 0, \quad \mathcal{T}_{(1)1}^{(m)} \stackrel{def}{=} h_{11} g^{mr} \mathcal{T}_{(r)1}^{(1)} &= 0, \quad \mathcal{T}_{i}^{1} \stackrel{def}{=} h^{11} \mathcal{T}_{1i} &= 0, \\ \mathcal{T}_{i}^{m} \stackrel{def}{=} g^{mr} \mathcal{T}_{ri} &:= E_{i}^{m} &= \mathcal{K}^{-1} \left[g^{mr} R_{ri} + \right. \\ &+ e^{-2\sigma} G_{1[n]}^{-2/n} \left(2nY_{11} + \frac{n^{2} - 3n + 2}{2} h_{11} \right) \delta_{i}^{m} \right], \\ \mathcal{T}_{(1)i}^{(m)} \stackrel{def}{=} h_{11} g^{mr} \mathcal{T}_{(r)i}^{(1)} &= 0, \quad \mathcal{T}_{(i)}^{1(1)} \stackrel{def}{=} h^{11} \mathcal{T}_{1(i)}^{(1)} &= 0, \quad \mathcal{T}_{(i)}^{m(1)} \stackrel{def}{=} g^{mr} \mathcal{T}_{r(i)}^{(1)} &= 0, \\ \mathcal{T}_{(1)(i)}^{(m)(1)} \stackrel{def}{=} h_{11} g^{mr} \mathcal{T}_{(r)(i)}^{(1)(1)} &= \frac{e^{-2\sigma} G_{1[n]}^{-2/n}}{\mathcal{K}} \cdot \left[\frac{n-2}{n} h_{11} \frac{y_{1}^{m}}{y_{1}^{i}} + \right. \\ &+ \left(2nY_{11} + \frac{n^{2} - 5n + 6}{2} h_{11} \right) \delta_{i}^{m} \right], \end{split}$$

and we also have (summation by m and r, but no sum by i)

$$\begin{split} \mathcal{T}_{1/1}^{1} &= \frac{\delta \mathcal{T}_{1}^{1}}{\delta t}, \quad \mathcal{T}_{1|m}^{m} \stackrel{def}{=} \frac{\delta \mathcal{T}_{1}^{m}}{\delta x^{m}} + \mathcal{T}_{1}^{r} L_{rm}^{m}, \\ \mathcal{T}_{(1)1}^{(m)}|_{(m)}^{(1)} \stackrel{def}{=} \frac{\partial \mathcal{T}_{(1)1}^{(m)}}{\partial y_{1}^{m}} + \mathcal{T}_{(1)1}^{(r)} C_{r(m)}^{m(1)} = \frac{\partial \mathcal{T}_{(1)1}^{(m)}}{\partial y_{1}^{m}}, \\ \mathcal{T}_{i/1}^{1} \stackrel{def}{=} \frac{\delta \mathcal{T}_{i}^{1}}{\delta t} + \mathcal{T}_{i}^{1} \kappa_{11}^{1} - \mathcal{T}_{r}^{1} G_{i1}^{r} = \frac{\delta \mathcal{T}_{i}^{1}}{\delta t} + \mathcal{T}_{i}^{1} \kappa_{11}^{1}, \end{split}$$

$$\begin{split} \mathcal{T}_{i|m}^{m} &\stackrel{def}{=} \frac{\delta \mathcal{T}_{i}^{m}}{\delta x^{m}} + \mathcal{T}_{i}^{r} L_{rm}^{m} - \mathcal{T}_{r}^{m} L_{im}^{r} = E_{i|m}^{m} := \frac{\delta E_{i}^{m}}{\delta x^{m}} + n E_{i}^{m} \sigma_{m} - n E_{i}^{i} \sigma_{i}, \\ \mathcal{T}_{(1)i}^{(m)}|_{(m)}^{(1)} &\stackrel{def}{=} \frac{\partial \mathcal{T}_{(1)i}^{(m)}}{\partial y_{1}^{m}} + \mathcal{T}_{(1)i}^{(r)} C_{r(m)}^{m(1)} - \mathcal{T}_{(1)r}^{(m)} C_{i(m)}^{r(1)} = \frac{\partial \mathcal{T}_{(1)i}^{(m)}}{\partial y_{1}^{m}} - \mathcal{T}_{(1)r}^{(m)} C_{i(m)}^{r(1)}, \\ \mathcal{T}_{(i)/1}^{1(1)} &\stackrel{def}{=} \frac{\delta \mathcal{T}_{(i)}^{1(1)}}{\delta t} + 2 \mathcal{T}_{(i)}^{1(1)} \mathbf{K}_{11}^{1}, \quad \mathcal{T}_{(i)|m}^{m(1)} \stackrel{def}{=} \frac{\delta \mathcal{T}_{(i)}^{m(1)}}{\delta x^{m}} + \mathcal{T}_{(i)}^{r(1)} L_{rm}^{m} - \mathcal{T}_{(r)}^{m(1)} L_{im}^{r}, \\ \mathcal{T}_{(1)(i)}^{(m)(1)}|_{(m)}^{(1)} \stackrel{def}{=} \frac{\partial \mathcal{T}_{(1)(i)}^{(m)(1)}}{\partial y_{1}^{m}} + \mathcal{T}_{(1)(i)}^{(r)} C_{r(m)}^{m(1)} - \mathcal{T}_{(1)(r)}^{(m)(1)} C_{i(m)}^{r(1)} = \frac{\partial \mathcal{T}_{(1)(i)}^{(m)(1)}}{\partial y_{1}^{m}}. \end{split}$$

Proof. The local Einstein-like equations (14), together with some direct computations, lead us to what we were looking for. Also note that we have (summation by m and r)

$$\mathcal{T}_{(1)(r)}^{(m)(1)} C_{i(m)}^{r(1)} = 0.$$

5. Electromagnetic-like geometrical model associated to the (T,x)-conformal deformation of the Berwald-Moór metric

In book [4], a geometrical theory for electromagnetism was also created, using only a given Lagrangian function L on the 1-jet space $J^1(\mathbb{R}, M^n)$. In the background of the jet single-time (one-parameter) Lagrange geometry from [4], one works with the non-isotropic electromagnetic distinguished 2-form (sum by i and j)

$$\mathbf{F} = F_{(i)j}^{(1)} \delta y_1^i \wedge dx^j,$$

where (sum by m and r)

$$F_{(i)j}^{(1)} = \frac{h^{11}}{2} \left[{}^*_{g_{jm}} N_{(1)i}^{(m)} - {}^*_{g_{im}} N_{(1)j}^{(m)} + \left({}^*_{g_{ir}} L_{jm}^r - {}^*_{g_{jr}} L_{im}^r \right) y_1^m \right].$$

This is characterized by some natural geometrical Maxwell-like equations (for more details, see [9] and [4]).

Remark 10. The Lagrangian function that governs the movement law of a particle of mass $m \neq 0$ and electric charge e, which is displaced concomitantly into an environment endowed both with a gravitational field and an electromagnetic one, is given by

$$L(t, x^{k}, y_{1}^{k}) = mch^{11}(t) \varphi_{ij}(x^{k}) y_{1}^{i}y_{1}^{j} + \frac{2e}{m}A_{(i)}^{(1)}(t, x^{k}) y_{1}^{i},$$
(15)

where

- the semi-Riemannian metric $\varphi_{ij}(x)$ represents the *isotropic gravitational potential*;
- $A_{(i)}^{(1)}(t,x)$ are the components of a d-tensor on the 1-jet space $J^1(\mathbb{R}, M^n)$ representing the *electromagnetic potential*.

Note that the jet Lagrangian function (15) is a natural extension of the Lagrangian (defined on the tangent bundle) used in electrodynamics by Miron and Anastasiei [9]. In our jet geometrical formalism applied to Lagrangian (15), the *electromagnetic-like components* become classical ones (see [4]):

$$F_{(i)j}^{(1)} = -\frac{e}{2m} \left(\frac{\partial A_{(i)}^{(1)}}{\partial x^j} - \frac{\partial A_{(j)}^{(1)}}{\partial x^i} \right).$$

Moreover, the second set of *geometrical Maxwell-like equations* reduce to the classical ones too (for more details, see [9], [4]):

$$\sum_{\{i,j,k\}} F_{(i)j|k}^{(1)} = 0,$$

where

$$F_{(i)j|k}^{(1)} = \frac{\partial F_{(i)j}^{(1)}}{\partial x^k} - F_{(m)j}^{(1)}\gamma_{ik}^m - F_{(i)m}^{(1)}\gamma_{jk}^m.$$

Also, the geometrical Einstein-like equations attached to the Lagrangian (15) (see [9], [4]) are the same with the famous classical ones (associated to the semi-Riemannian metric $\varphi_{ij}(x)$). In author's opinion, these facts suggest some kind of naturalness for the present abstract Lagrangian non-isotropic electromagnetic and gravitational geometrical theories.

Via some direct calculations, we easily deduce that the (t, x)-conformal deformed Berwald-Moór metric (1) produces null non-isotropic electromagnetic components:

$$F_{(i)j}^{(1)} = 0.$$

It follows that our conformal deformed Berwald-Moór geometrical electromagneticlike theory is trivial. This fact probably suggests that the (t, x)-conformal deformed Berwald-Moór geometrical structure (1) has rather gravitational connotations than electromagnetic ones.

As a conclusion, it is possible for the recent Voicu-Siparov approach of the electromagnetism in spaces with anisotropic metrics (that electromagnetic approach is different from the electromagnetic theory exposed above, and it is developed in the paper [18]) to give other interesting electromagnetic-geometrical results for spaces endowed with the Berwald-Moór geometrical structure.

Open problem. The author of this paper believes the finding of some possible real physical interpretations for the present non-isotropic Berwald-Moór geometrical approach of gravity and electromagnetism may be an open problem for physicists.

References

 G.S. Asanov, Finslerian Extension of General Relativity, Reidel, Dordrecht, 1984.
 G.S. Asanov, Jet extension of Finslerian gauge approach, Fortschritte der Physik, Vol. 38, No. 8, (1990), 571-610.

[3] V. Balan, Notable submanifolds in Berwald-Moór spaces, BSG Proceedings, No. 17, Geometry Balkan Press, Bucharest, (2010), 21-30.

[4] V. Balan, M. Neagu, Jet Single-Time Lagrange Geometry and Its Applications, John Wiley & Sons, Inc., Hoboken, New Jersey, 2011.

 [5] L. Berwald, Uber Finslersche und Cartansche Geometrie II, Compositio Math., Vol. 7, (1940), 141-176.

[6] G.I. Garas'ko, *Foundations of Finsler Geometry for Physicists* (in Russian), Tetru Eds, Moscow, 2009.

[7] G.I. Garas'ko, The extension of the conformal transformation concept (in Russian), Hypercomplex Numbers in Geometry and Physics 1 (3), Vol. 2, (2005), 16-25.
[8] M. Matsumoto, H. Shimada, On Finsler spaces with 1-form metric. II. Berwald-

Moór's metric $L = (y^1 y^2 ... y^n)^{\frac{1}{n}}$, Tensor N.S., No. **32**, (1978), 275-278.

[9] R. Miron, M. Anastasiei, *The Geometry of Lagrange Spaces: Theory and Applications*, Kluwer Academic Publishers, Dordrecht, 1994.

[10] A. Moór, Ergänzung zu meiner Arbeit: Uber die Dualität von Finslerschen und Cartanschen Räumen, Acta Math., Vol. **91**, (1954), 187-188.

[11] A. Moór, Uber die Dualität von Finslerschen und Cartanschen Räumen, Acta Math., Vol. 88, (1952), 347-370.

[12] M. Neagu, Jet Finslerian geometry for the x-dependent conformal deformation of the rheonomic Berwald-Moór metric of order three, Analele Universității de Vest din Timișoara, Seria Matematică - Informatică, Vol. **49**, No. **2**, (2011), 89-100.

[13] M. Neagu, Jet Finsler-like geometry for the x-dependent conformal deformation of a one-parameter family of Berwald-Moór metrics of order four, Bulletin of the Transilvania University of Braşov, Series III: Mathematics, Informatics, Physics, Vol. 4 (53), No. 2, (2011), 31-42.

[14] D.G. Pavlov, *Four-dimensional time*, Hypercomplex Numbers in Geometry and Physics 1 (1), Vol. 1, (2004), 31-39.

[15] D.G. Pavlov, *Generalization of the axioms of scalar product*, Hypercomplex Numbers in Geometry and Physics 1 (1), Vol. 1, (2004), 5-18.

[16] D.G. Pavlov, S.S. Kokarev, *Conformal gauges of the Berwald-Moór geometry* and their induced non-linear symmetries (in Russian), Hypercomplex Numbers in Geometry and Physics **2** (10), Vol. **5**, (2008), 3-14.

[17] P.K. Rashevsky, *Polymetric Geometry* (in Russian), In: "Proc. Sem. on Vector and Tensor Analysis and Applications in Geometry, Mechanics and Physics" (Ed. V.F. Kagan), Vol. 5, M-L, OGIZ, 1941.

[18] N. Voicu, S. Siparov, A new approach to electromagnetism in anisotropic spaces, BSG Proceedings, No. 17, Geometry Balkan Press, Bucharest, (2010), 250-260.

Mircea Neagu Department of Mathematics and Informatics University Transilvania of Braşov Blvd. Iuliu Maniu, No. 50, Braşov 500091, Romania email:*mircea.neagu@unitbv.ro*