UNIVALENCE OF CERTAIN INTEGRAL OPERATORS

Virgil Pescar

Abstract. In this work some integral operators are studied and the author determines conditions for the univalence of these integral operators.

Key words : integral operator, univalence.
2000 Mathematics Subject Classification. Primary 30C45.

1. Introduction

Let $U=\{z \in C:|z|<1\}$ be the unit disc in the complex plane and let A be the class of functions which are analytic in the unit disk normalized with $f(0)=f^{\prime}(0)-1=0$.

Let S the class of the functions $f \in A$ which are univalent in U.

2. Preliminary results

In order to prove our main results we will use the theorems presented in this section.

Theorem 2.1.[3]. Assume that $f \in A$ satisfies condition

$$
\begin{equation*}
\left|\frac{z^{2} f^{\prime}(z)}{f^{2}(z)}-1\right|<1, z \in U \tag{1}
\end{equation*}
$$

then f is univalent in U.

ThEOREM 2.2.[4]. Let α be a complex number, Re $\alpha>0$ and $f(z)=z+$ $a_{2} z^{2}+\ldots$ is a regular function in U. If

$$
\begin{equation*}
\frac{1-|z|^{2 \operatorname{Re} e \alpha}}{\operatorname{Re} \alpha}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \tag{2}
\end{equation*}
$$

for all $z \in U$, then for any complex number $\beta, \operatorname{Re} \beta \geq$ Re α the function

$$
\begin{equation*}
F_{\beta}(z)=\left[\beta \int_{0}^{z} u^{\beta-1} f^{\prime}(u) d u\right]^{\frac{1}{\beta}}=z+\ldots \tag{3}
\end{equation*}
$$

is regular and univalent in U.
Schwarz Lemma [1]. Let $f(z)$ the function regular in the disk $U_{R}=\{z \in C ;|z|<R\}$, with $|f(z)|<M, M$ fixed. If $f(z)$ has in $z=0$ one zero with multiply $\geq m$, then

$$
\begin{equation*}
|f(z)|<\frac{M}{R^{m}}|z|^{m}, \quad z \in U_{R} \tag{4}
\end{equation*}
$$

the equality (in the inequality (4) for $z \neq 0$) can hold only if $f(z)=e^{i \theta} \frac{M}{R^{m}} z^{m}$, where θ is constant.

3.Main Results

Theorem 3.1. Let $g \in A, \gamma$ be a complex number such that Re $\gamma \geq 1, M$ be a real number and $M>1$.

If

$$
\begin{equation*}
\left|z g^{\prime}(z)\right|<M, z \in U \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
|\gamma| \leq \frac{3 \sqrt{3}}{2 M} \tag{6}
\end{equation*}
$$

then the function

$$
\begin{equation*}
T_{\gamma}(z)=\left[\gamma \int_{0}^{z} u^{\gamma-1}\left(e^{g(u)}\right)^{\gamma} d u\right]^{\frac{1}{\gamma}} \tag{7}
\end{equation*}
$$

is in the class S.

Proof. Let us consider the function

$$
\begin{equation*}
f(z)=\int_{0}^{z}\left(e^{g(u)}\right)^{\gamma} d u \tag{8}
\end{equation*}
$$

which is regular in U.
The function

$$
\begin{equation*}
h(z)=\frac{1}{|\gamma|} \frac{z f^{\prime \prime}(z)}{f^{\prime}(z)} \tag{9}
\end{equation*}
$$

where the constant $|\gamma|$ satisfies the inequality (6), is regular in U.
From (9) and (8) it follows that

$$
\begin{equation*}
h(z)=\frac{\gamma}{|\gamma|} z g^{\prime}(z) . \tag{10}
\end{equation*}
$$

Using (10) and (5) we have

$$
\begin{equation*}
|h(z)|<M \tag{11}
\end{equation*}
$$

for all $z \in U$. From (10) we obtain $h(0)=0$ and applying Schwarz-Lemma we obtain

$$
\begin{equation*}
\frac{1}{|\gamma|}\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq M|z| \tag{12}
\end{equation*}
$$

for all $z \in U$, and hence, we obtain

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq|\gamma| M|z|\left(1-|z|^{2}\right) . \tag{13}
\end{equation*}
$$

Let us consider the function $Q:[0,1] \rightarrow \Re, Q(x)=x\left(1-x^{2}\right), x=|z|$. We have

$$
\begin{equation*}
Q(x) \leq \frac{2}{3 \sqrt{3}} \tag{14}
\end{equation*}
$$

for all $x \in[0,1]$. From (14), (13) and (6) we obtain

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right| \leq 1 \tag{15}
\end{equation*}
$$

for all $z \in U$. From (8) we obtain $f^{\prime}(z)=\left(e^{g(z)}\right)^{\gamma}$. Then, from (15) and Theorem 2.2 for $\operatorname{Re} \alpha=1$ it follows that the function T_{γ} is in the class S.

ThEOREM 3.2. Let $g \in A$, satisfy (1), γ be a complex number with Re $\gamma \geq$ $1, M$ be a real number, $M>1$ and $|\gamma-1| \leq \frac{54 M^{4}}{\left(12 M^{4}+1\right) \sqrt{12 M^{4}+1}+36 M^{4}-1}$. If

$$
\begin{equation*}
|g(z)|<M, \quad z \in U \tag{16}
\end{equation*}
$$

then the function

$$
\begin{equation*}
H_{\gamma}(z)=\left[\gamma \int_{0}^{z} u^{2 \gamma-2}\left[e^{g(u)}\right)^{\gamma-1} d u\right]^{\frac{1}{\gamma}} \tag{17}
\end{equation*}
$$

is in the class S.

Proof. We observe that

$$
\begin{equation*}
H_{\gamma}(z)=\left[\gamma \int_{0}^{z} u^{\gamma-1}\left(u e^{g(u)}\right)^{\gamma-1} d u\right]^{\frac{1}{\gamma}} \tag{18}
\end{equation*}
$$

Let us consider the function

$$
\begin{equation*}
h(z)=\int_{0}^{z}\left(u e^{g(u)}\right)^{\gamma-1} d u \tag{19}
\end{equation*}
$$

The function h is regular in U.
From (19) we obtain

$$
\begin{equation*}
\frac{h^{\prime \prime}(z)}{h^{\prime}(z)}=(\gamma-1) \frac{z g^{\prime}(z)+1}{z} \tag{20}
\end{equation*}
$$

and hence, we have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right|=|\gamma-1|\left(1-|z|^{2}\right)\left|z g^{\prime}(z)+1\right| \tag{21}
\end{equation*}
$$

for all $z \in U$. From (21) we get

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq|\gamma-1|\left(1-|z|^{2}\right)\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}\right| \frac{\left|g^{2}(z)\right|}{|z|}+1\right) \tag{22}
\end{equation*}
$$

for all $z \in U$.

By the Schwarz Lemma also $|g(z)| \leq M|z|, \quad z \in U$ and using (22) we obtain

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq|\gamma-1|\left(1-|z|^{2}\right)\left(\left|\frac{z^{2} g^{\prime}(z)}{g^{2}(z)}-1\right| M^{2}|z|+M^{2}|z|+1\right) \tag{23}
\end{equation*}
$$

for all $z \in U$.
Since g satisfies the condition (1) then from (23) we have

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq|\gamma-1|\left(1-|z|^{2}\right)\left(2 M^{2}|z|+1\right) \tag{24}
\end{equation*}
$$

for all $z \in U$.
Let us consider the function $G:[0,1] \rightarrow \Re, G(x)=\left(1-x^{2}\right)\left(2 M^{2} x+\right.$ 1), $x=|z|$.

We have

$$
\begin{equation*}
G(x) \leq \frac{\left(12 M^{4}+1\right) \sqrt{12 M^{4}+1}+36 M^{4}-1}{54 M^{4}} \tag{25}
\end{equation*}
$$

for all $x \in[0,1]$.
Since $|\gamma-1| \leq \frac{54 M^{4}}{\left(12 M^{4}+1\right) \sqrt{12 M^{4}+1}+36 M^{4}-1}$, from (25) and (24) we conclude that

$$
\begin{equation*}
\left(1-|z|^{2}\right)\left|\frac{z h^{\prime \prime}(z)}{h^{\prime}(z)}\right| \leq 1 \tag{26}
\end{equation*}
$$

for all $z \in U$.
Now (26) and Theorem 2.2 for Re $\alpha=1$ imply that the function H_{γ} is in the class S.

Remark. For $0<M \leq 1$, Theorem 3.1 and Theorem 3.2 hold only in the case $g(z)=K z$, where $|\bar{K}|=1$.

References

[1] O. Mayer, The functions theory of one variable complex, Bucureşti, 1981.
[2] Z. Nehari, Conformal mapping, Mc Graw-Hill Book Comp., New York, 1952 (Dover. Publ. Inc., 1975)
[3] S. Ozaki, M. Nunokawa, The Schwarzian derivative and univalent functions, Proc. Amer. Math. Soc. 33(2), 1972, 392-394.
[4] N. N. Pascu, An improvement of Becker's univalence criterion, Proceedings of the Commemorative Session Simion Stoilov, Braşov, (1987), 43-48.
[5] V. Pescar, New univalence criteria," Transilvania" University of Braşov, Braşov, 2002.
[6] C. Pommerenke, Univalent functions, Gottingen, 1975.
Author:
Virgil Pescar
"Transilvania" University of Braşov
Faculty of Mathematics and Computer Science
Department of Mathematics
2200 Braşov Romania
e-mali: virgilpescar@unitbv.ro

