COHOMOLOGY GROUPS OF A GROUPOID

Dorin Wainberg ${ }^{1}$

Abstract

In this paper we construct a cohomology theory for Brandt groupoids which extends the usual cohomology theory for groups. We construct a cohomology theory for cochains of a Brandt groupoid Γ with values in an abelian group A. This construction was inspired by that of M. Hall [2] in the case of groups.

1. Introduction

In this section preliminary definitions regarding the category of groupoids and some important examples of groupoids are given.

Definition 1.1 ([1]) A groupoid Γ over Γ_{0} is a pair $\left(\Gamma, \Gamma_{0}\right)$ endowed with:
a) two surjections α and β (called the source, respectively target maps), $\alpha, \beta: \Gamma \longrightarrow \Gamma_{0} ;$
b) a product map $m: \Gamma_{2} \longrightarrow \Gamma,(x, y) \longrightarrow m(x, y)$ where $\Gamma_{2}=\{(x, y) \in$ $\Gamma \times \Gamma \mid \beta(x)=\alpha(y)\}$ is a subset of $\Gamma \times \Gamma$ called the set of composable pairs;
c) an injection $\varepsilon: \Gamma_{0} \longrightarrow \Gamma$ (identity),
d) an inverse map $i: \Gamma \longrightarrow \Gamma$,
such that the fallowing conditions are satisfied:
i) for $(x, y) ;(y, z) \in \Gamma_{2}$ we have $(m(x, y), z) ;(x, m(y, z)) \in \Gamma_{2}$ and $m(m(x, y), z)=m(x, m(y, z)) \quad$ (associative law);
ii) for each $x \in \Gamma$ we have $(\varepsilon(\alpha(x)), x) ;(x, \varepsilon(\beta(x))) \in \Gamma_{2}$ and $m(\varepsilon(\alpha(x)), x)=m(x, \varepsilon(\beta(x)))$ (identities);
iii) for each $x \in \Gamma$ we have $(i(x), x) ;(x, i(x)) \in \Gamma_{2}$ and $m(x, i(x))=$ $\varepsilon(\alpha(x)) ; m(i(x), x)=\varepsilon(\beta(x))$ (inverses).

Example 1.1 Let Γ_{0} be an abstract set and $\Gamma=\Gamma_{0} \times \Gamma_{0}$. It is easy to prove that Γ is a groupoid over Γ_{0} with the following strutcure:

[^0]\[

$$
\begin{aligned}
& \alpha(x, y)=x ; \beta(x, y)=y \\
& m((x, y),(y, z))=(x, z) \\
& \varepsilon(x, x)=x ; \\
& i(x, y)=(y, x) .
\end{aligned}
$$
\]

where $x, y, z \in \Gamma_{0}$. The grupiod Γ is called the coarse groupoid.
Definition 1.2 A groupoid Γ over Γ_{0} is called principal groupoid if the map:

$$
\alpha \times \beta: x \in \Gamma \longrightarrow(\alpha(x), \beta(x)) \in \Gamma_{0} \times \Gamma_{0}
$$

is one-to-one.
Example 1.2 Let B be a nonempty set and G a multiplicative group with the unit element e. Then $B \times B \times G$ is a groupoid over B (called the trivial groupoid) with respect to the following structure:

$$
\begin{aligned}
& \alpha(x, y, g)=x ; \beta(x, y, g)=y \\
& m\left((x, y, g),\left(y, z, g^{\prime}\right)\right)=\left(x, z, g g^{\prime}\right) \\
& \varepsilon(u)=(u, u, e) ; \\
& i(x, y, g)=\left(y, x, g^{-1}\right) .
\end{aligned}
$$

In the particular case $\Gamma=\{e\}$ it can be canonically identified with the coarse groupoid.

The following proposition gives some properties of the groupoids:
Proposition 1.1 Let Γ be a groupoid over Γ_{0}. Then we have:
g1) $\alpha \circ \varepsilon=\beta \circ \varepsilon=i d$;
g2) $\alpha(m(x, y))=\alpha(x)$ and $\beta(m(x, y))=\beta(y)$;
g3) If $m\left(x, y_{1}\right)=m\left(x, y_{2}\right)$ or $m\left(y_{1}, z\right)=m\left(y_{2}, z\right)$ then $y_{1}=y_{2}$;
g4) For each $x \in \Gamma_{0}$ we have $m(\varepsilon(x), \varepsilon(x))=\varepsilon(x)$;
g5) $i \circ i=i d_{\Gamma}$;
g6) $\alpha \circ i=\beta$ and $\beta \circ i=\alpha$.
Definition 1.3 A groupoid Γ over Γ_{0}, with $\Gamma_{0} \subseteq \Gamma$ is called Brandt groupoid.

It is easy to observe that in the case of the Brandt groupoids we have:
i) $\varepsilon\left(\Gamma_{0}\right)=\Gamma_{0}$.
ii) $\varepsilon(u)=u$, $(\forall) u \in \Gamma_{0}$.

Moreover, for each $u \in \Gamma_{0}$ the set $\alpha^{-1}(u) \cap \beta^{-1}(u)$ is a group under the restriction of the multiplication in Γ, called the isotropy group at u.

Doing these changes for the definition 1, in [3] we can find the next definition for the Brandt groupoids:

Definition 1.4 A Brandt groupoid is a nonempty set Γ endowed with:
a) two maps d and r (called source, respectively target), $d, r: \Gamma \longrightarrow \Gamma$;
b) a product map

$$
\begin{aligned}
& m: \Gamma_{(2)} \longrightarrow \Gamma, \\
& (x, y) \longrightarrow m(x, y) \stackrel{\text { def }}{=} x y
\end{aligned}
$$

where $\Gamma_{(2)}=\{(x, y) \in \Gamma \times \Gamma \mid d(x)=r(y)\}$ is a subset of $\Gamma \times \Gamma$ called the set of composable pairs;
c) an inverse map

$$
\begin{aligned}
& i: \Gamma \longrightarrow \Gamma, \\
& x \longrightarrow i(x) \stackrel{\text { def }}{=} x^{-1}
\end{aligned}
$$

such that the fallowing conditions are satisfied:
i) $(x, y) ;(y, z) \in \Gamma_{(2)} \Longrightarrow(x y, z) ;(x, y z) \in \Gamma_{(2)}$ and $(x y) z=x(y z)$;
ii) $x \in \Gamma \Longrightarrow(r(x), x) ;(x, d(x)) \in \Gamma_{(2)}$ and $r(x) x=x d(x)=x$;
iii) $x \in \Gamma \Longrightarrow\left(x^{-1}, x\right) ;\left(x, x^{-1}\right) \in \Gamma_{(2)}$ and $x^{-1} x=d(x) ; x x^{-1}=r(x)$.

If Γ is a groupoid then $\Gamma_{0}:=d(\Gamma)=r(\Gamma)$ is the unit set of Γ and we say that Γ is a Γ_{0}-groupoid.

Example 1.3 The grouopoid $\Gamma^{(n)}(n \geq 2)$.
Let Γ be a Γ_{0}-groupoid and by $\Gamma^{(n)}$ we denote the set of n-tuples $\left(x_{0}, \ldots, x_{n-1}\right)$ of Γ such that $\left(x_{i-1}, x_{i}\right) \in \Gamma_{(2)}$ for $i=1,2, \ldots, n-1$. We give to $\Gamma^{(n)}$ the following groupoid structure:

- $d^{(n)}, r^{(n)}: \Gamma^{(n)} \longrightarrow \Gamma^{(n)} ;$
- $d^{(n)}\left(x_{0}, \ldots, x_{n-1}\right) \stackrel{\text { def }}{=}\left(x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{n-2} x_{n-1}, d\left(x_{n-2} x_{n-1}\right)\right)$;
- $r^{(n)}\left(x_{0}, \ldots, x_{n-1}\right) \stackrel{\text { def }}{=}\left(x_{0}, x_{1}, \ldots, x_{n-2}, r\left(x_{n-1}\right)\right)$;
- $\left(x_{0}, \ldots, x_{n-1}\right)$ and $\left(y_{0}, \ldots, y_{n-1}\right)$ are composable if $y_{0}=x_{0} x_{1}, y_{1}=$ $x_{1} x_{2}, \ldots, y_{n-2}=x_{n}-2 x_{n-1}$ and

$$
\begin{gathered}
\left(x_{0}, \ldots, x_{n-1}\right)\left(x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{n-2} x_{n-1}, y_{n-1}\right) \stackrel{\text { def }}{=} \\
\left(x_{0}, \ldots, x_{n-2}, x_{n-1} y_{n-1}\right)
\end{gathered}
$$

- the inverse of $\left(x_{0}, \ldots, x_{n-1}\right)$ is defined by:

$$
\left(x_{0}, \ldots, x_{n-1}\right)^{-1} \stackrel{\text { def }}{=}\left(x_{0} x_{1}, x_{1} x_{2}, \ldots, x_{n-2} x_{n-1}, x\right)
$$

Definition 1.5 Let Γ and Γ^{\prime} be groupoids.
i) a map $f: \Gamma \longrightarrow \Gamma^{\prime}$ is a morphism if for any $(x, y) \in \Gamma_{(2)}$ we have $(f(x), f(y)) \in \Gamma_{(2)}^{\prime}$ and $f(x, y)=f(x) f(y)$.
ii) two morphisms $f, g: \Gamma \longrightarrow \Gamma^{\prime}$ are similar (and we write $f \sim g$) if there exists a map $\theta: \Gamma_{0} \longrightarrow \Gamma^{\prime}$ such that $\theta(r(x)) \cdot f(x)=g(x) \cdot \theta(d(x))$ for any $x \in \Gamma$.
iii) the groupoids Γ and Γ^{\prime} are similar $\left(\Gamma \sim \Gamma^{\prime}\right)$ if there exists two morphisms $f: \Gamma \longrightarrow \Gamma^{\prime}$ and $g: \Gamma^{\prime} \longrightarrow \Gamma$ such that $g \circ f$ and $f \circ g$ are similar to identity isomorphisms.

EXAMPLE 1.4 Let $\Gamma^{(0)}=\Gamma_{0} ; \Gamma^{(1)}=\Gamma ; \Gamma^{(n)}$ be the groupoid given in example 3 and $\phi: \Gamma \longrightarrow \Gamma^{\prime}$ be a morphism of groupoids. The map $\phi^{(n)}$: $\Gamma^{(n)} \longrightarrow \Gamma^{(n)}$ defined by:

$$
\phi^{(n)}\left(x_{0}, \ldots, x_{n-1}\right) \stackrel{\text { def }}{=}\left(\phi\left(x_{0}\right), \ldots, \phi\left(x_{n-1}\right)\right)
$$

is a morphism of groupoids for any $n \geq 0$.
Example 1.5 The trivial groupoid $\Gamma=B \times B \times G$ and the group G are similar.

2. Cohomology

We assume that:
a) Γ is a Γ_{0}-groupoid;
b) $(A,+)$ is an abelian group;
c) Γ operates on the left on A, i.e. $\Gamma \times A \longrightarrow A,(x, a) \longrightarrow x . a$ subject of the following conditions:
i) x. $(y \cdot a)=(x y) \cdot a$ for all $(x, y) \in \Gamma_{(2)}$ and $a \in A$;
ii) $u . a=a$ for all $u \in \Gamma_{0}$ and $a \in A$;
iii) $x .(a+b)=x . a+x . b$ for all $x \in \Gamma$ and $a, b \in A$.

In this hypothesis we say that A is a Γ-module.
Definition 2.1 Given a Γ-module A, a function $f: \Gamma^{(n)} \longrightarrow A,\left(x_{0}, \ldots, x_{n-1}\right) \longrightarrow$ $f\left(x_{0}, \ldots, x_{n-1}\right)$, where $\Gamma^{(1)}=\Gamma$ and $\Gamma^{(n)}$ for $n \geq 2$ is the groupoid given in example 3, is called a n-cochain of the groupoid Γ with values in A.

We denote by $C^{(n)}(\Gamma, A)=0$ the additive group of n-cochains of Γ. By definition $C^{(n)}(\Gamma, A)=0$ if $n<0$ and $C^{(0)}(\Gamma, A)=A$. Define the coboundary operator:

$$
\delta^{n}: C^{n}(\Gamma, A) \longrightarrow C^{n+1}(\Gamma, A)
$$

by:

$$
\delta^{0} f(x)=x \cdot f(d(x))-f(r(x))
$$

for all $x \in \Gamma, f \in C^{0}(\Gamma, A)$ if $n=0$;

$$
\begin{gathered}
\delta^{n} f\left(x_{0}, \ldots, x_{n}\right)=x_{0} \cdot f\left(x_{1}, \ldots, x_{n}\right)+ \\
\sum_{i=1}^{n}(-1)^{i} f\left(x_{0}, \ldots, x_{i-2}, x_{i-1} x_{i}, x_{i+1}, \ldots, x_{n}\right)+(-1)^{n+1} f\left(x_{0}, \ldots, x_{n-1}\right)
\end{gathered}
$$

if $n \geq 1$.
The map $f \longrightarrow \delta^{n} f$ is a homomorphism with respect to addition and we have that $\left(C^{n}(\Gamma, A), \delta^{n}\right)$ is a cochain complex. The cohomology n-groups $H^{n}(\Gamma, A)$ of Γ-module A are defined by $H^{n}(\Gamma, A)=Z^{n}(\Gamma, A) / B^{n}(\Gamma, A)$, where $Z^{n}(\Gamma, A)=\operatorname{ker} \delta^{n}$ and $B^{n}(\Gamma, A)=\operatorname{Im} \delta^{n-1}$.

If $\phi: \Gamma \longrightarrow \Gamma^{\prime}$ is a morphism of groupoids then the morphism of groupoids $\phi^{(n)}: \Gamma^{(n)} \longrightarrow \Gamma^{\prime(n)}$ given by example 1.4 induce a homomorphism of groups

$$
\bar{\phi}^{\prime n}: C^{n}\left(\Gamma^{\prime}, A\right) \longrightarrow C^{n}(\Gamma, A)
$$

defined by:

$$
\bar{\phi}^{\prime n}(f) \stackrel{\text { def }}{=} f \circ \phi^{(n)} \text { for each } f \in C^{n}\left(\Gamma^{\prime}, A\right)
$$

and satisfying the following:

$$
\delta^{n} \circ \bar{\phi}^{\prime n}=\bar{\phi}^{\prime n+1} \delta^{n} \text { for all } n \geq 0
$$

From here it follows that $\bar{\phi}^{\prime n}$ induce a homomorphism of cohomology groups $\left(\phi^{n}\right)^{*}: H^{n}\left(\Gamma^{\prime}, A\right) \longrightarrow H^{n}(\Gamma, A)$ given by:

$$
\left(\phi^{n}\right)^{*}([f])=\left[\bar{\phi}^{\prime n}(f)\right] \text { forevery }[f] \in H^{n}\left(\Gamma^{\prime}, A\right)
$$

Remark 2.1 We have:
$H^{0}(\Gamma, A)=\{x \in A \mid x . a=a$ for all $x \in \Gamma\}$ is the set of elements of A such that Γ operates simply on A. In particular, if Γ operates trivially on A, i.e. $x . a=a$ for all $x \in \Gamma$, then $H^{0}(\Gamma, A)=A$.
$Z^{1}(\Gamma, A)=\left\{f: \Gamma \longrightarrow A \mid f\left(x_{0} x_{1}\right)=f\left(x_{0}\right)+x_{0} f\left(x_{1}\right), \forall\left(x_{0}, x_{1}\right) \in \Gamma_{(2)}\right\}$ is the group of crossed morphisms of groupoids.
$B^{1}(\Gamma, A)=\{f: \Gamma \longrightarrow A \mid f(x)=x \cdot a-a, \forall x \in \Gamma\}$ is the group of principal morphisms of groupoids.

References

[1] A. Weinstein, Symplectic groupoids and Poisson manyfolds, Bull. Amer. Math. Soc. 16 (1987)
[2] M. Hall Jr. Theory of groups, New York, 1959.
[3] A. Coste, P. Dazord, A. Weinstein Groupoides symplectiques, Publ.Dept. Math. Lyon, 2/A, 1987, p. 1-62.
[4] Gh. Ivan On cohomology of Brandt groupoids, Anal.Univ. Timişoara, Proceedings of the International Conference on Group Theory, 1992.

Author:

Dorin Wainberg
"1 Decembrie 1918" University of Alba Iulia
N. Iorga, no.11-13, Alba Iulia, 510009, Romania
e-mail:dwainberg@uab.ro

[^0]: ${ }^{1}$ Supported by the GAR $14 / 2006$.

