COHOMOLOGY GROUPS OF A GROUPOID

DORIN WAINBERG¹

ABSTRACT. In this paper we construct a cohomology theory for Brandt groupoids which extends the usual cohomology theory for groups. We construct a cohomology theory for cochains of a Brandt groupoid Γ with values in an abelian group A. This construction was inspired by that of M. Hall [2] in the case of groups.

1. INTRODUCTION

In this section preliminary definitions regarding the category of groupoids and some important examples of groupoids are given.

DEFINITION 1.1 ([1]) A groupoid Γ over Γ_0 is a pair (Γ, Γ_0) endowed with:

a) two surjections α and β (called the source, respectively target maps), $\alpha, \beta : \Gamma \longrightarrow \Gamma_0$;

b) a product map $m : \Gamma_2 \longrightarrow \Gamma, (x, y) \longrightarrow m(x, y)$ where $\Gamma_2 = \{(x, y) \in \Gamma \times \Gamma \mid \beta(x) = \alpha(y)\}$ is a subset of $\Gamma \times \Gamma$ called the set of composable pairs;

c) an injection $\varepsilon : \Gamma_0 \longrightarrow \Gamma$ (identity),

d) an inverse map $i: \Gamma \longrightarrow \Gamma$,

such that the fallowing conditions are satisfied:

i) for $(x, y); (y, z) \in \Gamma_2$ we have $(m(x, y), z); (x, m(y, z)) \in \Gamma_2$ and m(m(x, y), z) = m(x, m(y, z)) (associative law);

ii) for each $x \in \Gamma$ we have $(\varepsilon(\alpha(x)), x); (x, \varepsilon(\beta(x))) \in \Gamma_2$ and $m(\varepsilon(\alpha(x)), x) = m(x, \varepsilon(\beta(x)))$ (identities);

iii) for each $x \in \Gamma$ we have $(i(x), x); (x, i(x)) \in \Gamma_2$ and $m(x, i(x)) = \varepsilon(\alpha(x)); m(i(x), x) = \varepsilon(\beta(x))$ (inverses).

EXAMPLE 1.1 Let Γ_0 be an abstract set and $\Gamma = \Gamma_0 \times \Gamma_0$. It is easy to prove that Γ is a groupoid over Γ_0 with the following strutcure:

¹Supported by the GAR 14/2006.

 $\begin{aligned} \alpha(x,y) &= x; \beta(x,y) = y\\ m((x,y),(y,z)) &= (x,z)\\ \varepsilon(x,x) &= x;\\ i(x,y) &= (y,x). \end{aligned}$

where $x, y, z \in \Gamma_0$. The grupiod Γ is called the coarse groupoid.

DEFINITION 1.2 A groupoid Γ over Γ_0 is called principal groupoid if the map:

$$\alpha \times \beta : x \in \Gamma \longrightarrow (\alpha(x), \beta(x)) \in \Gamma_0 \times \Gamma_0$$

is one-to-one.

EXAMPLE 1.2 Let B be a nonempty set and G a multiplicative group with the unit element e. Then $B \times B \times G$ is a groupoid over B (called the trivial groupoid) with respect to the following structure:

$$\begin{split} &\alpha(x,y,g) = x; \ \beta(x,y,g) = y \\ &m((x,y,g),(y,z,g')) = (x,z,gg') \\ &\varepsilon(u) = (u,u,e); \\ &i(x,y,g) = (y,x,g^{-1}). \end{split}$$

In the particular case $\Gamma = \{e\}$ it can be canonically identified with the coarse groupoid.

The following proposition gives some properties of the groupoids:

PROPOSITION 1.1 Let Γ be a groupoid over Γ_0 . Then we have: g1) $\alpha \circ \varepsilon = \beta \circ \varepsilon = id;$ g2) $\alpha(m(x, y)) = \alpha(x)$ and $\beta(m(x, y)) = \beta(y);$ g3) If $m(x, y_1) = m(x, y_2)$ or $m(y_1, z) = m(y_2, z)$ then $y_1 = y_2;$ g4) For each $x \in \Gamma_0$ we have $m(\varepsilon(x), \varepsilon(x)) = \varepsilon(x);$ g5) $i \circ i = id_{\Gamma};$ g6) $\alpha \circ i = \beta$ and $\beta \circ i = \alpha$.

DEFINITION 1.3 A groupoid Γ over Γ_0 , with $\Gamma_0 \subseteq \Gamma$ is called Brandt groupoid.

It is easy to observe that in the case of the Brandt groupoids we have:

110

i) $\varepsilon(\Gamma_0) = \Gamma_0$. ii) $\varepsilon(u) = u$, $(\forall) \ u \in \Gamma_0$.

Moreover, for each $u \in \Gamma_0$ the set $\alpha^{-1}(u) \cap \beta^{-1}(u)$ is a group under the restriction of the multiplication in Γ , called the isotropy group at u.

Doing these changes for the definition 1, in [3] we can find the next definition for the Brandt groupoids:

DEFINITION 1.4 A Brandt groupoid is a nonempty set Γ endowed with:

a) two maps d and r (called source, respectively target), $d, r : \Gamma \longrightarrow \Gamma$; b) a product map

$$\begin{array}{l} m: \Gamma_{(2)} \longrightarrow \Gamma, \\ (x,y) \longrightarrow m(x,y) \stackrel{def}{=} xy \end{array}$$

where $\Gamma_{(2)} = \{(x, y) \in \Gamma \times \Gamma \mid d(x) = r(y)\}$ is a subset of $\Gamma \times \Gamma$ called the set of composable pairs;

c) an inverse map

$$\begin{split} & i: \Gamma \longrightarrow \Gamma, \\ & x \longrightarrow i(x) \stackrel{def}{=} x^{-1} \end{split}$$

such that the fallowing conditions are satisfied:

- i) $(x, y); (y, z) \in \Gamma_{(2)} \Longrightarrow (xy, z); (x, yz) \in \Gamma_{(2)} and (xy)z = x(yz);$
- ii) $x \in \Gamma \Longrightarrow (r(x), x); (x, d(x)) \in \Gamma_{(2)} and r(x)x = xd(x) = x;$

iii) $x \in \Gamma \Longrightarrow (x^{-1}, x); (x, x^{-1}) \in \Gamma_{(2)}$ and $x^{-1}x = d(x); xx^{-1} = r(x).$

If Γ is a groupoid then $\Gamma_0 := d(\Gamma) = r(\Gamma)$ is the unit set of Γ and we say that Γ is a Γ_0 -groupoid.

EXAMPLE 1.3 The grouopoid $\Gamma^{(n)}(n \ge 2)$.

Let Γ be a Γ_0 -groupoid and by $\Gamma^{(n)}$ we denote the set of *n*-tuples (x_0, \ldots, x_{n-1}) of Γ such that $(x_{i-1}, x_i) \in \Gamma_{(2)}$ for $i = 1, 2, \ldots, n-1$. We give to $\Gamma^{(n)}$ the following groupoid structure:

- $d^{(n)}, r^{(n)} : \Gamma^{(n)} \longrightarrow \Gamma^{(n)};$
- $d^{(n)}(x_0,\ldots,x_{n-1}) \stackrel{def}{=} (x_0x_1,x_1x_2,\ldots,x_{n-2}x_{n-1},d(x_{n-2}x_{n-1}));$
- $r^{(n)}(x_0,\ldots,x_{n-1}) \stackrel{def}{=} (x_0,x_1,\ldots,x_{n-2},r(x_{n-1}));$

• (x_0, \ldots, x_{n-1}) and (y_0, \ldots, y_{n-1}) are composable if $y_0 = x_0 x_1, y_1 = x_1 x_2, \ldots, y_{n-2} = x_n - 2x_{n-1}$ and

$$(x_0, \dots, x_{n-1})(x_0 x_1, x_1 x_2, \dots, x_{n-2} x_{n-1}, y_{n-1}) \stackrel{def}{=} (x_0, \dots, x_{n-2}, x_{n-1} y_{n-1})$$

• the inverse of (x_0, \ldots, x_{n-1}) is defined by:

$$(x_0, \dots, x_{n-1})^{-1} \stackrel{def}{=} (x_0 x_1, x_1 x_2, \dots, x_{n-2} x_{n-1}, x)$$

DEFINITION 1.5 Let Γ and Γ' be groupoids.

i) a map $f : \Gamma \longrightarrow \Gamma'$ is a morphism if for any $(x, y) \in \Gamma_{(2)}$ we have $(f(x), f(y)) \in \Gamma'_{(2)}$ and f(x, y) = f(x)f(y).

ii) two morphisms $f, g: \Gamma \longrightarrow \Gamma'$ are similar (and we write $f \sim g$) if there exists a map $\theta: \Gamma_0 \longrightarrow \Gamma'$ such that $\theta(r(x)) \cdot f(x) = g(x) \cdot \theta(d(x))$ for any $x \in \Gamma$.

iii) the groupoids Γ and Γ' are similar ($\Gamma \sim \Gamma'$) if there exists two morphisms $f : \Gamma \longrightarrow \Gamma'$ and $g : \Gamma' \longrightarrow \Gamma$ such that $g \circ f$ and $f \circ g$ are similar to identity isomorphisms.

EXAMPLE 1.4 Let $\Gamma^{(0)} = \Gamma_0$; $\Gamma^{(1)} = \Gamma$; $\Gamma^{(n)}$ be the groupoid given in example 3 and $\phi : \Gamma \longrightarrow \Gamma'$ be a morphism of groupoids. The map $\phi^{(n)} : \Gamma^{(n)} \longrightarrow \Gamma^{(n)}$ defined by:

$$\phi^{(n)}(x_0,\ldots,x_{n-1}) \stackrel{def}{=} (\phi(x_0),\ldots,\phi(x_{n-1}))$$

is a morphism of groupoids for any $n \ge 0$.

EXAMPLE 1.5 The trivial groupoid $\Gamma = B \times B \times G$ and the group G are similar.

2. Cohomology

We assume that:

a) Γ is a Γ_0 -groupoid;

b) (A, +) is an abelian group;

c) Γ operates on the left on A, i.e. $\Gamma \times A \longrightarrow A$, $(x, a) \longrightarrow x.a$ subject of the following conditions:

- i)x.(y.a) = (xy).a for all $(x, y) \in \Gamma_{(2)}$ and $a \in A$;
- ii) u.a = a for all $u \in \Gamma_0$ and $a \in A$;
- iii) x.(a+b) = x.a + x.b for all $x \in \Gamma$ and $a, b \in A$.

In this hypothesis we say that A is a Γ -module.

DEFINITION 2.1 Given a Γ -module A, a function $f : \Gamma^{(n)} \longrightarrow A$, $(x_0, \ldots, x_{n-1}) \longrightarrow f(x_0, \ldots, x_{n-1})$, where $\Gamma^{(1)} = \Gamma$ and $\Gamma^{(n)}$ for $n \ge 2$ is the groupoid given in example 3, is called a n-cochain of the groupoid Γ with values in A.

We denote by $C^{(n)}(\Gamma, A) = 0$ the additive group of *n*-cochains of Γ . By definition $C^{(n)}(\Gamma, A) = 0$ if n < 0 and $C^{(0)}(\Gamma, A) = A$. Define the coboundary operator:

$$\delta^n: C^n(\Gamma, A) \longrightarrow C^{n+1}(\Gamma, A)$$

by:

$$\begin{split} \delta^0 f(x) &= x.f(d(x)) - f(r(x)) \\ \text{for all } x \in \Gamma, \ f \in C^0(\Gamma, A) \text{ if } n = 0; \end{split}$$

$$\delta^n f(x_0, \dots, x_n) = x_0 f(x_1, \dots, x_n) + \sum_{i=1}^n (-1)^i f(x_0, \dots, x_{i-2}, x_{i-1}, x_i, x_{i+1}, \dots, x_n) + (-1)^{n+1} f(x_0, \dots, x_{n-1})$$

if $n \ge 1$.

The map $f \longrightarrow \delta^n f$ is a homomorphism with respect to addition and we have that $(C^n(\Gamma, A), \delta^n)$ is a cochain complex. The cohomology *n*-groups $H^n(\Gamma, A)$ of Γ -module A are defined by $H^n(\Gamma, A) = Z^n(\Gamma, A)/B^n(\Gamma, A)$, where $Z^n(\Gamma, A) = \ker \delta^n$ and $B^n(\Gamma, A) = Im\delta^{n-1}$.

If $\phi : \Gamma \longrightarrow \Gamma'$ is a morphism of groupoids then the morphism of groupoids $\phi^{(n)} : \Gamma^{(n)} \longrightarrow \Gamma'^{(n)}$ given by example 1.4 induce a homomorphism of groups

$$\bar{\phi}'^n: C^n(\Gamma', A) \longrightarrow C^n(\Gamma, A)$$

defined by:

$$\bar{\phi}^{\prime n}(f) \stackrel{def}{=} f \circ \phi^{(n)}$$
 for each $f \in C^n(\Gamma^\prime, A)$

and satisfying the following:

113

$$\delta^n \circ \bar{\phi}'^n = \bar{\phi}'^{n+1} \delta^n$$
 for all $n \ge 0$.

From here it follows that $\overline{\phi}^{n}$ induce a homomorphism of cohomology groups $(\phi^{n})^{*}: H^{n}(\Gamma', A) \longrightarrow H^{n}(\Gamma, A)$ given by:

$$(\phi^n)^*([f]) = [\overline{\phi}'^n(f)]$$
 forevery $[f] \in H^n(\Gamma', A)$.

REMARK 2.1 We have:

 $H^0(\Gamma, A) = \{x \in A \mid x.a = a \text{ for all } x \in \Gamma\}$ is the set of elements of A such that Γ operates simply on A. In particular, if Γ operates trivially on A, i.e. x.a = a for all $x \in \Gamma$, then $H^0(\Gamma, A) = A$.

 $Z^{1}(\Gamma, A) = \{ f : \Gamma \longrightarrow A \mid f(x_{0}x_{1}) = f(x_{0}) + x_{0}f(x_{1}), \forall (x_{0}, x_{1}) \in \Gamma_{(2)} \}$ is the group of crossed morphisms of groupoids.

 $B^1(\Gamma, A) = \{f : \Gamma \longrightarrow A \mid f(x) = x \cdot a - a, \forall x \in \Gamma\}$ is the group of principal morphisms of groupoids.

References

[1] A. Weinstein, Symplectic groupoids and Poisson manyfolds, Bull. Amer. Math. Soc. 16 (1987)

[2] M. Hall Jr. Theory of groups, New York, 1959.

[3] A. Coste, P. Dazord, A. Weinstein *Groupoides symplectiques*, Publ.Dept. Math. Lyon, 2/A, 1987, p. 1-62.

[4] Gh. Ivan On cohomology of Brandt groupoids, Anal.Univ. Timişoara, Proceedings of the International Conference on Group Theory, 1992.

Author:

Dorin Wainberg

"1 Decembrie 1918" University of Alba Iulia N. Iorga, no.11-13, Alba Iulia, 510009, Romania e-mail:dwainberg@uab.ro

114