NEW UNIVALENCE CONDITIONS FOR AN INTEGRAL OPERATOR OF THE CLASS S(P) AND T_2

Daniel Breaz and Nicoleta Breaz

ABSTRACT.In this paper we present a few conditions of univalence for the operator $F_{\alpha,\beta}$ on the classes of univalent functions S(p) and T_2 . These are actually generalizations(extensions) of certain results published in the papers [1] and [2].

2000 Mathematics subject classification: 30C45.

Keywords and phrases:Integral operator, univalent function, unit disk, analytic function.

1.Introduction

We present a few aspects related to the classes of functions, S(p) and T_2 . Let be the class of analytical functions, $A = \{f : f = z + a_2 z^2 + ...\}$, $z \in U$, where U is the unit disk, $U = \{z : |z| < 1\}$. We denote by S, the class of univalent functions on the unit disk.

Let p be a real number with the property 0 . We define the class <math>S(p) as the class of functions $f \in A$, which satisfy the conditions $f(z) \ne 0$ and $|(z/f(z))''| \le p, z \in U$. Also if $f \in S(p)$ then the following property is true

$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| \le p |z|^2, z \in U,$$

relation proved in [5].

We denote by T_2 the class of the univalent functions that satisfy the condition

$$\left|\frac{z^{2}f^{\prime}\left(z\right)}{f^{2}\left(z\right)}-1\right|<1,z\in U,$$

and also have the property f''(0) = 0.

These functions have the form $f = z + a_3 z^3 + a_4 z^4 + \dots$ For $0 < \mu < 1$ we have a subclass of functions denoted by $T_{\mu,2}$, containing the functions $f \in T_2$ that satisfy the property

$$\left| \frac{z^2 f'(z)}{f^2(z)} - 1 \right| < \mu < 1, z \in U.$$

Next we present some well known results related to these classes, results on which we shall rely in this paper.

THE SCHWARTZ LEMMA. Let the analytic function g be a regular function on the unit disk U and g(0) = 0. If $|g(z)| \le 1, \forall z \in U$, then

$$|g(z)| \le |z|, \forall z \in U \tag{1}$$

and equality holds if and only if $g(z) = \varepsilon z$, where $|\varepsilon| = 1$.

THEOREM 1.[3]. Let $\alpha \in \mathbb{C}$, Re $\alpha > 0$ and $f \in A$. If

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \forall z \in U$$
 (2)

then $\forall \beta \in \mathbb{C}, \operatorname{Re}\beta \geq \operatorname{Re}\alpha, \text{ the function}$

$$F_{\beta}(z) = \left[\beta \int_{0}^{z} t^{\beta - 1} f'(t) dt\right]^{1/\beta}$$
(3)

is univalent.

In his paper [4] Pescar proved the following result:

Theorem 2.Assume that $g \in A$ satisfies the condition $\left| \frac{z^2 g'(z)}{g^2(z)} - 1 \right| < 1, z \in U$, and α is a complex number with

$$|\alpha - 1| \le \frac{\operatorname{Re}\alpha}{3}.\tag{4}$$

If

$$|g(z)| \le 1, \forall z \in U \tag{5}$$

then the function

$$G_{\alpha}(z) = \left(\alpha \int_{0}^{z} g^{(\alpha-1)}(t) dt\right)^{\frac{1}{\alpha}}$$
(6)

is univalent.

2.MAIN RESULTS

Theorem 3. Let be $g_i \in T_2$, $g_i(z) = z + a_3^i z^3 + a_4^i z^4 + ..., \forall i = \overline{1, n}, n \in N^*$, which satisfy the properties

$$\left| \frac{z^2 g_i'(z)}{g_i^2(z)} - 1 \right| < 1, \forall z \in U, \forall i = \overline{1, n}.$$
 (7)

If $|g_i(z)| \leq 1$, $\forall z \in U$, $\forall i = \overline{1,n}$, then for any complex number α , satisfying the properties

$$\operatorname{Re}\alpha > 0$$
, $\operatorname{Re}(n(\alpha - 1) + 1) \ge \operatorname{Re}\alpha$, and $|\alpha - 1| \le \frac{\operatorname{Re}\alpha}{3n}$. (8)

the function

$$F_{\alpha,n}(z) = \left((n(\alpha - 1) + 1) \int_{0}^{z} g_{1}^{\alpha - 1}(t) \dots g_{n}^{\alpha - 1}(t) dt \right)^{\frac{1}{n(\alpha - 1) + 1}}$$
(9)

is univalent.

Proof. From (9), $F_{\alpha,n}$ can be written as

$$F_{\alpha,n}(z) = \left(\left(n\left(\alpha - 1\right) + 1 \right) \int_{0}^{z} t^{n(\alpha - 1)} \left(\frac{g_1(t)}{t} \right)^{\alpha - 1} \dots \left(\frac{g_n(t)}{t} \right)^{\alpha - 1} dt \right)^{\frac{1}{n(\alpha - 1) + 1}}.$$

$$(10)$$

Let us consider the function

$$f(z) = \int_{0}^{z} \left(\frac{g_1(t)}{t}\right)^{\alpha - 1} \dots \left(\frac{g_n(t)}{t}\right)^{\alpha - 1} dt.$$
 (11)

The function f is regular in U, and from (11) we obtain

$$f'(z) = \left(\frac{g_1(z)}{z}\right)^{\alpha - 1} \dots \left(\frac{g_n(z)}{z}\right)^{\alpha - 1} \tag{12}$$

and

$$f''(z) = E_1 f'(z) \frac{z}{g_1(z)} + \dots + E_n f'(z) \frac{z}{g_1(z)}$$
 (13)

where, $E_k = (\alpha - 1) \frac{zg'_k(z) - g_k(z)}{z^2}, \forall k = \overline{1, n}$. Next we calculate the expression $\frac{zf''}{f'}$.

$$\frac{zf''(z)}{f'(z)} = (\alpha - 1)\frac{zg_1'(z) - 1}{g_1(z)} + \dots + (\alpha - 1)\frac{zg_n'(z) - 1}{g_n(z)}.$$
 (14)

Then the expression

$$\left| \frac{zf''}{f'} \right| \tag{15}$$

can be evaluated as

$$\left| \frac{zf''(z)}{f'(z)} \right| = \left| \alpha - 1 \right| \left| \frac{zg_1'(z) - 1}{g_1(z)} \right| + \dots + \left| \alpha - 1 \right| \left| \frac{zg_n'(z) - 1}{g_n(z)} \right|. \tag{16}$$

By multiplying the first and the last term of (16) with $\frac{1-|z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} > 0$, we obtain

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le AB_1 + \dots + AB_n \le AC_1 + \dots + AC_n. \tag{17}$$

where

$$A = \frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} |\alpha - 1|,$$

$$B_k = \left(\left| \frac{zg_k'(z)}{g_k(z)} \right| + 1 \right)$$

and

$$C_k = \left(\left| \frac{z^2 g_k'(z)}{g_k^2(z)} \right| \frac{|g_k(z)|}{|z|} + 1 \right) \forall k = \overline{1, n}.$$

By applying the Schwartz Lemma and using (17), we obtain

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le AD_1 + \dots + AD_n, \tag{18}$$

where $D_k = \left(\left| \frac{z^2 g_k'(z)}{g_k^2(z)} - 1 \right| + 2 \right) \forall k = \overline{1, n}$.

Since $g_i \in T_2$, we have $\left| \frac{z^2 g_i'(z)}{g_i^2(z)} - 1 \right| < 1$, $\forall i = \overline{1, n}$. Further, from (18), we obtain:

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 3nA \le \frac{3n|\alpha - 1|}{\operatorname{Re}\alpha}.$$
 (19)

But $|\alpha - 1| \leq \frac{\operatorname{Re} \alpha}{3n}$ and from (19), we obtain that

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zf''(z)}{f'(z)} \right| \le 1, \tag{20}$$

for all $z \in U$. According to the Theorem 1 the function $F_{\alpha,n}$ is in the class S.

Theorem 4. Let $g_i \in T_{2,\mu}$, $g_i(z) = z + a_3^i z^3 + a_4^i z^4 + ..., \forall i = \overline{1,n}, n \in N^*, \alpha \in \mathbb{C}, \text{Re}\alpha > 0$ so that

$$|\alpha - 1| \le \frac{\operatorname{Re}\alpha}{n(\mu + 2)}, \operatorname{Re}(n(\alpha - 1) + 1) \ge \operatorname{Re}\alpha.$$
 (21)

If $|g_i(z)| \le 1, \forall z \in U, i = \overline{1, n}$ then we have

$$F_{\alpha,n}(z) = \left((n(\alpha - 1) + 1) \int_{0}^{z} g_{1}^{\alpha - 1}(t) \dots g_{n}^{\alpha - 1}(t) dt \right)^{\frac{1}{n(\alpha - 1) + 1}} \in S. \quad (22)$$

Proof. Considering the same steps as in the above proof we obtain:

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{\left(1 - |z|^{2\operatorname{Re}\alpha}\right)}{\operatorname{Re}\alpha} |\alpha - 1| \sum_{i=1}^{n} \left(\left| \frac{z^{2}g'_{i}(z)}{g_{i}^{2}(z)} - 1 \right| + 2 \right).$$
(23)

But $f \in T_{2,\mu}$, which implies that $\left| \frac{z^2 g'(z)}{g^2(z)} - 1 \right| < \mu, \forall z \in U$. In these conditions we obtain:

$$\frac{1 - \left| z \right|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \le |\alpha - 1| \frac{n(\mu + 2)}{\operatorname{Re}\alpha}, \forall z \in U.$$
 (24)

By applying the relation (21) we obtain that $\frac{1-|z|^{2\text{Re}\gamma}}{\text{Re}\gamma}\left|\frac{zh''(z)}{h'(z)}\right| \leq 1, \forall z \in U$. So according to the Theorem 1 the function $F_{\alpha,\beta}$ is univalent.

THEOREM 5. Let $g_i \in S(p)$, $0 , <math>g_i(z) = z + a_3^i z^3 + a_4^i z^4 + ...$, $\forall i = \overline{1, n}, n \in N^*$, $\alpha \in \mathbf{C}$, $\operatorname{Re}\alpha > 0$ so that

$$|\alpha - 1| \le \frac{\operatorname{Re}\alpha}{n(p+2)}, \operatorname{Re}(n(\alpha - 1) + 1) \ge \operatorname{Re}\alpha.$$
 (25)

If $|g_i(z)| \le 1, \forall z \in U, i = \overline{1, n}$ then we have

$$F_{\alpha,n}(z) = \left((n(\alpha - 1) + 1) \int_{0}^{z} g_{1}^{\alpha - 1}(t) \dots g_{n}^{\alpha - 1}(t) dt \right)^{\frac{1}{n(\alpha - 1) + 1}} \in S. \quad (26)$$

Proof. Considering the same steps as in the above proof we obtain:

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{\left(1 - |z|^{2\operatorname{Re}\alpha}\right) |\alpha - 1|}{|\alpha| \operatorname{Re}\alpha} \sum_{i=1}^{n} \left(\left| \frac{z^{2}g'_{i}(z)}{g_{i}^{2}(z)} - 1 \right| + 2 \right).$$
(27)

But $g_i \in S(p), i = \overline{1, n}$ so

$$\left| \frac{z^2 g_i'(z)}{g_i^2(z)} - 1 \right| \le p |z|^2, \forall z \in U.$$
 (28)

By applying (28) in (27), we obtain that:

$$\sum_{i=1}^{n} \left(\left| \frac{z^2 g_i'(z)}{g_i^2(z)} - 1 \right| + 2 \right) \le \sum_{i=1}^{n} \left(p |z|^2 + 2 \right) \le \sum_{i=1}^{n} \left(p + 2 \right) = n \left(p + 2 \right). \tag{29}$$

In these conditions we obtain:

$$\frac{1 - |z|^{2\operatorname{Re}\alpha}}{\operatorname{Re}\alpha} \left| \frac{zh''(z)}{h'(z)} \right| \le \frac{|\alpha - 1| n (p+2)}{\operatorname{Re}\alpha}, \forall z \in U.$$
(30)

By applying the relation (25) we obtain that $\frac{1-|z|^{2\text{Re}\gamma}}{\text{Re}\gamma} \left| \frac{zh''(z)}{h'(z)} \right| \leq 1, \forall z \in U$. Thus, according to the Theorem 1, the function $F_{\alpha,n}$ is univalent.

References

- [1] Breaz, D.,Breaz, N. Univalence conditions for integral operators on $S(\alpha)$ -class, Libertas Mathematica, ARA, USA, ISSN 0278-5307, tomus XXIV, 2004, pag. 211-214.
- [2] Breaz, D., Breaz N., Operatori integrali pe clasa T_2 , Proceedings of the Sixth Annual Conference of the Romanian Society of Mathematical Sciences, Sibiu, ISBN 973-651-634-2, 2003, pag. 348-352.
- [3] Pascu, N.N., An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilow, Brasov, (1987), 43-48.

- [4] Pescar, V., New criteria for univalence of certain integral operators, Demonstratio Mathematica, vol. XXXIII, 1 (2000), 51-54.
- [5] Singh, V., On class of univalent functions, Internat. J. Math & Math. Sci. 23(2000), 12, 855-857.
- [6] Yang, D., Liu, J., On a class of univalent functions, Internat. J. Math &Math. Sci. 22(1999), 3, 605-610.

Authors:

Daniel Breaz
Department of Mathematics
"1 Decembrie 1918" University
Alba Iulia, Romania
E-mail: dbreaz@uab.ro

Nicoleta Breaz
Department of Mathematics
"1 Decembrie 1918" University
Alba Iulia, Romania
E-mail: nbreaz@uab.ro