SOME GLOBAL PROPERTIES OF $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$-MANIFOLDS

S.YADAV AND D.L.SUTHAR

ABSTRACT : In this paper, we examine the global properties of generalized Sasakian space forms and obtained some interesting results.
2000 Mathematical Subject Classification: 53C10, 53C15, 53C25

1. INTRODUCTION

The notions of weakly symmetric and weakly Ricci symmetric manifolds were introduced by L. Tamassy and T. Q. Binh in ([4], [5]). A non flat $(2 n+1)$ dimensional differentiable manifold $\left(M^{2 n+1}, g\right), n>2$, is called pseudo symmetric ([4], [5]) it there exists a 1 -form α on $M^{2 n+1}$ such that

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z, V) & =2 \alpha(X) R(Y, Z) V+\alpha(V) R(X, Z) V+\alpha(Z) R(Y, X) V \\
& +\alpha(V) R(Y, Z) X+g(R(Y, Z) V, X) A \tag{1}
\end{align*}
$$

where $X, Y, Z, V \in \chi\left(M^{2 n+1}\right)$ are vector fields and α is a 1 -form on $M^{2 n+1}$, $A \in \chi\left(M^{2 n+1}\right)$ is the vector field corresponding through g to the 1-form which is defined as $g(X, A)=\alpha(X)$.
A non flat $(2 n+1)$-dimensional differentiable manifold $\left(M^{2 n+1}, g\right), n>2$, is called weakly symmetric ([4], [5]), it there exists a 1 -forms α, β, ρ and γ on $M^{2 n+1}$ such that the condition

$$
\begin{align*}
\left(\nabla_{X} R\right)(Y, Z, V) & =\alpha(X) R(Y, Z) V+\beta(Y) R(X, Z) V+\gamma(Z) R(Y, X) V \\
& +\sigma(V) R(Y, Z) X+g(R(Y, Z) V, X) P \tag{2}
\end{align*}
$$

holds for all vector fields $X, Y, Z, V \in \chi\left(M^{2 n+1}\right)$. A weakly symmetric manifold $\left(M^{2 n+1}, g\right)$ is pseudo symmetric if $\beta=\gamma=\sigma=1 / 2^{\alpha}$ and $P=$ A,locally symmetric if $\alpha=\beta=\gamma=\sigma=0$. and a weakly symmetric manifold is said to be proper if at least one of the 1 -form α, β, γ and σ is not zero or $P \neq 0$.

A non flat $(2 n+1)$-dimensional differentiable manifold $\left(M^{2 n+1}, g\right), n>2$ is called weakly Ricci symmetric ([4], [5]), it there exists a 1-form ρ, μ and v such that the condition

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Z, V)=\rho(X) S(Y, Z)+\mu(Y) S(X, Z)+v(Z) S(X, Y) \tag{3}
\end{equation*}
$$

holds for all vector fields $X, Y, Z, V \in \chi\left(M^{2 n+1}\right)$, if $\rho=\mu=v$ then $\left(M^{2 n+1}\right)$ is called pseudo Ricci symmetric ([12]). If M is weakly symmetric, from (2), we have ([5]).

$$
\left(\nabla_{X} S\right)(Z, V)=\alpha(X) S(Z, V)+\beta(R(X, Z) V)+\gamma(Z) S(X, V)+\sigma(V) S(Z, X)
$$

$$
\begin{equation*}
+g(R(X, V, Z) \tag{4}
\end{equation*}
$$

In [5], Tamassy and et all studied weakly symmetric and weakly Ricci symmetric Einstein and Sasakian manifold. In ([14], [2], [9]) authors studied weakly symmetric and weakly Ricci symmetric K-contact, Lorentzian ParaSasakian and Lorentzian β-Kenmotsu manifolds respectively. The notion of special weakly Ricci symmetric manifold was introduced and studied by H. Sinh and Q. Khan ([3]). An n-dimensional Riemannian manifold is called a special weakly Ricci symmetric manifold if

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=2 \alpha(X) S(Y, Z)+\alpha(Y) S(X, Z)+\alpha(Z) S(X, Y) \tag{5}
\end{equation*}
$$

where α is a 1 -form and is defined by

$$
\begin{equation*}
\alpha(X)=g(X, \rho), \tag{6}
\end{equation*}
$$

where ρ is the associated vector field.

2. PRILIMANARIES

In [7], the author has defined a generalized Sasakian space forms as a contact metric manifolds ($M, \varphi, \zeta, \eta, g$) whose curvature tensor R is given by

$$
R=f_{1} R_{1}+f_{2} R_{2}+f_{3} R_{3},
$$

where f_{1}, f_{2}, f_{3} are some differentiable functions on M and

$$
R_{1}(X, Y) Z=g(Y, Z) X-g(X, Z) Y
$$

$$
\begin{gathered}
R_{2}(X, Y) Z=g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z, \\
R_{3}(X, Y) Z=\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \zeta-g(Y, Z) \eta(X) \zeta
\end{gathered}
$$

for any vector fields X, Y, Z on M. We denote it by $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$. In [7], the authors cited the several examples of such manifolds if $f_{1 .}=\frac{c+1}{4}, f_{2}=\frac{c-1}{4}$ and $f_{3}=\frac{c-1}{4}$, then generalized Sasakian space forms with Sasakian structure becomes Sasakian space forms A $(2 n+1)$-dimensional Riemannian manifold (M, g) is called an almost contact manifold if the following results hold ([7], [12]):

$$
\begin{gather*}
\varphi^{2}(X)=-X+\eta(X) \zeta, \varphi \zeta=0 \tag{7}\\
g(X, \zeta)=\eta(X), \eta(\zeta)=1, \eta(\varphi X)=0 \tag{8}\\
g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{9}\\
g(\varphi X, Y)=-g(X, \varphi Y), g(\varphi X, X)=0 \tag{10}\\
\left(\nabla_{X} \eta\right)(Y)=g\left(\nabla_{X} \zeta, Y\right) \tag{11}
\end{gather*}
$$

An almost contact metric manifold is called contact metric manifold if $d \eta(X, Y)=$ $\Phi(X, Y)=g(X, \varphi Y)$, where Φ is called the fundamental two-form of the manifold. If ζ is a killing vector field the manifold is called a K-contact manifold. It is well known that a contact metric manifold is K -contact if and only if $\nabla_{X} \zeta=-\varphi X$, for any vector field X on (M, g). An almost contact metric manifold is Sasakian if and only if $\left(\nabla_{X} \varphi\right)(Y)=g(X, Y) \zeta-\eta(Y) X$, for any vector fields X, Y. In 1967, D. E. Blair introduced the notion of quasi-Sasakian manifold to unify Sasakian and cosymplectic manifolds [4]. An almost contact metric manifold of dimension three is quasi-Sasakian if and only if

$$
\begin{equation*}
\nabla_{X} \zeta=-\beta \varphi X \tag{12}
\end{equation*}
$$

for all $X \in T M$ and a function β such that $\zeta \beta=0$. As the consequence of (12), we get

$$
\begin{gather*}
\left(\nabla_{X} \eta\right)(Y)=g\left(\nabla_{X} \zeta, Y\right)=-\beta g(\varphi X, Y) \tag{13}\\
\left(\nabla_{X} \eta\right)(\zeta)=-\beta g(\varphi X, \zeta)=0 \tag{14}
\end{gather*}
$$

Clearly such a quasi-Sasakian manifold is cosymplectic if and only if $\beta=$ 0 . It is known that [11] for a three-dimensional quasi-Sasakian manifold the Riemannian curvature tensor satisfies

$$
\begin{equation*}
R(X, Y) \zeta=\beta^{2}\{\eta(Y) X-\eta(X) Y\}+d \beta(Y) \varphi X-d \beta(X) \varphi Y \tag{15}
\end{equation*}
$$

For a(2n+1)-dimensional generalized Sasakian spaceforms we have

$$
\begin{gather*}
R(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
+f_{2}\{g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z\} \tag{16}\\
+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \zeta-g(Y, Z) \eta(X) \zeta\}, \\
R(X, Y) \zeta=\left(f_{1}-f_{3}\right)\{\eta(Y) X-\eta(X) Y\} \tag{17}\\
R(\zeta, X) Y=\left(f_{1}-f_{3}\right)\{g(X, Y) \zeta-\eta(Y) X\} \tag{18}\\
g(R(\zeta, X) Y, \zeta)=\left(f_{1}-f_{3}\right) g(\varphi X, \varphi Y) \tag{19}\\
R(\zeta, X) \zeta=\left(f_{1}-f_{3}\right) \varphi^{2} X \tag{20}\\
S(X, Y)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y)-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y) \tag{21}\\
S(X, \zeta)=2 n\left(f_{1}-f_{3}\right) \eta(X), \tag{22}\\
Q \zeta=2 n\left(f_{1}-f_{3}\right) \zeta \tag{23}\\
S(\varphi X, \varphi Y)=S(X, Y)+2 n\left(f_{3}-f_{1}\right) \eta(X) \eta(Y) \tag{24}
\end{gather*}
$$

here S is the Ricci tensor and r is the scalar curvature tensor of the space-form. It is known that an $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian space forms is conformally flat if and only if $f_{2}=0$ [13].

3. MAIN RESULTS

Theorem. 1 In a weakly symmetric generalized Sasakian space forms $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ the sum of 1 -forms α, γ and σ is zero everywhere.
Proof. Let $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ is a weakly symmetric generalized Sasakian space forms. Taking covariant differentiation of the Ricci tensor S with respect to X, we get

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Z, V)=\nabla_{X} S(Z, V)+S\left(\nabla_{X} Z, V\right)+S\left(Z, \nabla_{X} \cdot V\right) \tag{25}
\end{equation*}
$$

Taking $V=\zeta$ in (25) and using (22), we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Z, \zeta)=2 n \beta\left(f_{1}-f_{3}\right) g(\varphi X, Z)-2 n\left(f_{1}-f_{3}\right) \eta\left(\nabla_{X} Z\right)+\beta S(Z, \varphi X) \tag{26}
\end{equation*}
$$

On the other hand taking $V=\zeta$ in (4) and using (22), we obtained

$$
\left(\nabla_{X} S\right)(Z, \zeta)=2 n\left(f_{1}-f_{3}\right) \alpha(X) \eta(Z)+\beta(R(X, Z) \zeta)+\gamma(Z) S(X, \zeta)
$$

$$
\begin{equation*}
+\sigma(\zeta) S(Z, X)+g(R(X, \zeta, Z) \tag{27}
\end{equation*}
$$

In view of (26) and (27), we have

$$
\begin{align*}
& 2 n \beta\left(f_{1}-f_{3}\right) g(\varphi X, Z)-2 n\left(f_{1}-f_{3}\right) \eta\left(\nabla_{X} Z\right)+\beta S(Z, \varphi X)=2 n\left(f_{1}-f_{3}\right) \alpha(X) \eta(Z) \\
& +\beta(R(X, Z) \zeta)+\gamma(Z) S(X, \zeta)+\sigma(\zeta) S(Z, X)+g(R(X, \zeta, Z), \tag{28}
\end{align*}
$$

Now taking $X=Z=\zeta$ in (28) and (17), (18) and (22), we yields

$$
\begin{equation*}
2 n\left(f_{1}-f_{3}\right)[\alpha(\zeta)+\gamma(\zeta)+\sigma(\zeta)]=0 \tag{29}
\end{equation*}
$$

which implies that $2 n\left(f_{1}-f_{3}\right) \neq 0$, so we have

$$
\begin{equation*}
\alpha(\zeta)+\gamma(\zeta)+\sigma(\zeta)=0 \tag{30}
\end{equation*}
$$

Now we will show that $\alpha+\gamma+\sigma=0$ hold for all vector fields on $M^{2 n+1}$. Taking $Z=\zeta$ in (4), similar to previous calculations it follows that

$$
\begin{aligned}
& 0=2 n\left(f_{1}-f_{3}\right) \alpha(X) \eta(V)+\left(f_{1}-f_{3}\right)\{\eta(V) \beta(X)-g(X, V) \beta(\xi)\} \\
& +\gamma(\zeta) S(X, V)+2 n\left(f_{1}-f_{3}\right) \eta(X) \sigma(V)+\left(f_{1}-f_{3}\right)\{\eta(V) P(X)-\eta(X) P(V)\}
\end{aligned}
$$

$$
\begin{align*}
& 0=2 n\left(f_{1}-f_{3}\right) \alpha(X)+\left(f_{1}-f_{3}\right)\{\beta(X)-\eta(X) \beta(\zeta)\} \tag{31}\\
& +\gamma(\zeta) S(X, V)+2 n\left(f_{1}-f_{3}\right) \eta(X) \sigma(\zeta)+\left(f_{1}-f_{3}\right)\{P(X)-\eta(X) P(\zeta)\} \tag{32}
\end{align*}
$$

Replacing $V=\zeta$ in (31) and using (6), (8) and (22), we have
Now taking $X=\zeta$ in (31) we obtained

$$
\begin{align*}
& 0=2 n\left(f_{1}-f_{3}\right) \alpha(\zeta) \eta(V)+\left(f_{1}-f_{3}\right)\{\eta(V) \beta(\zeta)-\eta(V) \beta(\zeta)\} \\
& +\gamma(\zeta) 2 n\left(f_{1}-f_{3}\right) \eta(V)+2 n\left(f_{1}-f_{3}\right) \sigma(V)+\left(f_{1}-f_{3}\right)\{\eta(V) P(\zeta)-P(V)\} \tag{33}
\end{align*}
$$

Interchanging V with X in (33) and summing with (32), in view of (30), we get

$$
\begin{equation*}
0=2 n(f-f)[\alpha(X)+\sigma(X)+\eta(X) \gamma(\zeta)]+\left(f_{1}-f_{3}\right)(\beta(X)-\eta(X) \beta(\zeta)) \tag{34}
\end{equation*}
$$

Now putting $X=\zeta$ in (28), we have
$0=2 n\left(f_{1}-f_{3}\right) \alpha(\zeta) \eta(Z)-\beta(Z)+\eta(Z) \beta(\zeta)+2 n\left(f_{1}-f_{3}\right) \gamma(Z)+2 n\left(f_{1}-f_{3}\right) \eta(Z) \sigma(\zeta)$,

Replacing Z with X in (35) and taking summations with (34), we find

$$
\begin{equation*}
0=2 n\left(f_{1}-f_{3}\right)[\alpha(X)+\sigma(X)+\gamma(X)]+2 n(f-f)[\gamma(\zeta)+\sigma(\zeta)+\alpha(\zeta)] \tag{36}
\end{equation*}
$$

In view of (30) and (36), we get

$$
\alpha(X)+\gamma(X)+\sigma(X)=0, \forall X
$$

This proves the theorem 1.
Theorem 2. In a weakly Ricci symmetric generalized Sasakian space forms $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ the sum of 1 -forms ρ, μ and v is zero everywhere.
Proof. We suppose that $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ is a weakly Ricci symmetric generalized Sasakian space forms. Then putting $Z=\zeta$ in (3) and using (22), we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(\zeta, Y)=2 n\left(f_{1}-f_{3}\right)\{\eta(Y) \rho(X)+\eta(X) \mu(Y)\}+v(\zeta) S(X, Y) \tag{37}
\end{equation*}
$$

In view of (26) and (37), we get

$$
\begin{gather*}
2 n \beta\left(f_{1}-f_{3}\right) g(\varphi X, Y)+\beta S(Z, \varphi X) \\
=2 n\left(f_{1}-f_{3}\right)\{\eta(Y) \rho(X)+\eta(X) \mu(Y)\}+v(\zeta) S(X, Y), \tag{38}
\end{gather*}
$$

Taking $X=Y=\zeta$ in (38) and by use of (7) and (22), we yields

$$
\begin{equation*}
0=2 n\left(f_{1}-f_{3}\right)[\rho(\zeta)+\mu(\zeta)+v(\zeta)] \tag{39}
\end{equation*}
$$

This implies that $\left(2 n\left(f_{1}-f_{3}\right) \neq 0\right)$

$$
\begin{equation*}
\rho(\zeta)+\mu(\zeta)+v(\zeta)=0 \tag{40}
\end{equation*}
$$

Now putting $X=\zeta$ in (38), and by use of (7) and (22), we get

$$
\begin{equation*}
0=2 n\left(f_{1}-f_{3}\right) \eta(Y)\{\rho(\zeta)+v(\zeta)\}+2 n\left(f_{1}-f_{3}\right) \mu(Y) \tag{41}
\end{equation*}
$$

In view of (40), the equations(41) reduces $\mathrm{t} \mathrm{o}\left(2 n\left(f_{1}-f_{3}\right) \neq 0\right)$

$$
\begin{equation*}
\mu(Y)\}=\mu(\zeta) \eta(Y) \tag{42}
\end{equation*}
$$

Again putting $Y=\zeta$ in (38), and by virtue of (40), we also have

$$
\begin{equation*}
\rho(X)=\rho(\zeta) \eta(X) \tag{43}
\end{equation*}
$$

Since $\left(\nabla_{X} S\right)(\zeta, X)=0$, from (3), we obtain

$$
\begin{equation*}
\eta(X)[\rho(\zeta)+\mu(\zeta)]=-v(X) \tag{44}
\end{equation*}
$$

In view of (40) and (43), we get

$$
\begin{equation*}
v(X)=\eta(X) v(\zeta) \tag{45}
\end{equation*}
$$

Therefore replacing Y with X in (42) and by summation of (42), (43) and (44), we get

$$
\begin{equation*}
\rho(X)+\mu(X)+v(X)=\eta(X)[\rho(\zeta)+\mu(\zeta)+v(\zeta)], \tag{46}
\end{equation*}
$$

In view of (40), it follows that

$$
\rho(X)+\mu(X)+v(X)=0 .
$$

for all X, which implies that $\rho+\mu+v=0$ on $M^{2 n+1}$.
Theorem. 3 If a special weakly Ricci symmetric generalized Sasakian space forms $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ admits a cyclic Ricci tensor then 1-form α must vanishes.
Proof. Taking cyclic sum of (5), we have

$$
\begin{align*}
& \left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} \cdot S\right)(Z, X)+\left(\nabla_{Z} \cdot S\right)(X, Y) \\
= & 4[\alpha(X) S(Y, Z)+\alpha(Y) S(Z, X)+\alpha(Z) S(X, Y)] \tag{47}
\end{align*}
$$

We suppose that $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ admits a cyclic Ricci condition. Then (47) reduces to

$$
\begin{equation*}
0=4[\alpha(X) S(Y, Z)+\alpha(Y) S(Z, X)+\alpha(Z) S(X, Y)], \tag{48}
\end{equation*}
$$

Putting $Z=\zeta$ in (48) and using (22), we get

$$
\begin{equation*}
2 n\left(f_{1}-f_{3}\right)[\eta(Y) \alpha(X)+\eta(X) \alpha(Y)]+\alpha(\zeta) S(X, Y)=0 \tag{49}
\end{equation*}
$$

Again taking $Y=\zeta$ in (49) and using (22), we obtain

$$
\begin{equation*}
\alpha(X)=-2 \eta(X) \alpha(\zeta), \tag{50}
\end{equation*}
$$

Replacing $X=\zeta$ in (21) and by virtue of (15), we get

$$
\begin{equation*}
\alpha(X)=0, \tag{51}
\end{equation*}
$$

for all X . This proves the theorem 3.
Theorem 4. A special weakly Ricci symmetric generalized Sasakian space forms $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ can not be an Einstein manifold provided 1-form $\alpha \neq 0$. Proof. We know that for Einstein manifold, $\left(\nabla_{X} S\right)(Y, Z)=0$ and $S(Y, Z)=$ $k g(Y, Z)$. Then from (5) gives

$$
\begin{equation*}
0=2 \alpha(X) g(Y, Z)+\alpha(Y) g(X, Z)+\alpha(Z) g(Y, X), \tag{52}
\end{equation*}
$$

Replacing $Z=\zeta$ in (52) and using(6), we have

$$
\begin{equation*}
0=2 \alpha(X) \eta(Y)+\alpha(Y) \eta(X)+\eta(\rho) g(X, Y) \tag{53}
\end{equation*}
$$

Again replacing $X=\zeta$ in (53) and using (6), we get

$$
\begin{equation*}
3 \eta(\rho) \eta(Y)=\alpha(Y) \tag{54}
\end{equation*}
$$

Taking $X=\zeta$ (54), we have

$$
\begin{equation*}
\eta(\rho)=0, \tag{55}
\end{equation*}
$$

This implies that $\alpha(Y)=0$, for all Y . this proves the theorem 4.
Theorem 5.A special weakly Ricci symmetric generalized Sasakian space forms $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ is an Einstein manifold.
Proof. Finally taking $Z=\zeta$ in (5), we have

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \zeta)=4 n\left(f_{1}-f_{3}\right) \eta(Y) \alpha(X)+2 n\left(f_{1}-f_{3}\right) \eta(X) \alpha(Y)+\alpha(\zeta) S(X, Y) \tag{56}
\end{equation*}
$$

The left hand side can be written in the form

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, \zeta)=X S(Y, \zeta)-S\left(\nabla_{X} Y, \zeta\right)-S\left(Y, \nabla_{X} \zeta\right) \tag{57}
\end{equation*}
$$

In view of (22), (56) and (57), we get

$$
\begin{gather*}
4 n\left(f_{1}-f_{3}\right) \eta(Y) \alpha(X)+2 n\left(f_{1}-f_{3}\right) \eta(X) \alpha(Y)+\alpha(\xi) S(X, Y) \\
=-2 n \beta\left(f_{1}-f_{3}\right) g(\phi X, Y)+\beta S(Y, \phi X) \tag{58}
\end{gather*}
$$

Taking $Y=\zeta$ in (58) and by use of (6), (12) and (22), we get

$$
\begin{equation*}
\alpha(X)=0 . \tag{59}
\end{equation*}
$$

Using (59) in (5), we obtain $\left(\nabla_{X} S\right)(Y, Z)=0$, this proves the theorem 5.
Corollary: A special weakly Ricci symmetric generalized Sasakian space forms $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}$ is R.hormonic.

REFERENCES

[1] D. Narain and S. Yadav, Weakly symmetric and Weakly Ricci symmetric LP-Sasakian manifolds, African Journal of Mathematics \& Computer Sciences Research, 10(2011), 308-312.
[2] D.Narain, S.Yadav, D.L.Suthar and P.K.Dwivedi, On Weakly Symmetric and Special Weakly Ricci Symmetric Special Para-Sasakian Manifolds, Proc. of International conference. of wavelet Transform and its Application (2011), 235-242.
[3] H.Singh and Q.Khan, On special weakly symmetric Riemannian Manifolds, Publ. Debrecen, Hungary, 3(2001), 523-536.
[4] L.Tamassy and T.Q.Binh, On weakly symmetric and weakly projective symmetric Riemannian manifolds, Coll. Math. Soc. J. Bolyai, 56(1992), 663-670. [5] L.Tamassy and T.Q.Binh, On weakly symmetries of Einstein and Sasakian manifolds, Tensor, N.S., 53(1993), 140-148.
[6] M.C.Chaki, On pseudo Ricci symmetric manifolds, Bulgar. J. Phys. 6(1998), 526-531.
[7] P. Alegre, D. Blair and A.Carriago, On Generalized Sasakian-space-forms, Israel J. Math. 14(2004), 159-183.
[8] S.Yadav, D.L.Suthar and A.K Srivastava, Some Results on $M\left(f_{1}, f_{2}, f_{3}\right)_{2 n+1}-$ Manifolds, Int.Journal of Pure \& Applied Mathematics, 70(2011), 415-423.
[9] S.Yadav and P.K.Dwivedi, On Con harmonically and Special weakly Ricci symmetric Lorentzian β-Kenmotsu manifolds, International Journal of Mathematics Science \& Engineering Application, 5(2010), 89-96.
[10] S. Yadav, P.K. Dwivedi and D.L.Suthar, On $(L C S)_{2 n+1^{-}}$Manifolds Satisfying Certain Conditions on the Concircular Curvature Tensor, Thi Journal of Mathematics, 9(2011), 597-603.
[11] U.C.De and A.K.Sengupta, Note on three-dimensional quasi-Sasakian manifolds, Demonstratio Math. 3(2004), 655-660.
[12] U.C.De and A.Sarkar, Some results on Generalized Sasakian-Space-forms, Thi journal of Mathematics, 1(2010), 1-10.
[13] U.K.Kim, Conformally flat generalized Sasakian space form and locally symmetric generalized Sasakian-space-forms, Note. Math. (2006), 55-65.
[14] U.C.De, BinhTQ, A.A.Shaikh, On Weakly Symmetric and Weakly Ricci Symmetric K-Contact manifolds, Acta Mathematical Academia Paedagogicae, Nyigyhaziensis, 16(2000), 65-71.

Sunil Yadav
Department of Applied Science,
Alwar Institute of Engineering \& Technology, M.I.A., Alwar-301030, Rajasthan (INDIA)
Email:prof_sky16@yahoo.com.
D.L. Suthar

School of Basic and Applied Science,
Poormima University,
IS-2027-31, Ramchandarapura,Sitapura Extension Jaipur-303905, (Rajasthan)
Email:dd_suthar@yahoo.co.in

