SUBCLASSES OF CONVEX FUNCTIONS ASSOCIATED WITH SOME HYPERBOLA

Mugur Acu

Abstract

In this paper we define some subclasses of convex functions associated with some hyperbola by using a generalized Sălăgean operator and we give some properties regarding these classes.

2000 Mathematics Subject Classification: 30C45.
Key words and phrases: Convex functions, Libera-Pascu integral operator, Briot-Bouquet differential subordination, generalized Sălăgean operator

1. Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U, A=$ $\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}, \mathcal{H}_{u}(U)=\{f \in \mathcal{H}(U): f$ is univalent in $U\}$ and $S=\{f \in A: f$ is univalent in $U\}$.

Let D^{n} be the Sălăgean differential operator (see [12]) defined as:

$$
\begin{aligned}
& D^{n}: A \rightarrow A, \quad n \in \mathbf{N} \text { and } \quad D^{0} f(z)=f(z) \\
& D^{1} f(z)=D f(z)=z f^{\prime}(z), \quad D^{n} f(z)=D\left(D^{n-1} f(z)\right)
\end{aligned}
$$

Remark. If $f \in S, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, z \in U$ then $D^{n} f(z)=z+$ $\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}$.

We recall here the definition of the well - known class of convex functions

$$
C V=S^{c}=\left\{f \in A: \operatorname{Re}\left(\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1\right)>0, z \in U\right\}
$$

Let consider the Libera-Pascu integral operator $L_{a}: A \rightarrow A$ defined as:

$$
\begin{equation*}
f(z)=L_{a} F(z)=\frac{1+a}{z^{a}} \int_{0}^{z} F(t) \cdot t^{a-1} d t, \quad a \in \mathbf{C}, \quad \operatorname{Re} a \geq 0 \tag{1}
\end{equation*}
$$

Generalizations of the Libera-Pascu integral operator was studied by many mathematicians such are P.T. Mocanu in [8], E. Drăghici in [7] and D. Breaz in [6].

Definition 1.1. Let $n \in \mathbf{N}$ and $\lambda \geq 0$. We denote with D_{λ}^{n} the operator defined by

$$
\begin{gathered}
D_{\lambda}^{n}: A \rightarrow A \\
D_{\lambda}^{0} f(z)=f(z), D_{\lambda}^{1} f(z)=(1-\lambda) f(z)+\lambda z f(z)=D_{\lambda} f(z), \\
D_{\lambda}^{n} f(z)=D_{\lambda} D_{\lambda}^{n-1} f(z)
\end{gathered}
$$

REMARK 1.2. We observe that D_{λ}^{n} is a linear operator and for $f(z)=$ $z+\sum_{j=2}^{\infty} a_{j} z^{j}$ we have

$$
D_{\lambda}^{n} f(z)=z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{n} a_{j} z^{j}
$$

Also, it is easy to observe that if we consider $\lambda=1$ in the above definition we obtain the Sălăgean differential operator.

The next theorem is result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [9], [10], [11]).

Theorem 1.1. Let h convex in U and $\operatorname{Re}[\beta h(z)+\gamma]>0, z \in U$. If $p \in H(U)$ with $p(0)=h(0)$ and p satisfied the Briot-Bouquet differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z), \quad \text { then } p(z) \prec h(z) .
$$

In [4] is introduced the following operator:

Definition 1.2. Let $\beta, \lambda \in \mathbf{R}, \beta \geq 0, \lambda \geq 0$ and $f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$. We denote by D_{λ}^{β} the linear operator defined by

$$
\begin{gathered}
D_{\lambda}^{\beta}: A \rightarrow A \\
D_{\lambda}^{\beta} f(z)=z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta} a_{j} z^{j} .
\end{gathered}
$$

Remark 1.3. It is easy to observe that for $\beta=n \in \mathbf{N}$ we obtain the Al-Oboudi operator D_{λ}^{n} and for $\beta=n \in \mathbf{N}, \lambda=1$ we obtain the Sălăgean operator D^{n}.

The purpose of this note is to define some subclasses of convex functions associated with some hyperbola by using the operator D_{λ}^{β} defined above and to obtain some properties regarding these classes.

2. Preliminary Results

Definition 2.1. [1] A function $f \in A$ is said to be in the class $C V H(\alpha)$ if it satisfies

$$
\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}-2 \alpha(\sqrt{2}-1)+1\right|<\operatorname{Re}\left\{\sqrt{2} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right\}+2 \alpha(\sqrt{2}-1)+\sqrt{2}
$$

for some $\alpha(\alpha>0)$ and for all $z \in U$.
Remark 2.1. Geometric interpretation: Let

$$
\Omega(\alpha)=\left\{w=u+i \cdot v: v^{2}<4 \alpha u+u^{2}, u>0\right\} .
$$

Note that $\Omega(\alpha)$ is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin. Whit this notations we have $f(z) \in C V H(\alpha)$ if and only if $\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}+1$ take all values in the convex domain $\Omega(\alpha)$ contained in the right half-plane.

Definition 2.2. [2] Let $f \in A$ and $\alpha>0$. We say that the function f is in the class $C V H_{n}(\alpha), n \in \mathbf{N}$, if

$$
\left|\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-2 \alpha(\sqrt{2}-1)\right|<\operatorname{Re}\left\{\sqrt{2} \frac{D^{n+2} f(z)}{D^{n+1} f(z)}\right\}+2 \alpha(\sqrt{2}-1), z \in U
$$

Remark 2.2. Geometric interpretation: If we denote with p_{α} the analytic and univalent functions with the properties $p_{\alpha}(0)=1, p_{\alpha}^{\prime}(0)>0$ and $p_{\alpha}(U)=\Omega(\alpha)$ (see Remark 2.1), then $f \in C V H_{n}(\alpha)$ if and only if $\frac{D^{n+2} f(z)}{D^{n+1} f(z)} \prec p_{\alpha}(z)$, where the symbol \prec denotes the subordination in U. We have $p_{\alpha}(z)=(1+2 \alpha) \sqrt{\frac{1+b z}{1-z}}-2 \alpha, b=b(\alpha)=\frac{1+4 \alpha-4 \alpha^{2}}{(1+2 \alpha)^{2}}$ and the branch of the square root \sqrt{w} is chosen so that $\operatorname{Im} \sqrt{w} \geq 0$. If we consider $p_{\alpha}(z)=1+C_{1} z+\ldots$, we have $C_{1}=\frac{1+4 \alpha}{1+2 \alpha}$.

Theorem 2.1. [2] If $F(z) \in C V H_{n}(\alpha), \alpha>0, n \in \mathbf{N}$, and $f(z)=$ $L_{a} F(z)$, where L_{a} is the integral operator defined by (1), then $f(z) \in C V H_{n}(\alpha)$, $\alpha>0, n \in \mathbf{N}$.

Theorem 2.2. [2] Let $n \in \mathbf{N}$ and $\alpha>0$. If $f \in C V H_{n+1}(\alpha)$ then $f \in C V H_{n}(\alpha)$.

3. Main Results

Definition 3.1. Let $\beta \geq 0, \lambda \geq 0, \alpha>0$ and $p_{\alpha}(z)=(1+2 \alpha) \sqrt{\frac{1+b z}{1-z}}-2 \alpha$, where $b=b(\alpha)=\frac{1+4 \alpha-4 \alpha^{2}}{(1+2 \alpha)^{2}}$ and the branch of the square root \sqrt{w} is chosen so that $\operatorname{Im} \sqrt{w} \geq 0$. We say that a function $f(z) \in S$ is in the class $C V H_{\beta, \lambda}(\alpha)$ if

$$
\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)} \prec p_{\alpha}(z), z \in U
$$

Remark 3.1. Geometric interpretation: $f(z) \in C V H_{\beta, \lambda}(\alpha)$ if and only if $\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}$ take all values in the domain $\Omega(\alpha)$ which is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin (see Remark 2.1 and Remark 2.2).

Remark 3.2. We observe that this class generalize the class $C V H_{n}(\alpha)$ studied in [2] and the class $C V H(\alpha)$ studied in [1].

Theorem 3.1. Let $\beta \geq 0, \alpha>0$ and $\lambda>0$. We have

$$
C V H_{\beta+1, \lambda}(\alpha) \subset C V H_{\beta, \lambda}(\alpha) .
$$

Proof. Let $f(z) \in C V H_{\beta+1, \lambda}(\alpha)$.
With notation

$$
p(z)=\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}, p(0)=1,
$$

we obtain

$$
\begin{equation*}
\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+2} f(z)}=\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)} \cdot \frac{D_{\lambda}^{\beta+1} f(z)}{D_{\lambda}^{\beta+2} f(z)}=\frac{1}{p(z)} \cdot \frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)} \tag{2}
\end{equation*}
$$

Also, we have

$$
\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)}=\frac{z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+3} a_{j} z^{j}}{z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+1} a_{j} z^{j}}
$$

and

$$
\begin{aligned}
& z p^{\prime}(z)=\frac{z\left(D_{\lambda}^{\beta+2} f(z)\right)^{\prime}}{D_{\lambda}^{\beta+1} f(z)}-\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)} \cdot \frac{z\left(D_{\lambda}^{\beta+1} f(z)\right)^{\prime}}{D_{\lambda}^{\beta+1} f(z)}= \\
&=\frac{z\left(1+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+2} j a_{j} z^{j-1}\right)}{D_{\lambda}^{\beta+1} f(z)}- \\
&-p(z) \cdot \frac{z\left(1+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+1} j a_{j} z^{j-1}\right)}{D_{\lambda}^{\beta+1} f(z)}
\end{aligned}
$$

or
$z p^{\prime}(z)=\frac{z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}}{D_{\lambda}^{\beta+1} f(z)}-p(z) \cdot \frac{z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{\beta+1} a_{j} z^{j}}{D_{\lambda}^{\beta+1} f(z)}$.
We have
$z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}=z+\sum_{j=2}^{\infty}((j-1)+1)(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}=$

$$
\begin{gathered}
=z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}+\sum_{j=2}^{\infty}(j-1)(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}= \\
=z+D_{\lambda}^{\beta+2} f(z)-z+\sum_{j=2}^{\infty}(j-1)(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}= \\
=D_{\lambda}^{\beta+2} f(z)+\frac{1}{\lambda} \sum_{j=2}^{\infty}((j-1) \lambda)(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}= \\
=D_{\lambda}^{\beta+2} f(z)+\frac{1}{\lambda} \sum_{j=2}^{\infty}(1+(j-1) \lambda-1)(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}= \\
=D_{\lambda}^{\beta+2} f(z)-\frac{1}{\lambda} \sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}+\frac{1}{\lambda} \sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+3} a_{j} z^{j}= \\
=D_{\lambda}^{\beta+2} f(z)-\frac{1}{\lambda}\left(D_{\lambda}^{\beta+2} f(z)-z\right)+\frac{1}{\lambda}\left(D_{\lambda}^{\beta+3} f(z)-z\right)= \\
=D_{\lambda}^{\beta+2} f(z)-\frac{1}{\lambda} D_{\lambda}^{\beta+2} f(z)+\frac{z}{\lambda}+\frac{1}{\lambda} D_{\lambda}^{\beta+3} f(z)-\frac{z}{\lambda}= \\
=\frac{\lambda-1}{\lambda} D_{\lambda}^{\beta+2} f(z)+\frac{1}{\lambda} D_{\lambda}^{\beta+3} f(z)= \\
=\frac{1}{\lambda}\left((\lambda-1) D_{\lambda}^{\beta+2} f(z)+D_{\lambda}^{\beta+3} f(z)\right) .
\end{gathered}
$$

Similarly we have

$$
z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{\beta+1} a_{j} z^{j}=\frac{1}{\lambda}\left((\lambda-1) D_{\lambda}^{\beta+1} f(z)+D_{\lambda}^{\beta+2} f(z)\right) .
$$

From (3) we obtain

$$
\begin{gathered}
z p^{\prime}(z)=\frac{1}{\lambda}\left(\frac{(\lambda-1) D_{\lambda}^{\beta+2} f(z)+D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)}-p(z) \frac{(\lambda-1) D_{\lambda}^{\beta+1} f(z)+D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}\right)= \\
=\frac{1}{\lambda}\left((\lambda-1) p(z)+\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)}-p(z)((\lambda-1)+p(z))\right)= \\
=\frac{1}{\lambda}\left(\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)}-p(z)^{2}\right)
\end{gathered}
$$

Thus

$$
\lambda z p^{\prime}(z)=\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)}-p(z)^{2}
$$

or

$$
\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+1} f(z)}=p(z)^{2}+\lambda z p^{\prime}(z)
$$

From (2) we obtain

$$
\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+2} f(z)}=\frac{1}{p(z)}\left(p(z)^{2}+\lambda z p^{\prime}(z)\right)=p(z)+\lambda \frac{z p^{\prime}(z)}{p(z)}
$$

where $\lambda>0$.
From $f(z) \in C V H_{\beta+2, \lambda}(\alpha)$ we have

$$
p(z)+\lambda \frac{z p^{\prime}(z)}{p(z)} \prec p_{\alpha}(z)
$$

with $p(0)=p_{\alpha}(0)=1, \alpha>0, \beta \geq 0, \lambda>0$, and $\operatorname{Re} p_{\alpha}(z)>0$ from here construction. In this conditions from Theorem 1.1, we obtain

$$
p(z) \prec p_{\alpha}(z)
$$

or

$$
\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)} \prec p_{\alpha}(z)
$$

This means $f(z) \in C V H_{\beta, \lambda}(\alpha)$.
Theorem 3.2. Let $\beta \geq 0, \alpha>0$ and $\lambda \geq 1$. If $F(z) \in C V H_{\beta, \lambda}(\alpha)$ then $f(z)=L_{a} F(z) \in C V H_{\beta, \lambda}(\alpha)$, where L_{a} is the Libera-Pascu integral operator defined by (1).
Proof. From (1) we have

$$
(1+a) F(z)=a f(z)+z f^{\prime}(z)
$$

and, by using the linear operator $D_{\lambda}^{\beta+2}$, we obtain

$$
(1+a) D_{\lambda}^{\beta+2} F(z)=a D_{\lambda}^{\beta+2} f(z)+D_{\lambda}^{\beta+2}\left(z+\sum_{j=2}^{\infty} j a_{j} z^{j}\right)=
$$

$$
=a D_{\lambda}^{\beta+2} f(z)+z+\sum_{j=2}^{\infty}(1+(j-1) \lambda)^{\beta+2} j a_{j} z^{j}
$$

We have (see the proof of the above theorem)

$$
z+\sum_{j=2}^{\infty} j(1+(j-1) \lambda)^{\beta+2} a_{j} z^{j}=\frac{1}{\lambda}\left((\lambda-1) D_{\lambda}^{\beta+2} f(z)+D_{\lambda}^{\beta+3} f(z)\right)
$$

Thus

$$
\begin{aligned}
(1+a) D_{\lambda}^{\beta+2} F(z) & =a D_{\lambda}^{\beta+2} f(z)+\frac{1}{\lambda}\left((\lambda-1) D_{\lambda}^{\beta+2} f(z)+D_{\lambda}^{\beta+3} f(z)\right)= \\
= & \left(a+\frac{\lambda-1}{\lambda}\right) D_{\lambda}^{\beta+2} f(z)+\frac{1}{\lambda} D_{\lambda}^{\beta+3} f(z)
\end{aligned}
$$

or

$$
\lambda(1+a) D_{\lambda}^{\beta+2} F(z)=((a+1) \lambda-1) D_{\lambda}^{\beta+2} f(z)+D_{\lambda}^{\beta+3} f(z) .
$$

Similarly, we obtain

$$
\lambda(1+a) D_{\lambda}^{\beta+1} F(z)=((a+1) \lambda-1) D_{\lambda}^{\beta+1} f(z)+D_{\lambda}^{\beta+2} f(z) .
$$

Then

$$
\frac{D_{\lambda}^{\beta+2} F(z)}{D_{\lambda}^{\beta+1} F(z)}=\frac{\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+2} f(z)} \cdot \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}+((a+1) \lambda-1) \cdot \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}}{\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}+((a+1) \lambda-1)} .
$$

With notation

$$
\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}=p(z), p(0)=1
$$

we obtain

$$
\begin{equation*}
\frac{D_{\lambda}^{\beta+2} F(z)}{D_{\lambda}^{\beta+1} F(z)}=\frac{\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+2} f(z)} \cdot p(z)+((a+1) \lambda-1) \cdot p(z)}{p(z)+((a+1) \lambda-1)} \tag{4}
\end{equation*}
$$

We have (see the proof of the above theorem)

$$
\lambda z p^{\prime}(z)=\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+2} f(z)} \cdot \frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)}-p(z)^{2}=
$$

$$
=\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+2} f(z)} \cdot p(z)-p(z)^{2} .
$$

Thus

$$
\frac{D_{\lambda}^{\beta+3} f(z)}{D_{\lambda}^{\beta+2} f(z)}=\frac{1}{p(z)} \cdot\left(p(z)^{2}+\lambda z p^{\prime}(z)\right)
$$

Then,from (4), we obtain

$$
\begin{aligned}
\frac{D_{\lambda}^{\beta+2} F(z)}{D_{\lambda}^{\beta+1} F(z)} & =\frac{p(z)^{2}+\lambda z p^{\prime}(z)+((a+1) \lambda-1) p(z)}{p(z)+((a+1) \lambda-1)}= \\
& =p(z)+\lambda \frac{z p^{\prime}(z)}{p(z)+((a+1) \lambda-1)}
\end{aligned}
$$

where $a \in \mathbf{C}, \operatorname{Re} a \geq 0, \beta \geq 0$, and $\lambda \geq 1$.
From $F(z) \in C \bar{V} H_{\beta, \lambda}(\bar{\alpha})$ we have

$$
p(z)+\frac{z p^{\prime}(z)}{\frac{1}{\lambda}(p(z)+((a+1) \lambda-1))} \prec p_{\alpha}(z),
$$

where $a \in \mathbf{C}, \operatorname{Re} a \geq 0, \alpha>0, \beta \geq 0, \lambda \geq 1$, and from her construction, we have $\operatorname{Re} p_{\alpha}(z)>0$. In this conditions we have from Theorem 1.1 we obtain

$$
p(z) \prec p_{\alpha}(z)
$$

or

$$
\frac{D_{\lambda}^{\beta+2} f(z)}{D_{\lambda}^{\beta+1} f(z)} \prec p_{\alpha}(z)
$$

This means $f(z)=L_{a} F(z) \in C V H_{\beta, \lambda}(\alpha)$.
Remark 2.3. If we consider $\beta=n \in \mathbf{N}$ in the previously results we obtain the Theorem 3.1 and Theorem 3.2 from [3].

References

[1] M. Acu and S. Owa, Convex functions associated with some hyperbola, Journal of Approximation Theory and Applications, Vol. 1(2005), (to appear).
[2] M. Acu, On a subclass of n-convex functions associated with some hyperbola, Annals of the Oradea Univ., Fascicola Matematics (2005), (to appear).
[3] M. Acu and S. Owa, On n-convex functions associated with some hyperbola, (to appear).
[4] M. Acu and S. Owa, Note on a class of starlike functions, (to appear).
[5] F.M. Al-Oboudi, On univalent funtions defined by a generalized Sălăgean operator, Ind. J. Math. Math. Sci. 2004, no. 25-28, 1429-1436.
[6] D. Breaz, Operatori integrali pe spaţii de funcţii univalente, Editura Academiei Române, Bucureşti 2004.
[7] E. Drăghici, Elemente de teoria functiilor cu aplicaţii la operatori integrali univalen'ti, Editura Constant, Sibiu 1996.
[8] P.T. Mocanu, Classes of univalent integral operators, J. Math. Anal. Appl. 157, 1(1991), 147-165.
[9] S. S. Miller and P. T. Mocanu, Differential subordonations and univalent functions, Mich. Math. 28 (1981), 157-171.
[10] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297-308.
[11] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Mich. Math. 32(1985), 185-195.
[12] Gr. Sălăgean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.

Author:
Mugur Acu
University "Lucian Blaga" of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
e-mail address: acu_mugur@yahoo.com

