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Abstract. In this paper we introduce and study the arithmetic functions , )1(
kJ  and )2(

kJ of 

Jordan's type. The basic theory of Jordan's totient function kJ  is reobtained by using some 
properties of our second function. 
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1. Introduction 

 
An arithmetic function generalizing the well-known Euler totient function ϕ is 

the Jordan's function of order k, where k is a positive integer. This function is 
denoted by kJ  and it is defined by )(nJ k  = the number of all vectors ( 1a ,..., 

ka ) kZ+∈  with the properties nai ≤ , i= 1,2, . . . , k  and gcd(a1,... ,a1,n) = 1. 

It is clear that Ji=ϕ. The early history of the function kJ  is presented in [4]. 

The function kJ  has some interesting properties and numerous applications. 
In what follows we recall few of them. 

 
1.The function kJ  is multiplicative, i.e. for any positive integers m, n with 

gcd(m,n) = 1 the relation )()()( nJmJmnJ kkk =  holds ([7], [8]). 
 
2. If p is a primp and a is a positive integer, then 

)()( −−= ααα k
k pppJ  
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3. If the unique prime decomposition of  n is m
mppn αα K1

1= then 
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An easy argument for this formula is the inclusion-exclusion principle (see [7], 
[8]). 

 
4. (Gauss' type formula) The following formula holds 

∑ =
nd

k
k ndJ )(  

(see [7] and [8]). 
     
5. The following formula holds 

∑ =
nd

k
k

k n
nJ

d
d )()(µ  

where n is the Möbius inversion function. That is for all positive integers n 
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where ( ) k
k nnζ =  and "*" is the Dirichlet convolution defined by 

( )( ) ∑ 
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for any functions f,g : CZ →+  ([8, pp. 12-13]). 
 
6. Recall that the Riemann ζ  function is defined by 

( ) 1Re,1
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The following formula holds 
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7. The following asymptotic formula holds ([8, pp. 265-272]) 
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In the case  k=2m-1 we get 
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8. The von Sterneck function Hk is defined by 
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where [s1,...., sk] denotes the latest common multiple of integers s1,..., sk. For all 
positive integers k the following formula is true ([8. Proposition 1.7, pp. 15]): 

kk HJ =  
 
9. The interpretation of the integer Jk(t) in the theory of finite groups is the 

following. Consider the Abelian group defined as the cross product nn
k
n ZZZ K×= , 

where (Zn, +) is the well-known group of residues modulo n. Then for t\n we have 
(see [11]) 

})(:{#)( tgordZgtJ k
nk =∈=  

  
10. Some interesting applications in determining the order of some matrices finite 

groups are given by 
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where GL(m,Zn), SL(m,Zn), Sp(2m, Zn) are the general linear group, the special linear 
group and the symplectic group, respectively, of matrices of order m with elements 
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in the ring Zn. The first two formulas are obtained by C. Jordan [7] and they are also 
contained in [1]. The third formula is given in [11]. The multiplicative group G(n) is 
defined by 

}1,,,:{)( ±=−∈







= βγαδδγβα

δγ
βα

andZnG n  

For any positive integer 3≥n the order of G(n) is given by  
|G(n)| = 2nJ2(n). 

 
11. Other applications of the Jordan's function  J2 are given in Diophantine Anal-

ysis (see [3]). Some special properties of Jk are obtained in the paper [5], [6] and [10]. 
There are few generalizations of Jordan's totient function. We mention here the 

recent one given in [12] and defined by 
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where m and k are fixed positive integers. It is dear that. )n(J)n(S k
k
k = . 

In this paper we introduce two functions of Jordan' type and we make the con-
nection with the function Jk. The basic theory for Jordan's function Jk is reobtained by 
using our second function. 

 
 

2. The arithmetic function )(
kJ 1  

 
For a fixed positive integer k define 

43421
K
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The cardinal numbers of these finite sets are denoted by 
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 ( ) ( ) )(#)(# )1(
11 nNnJandnMnF kkkk == ++  

It is clear that for k = 1 we obtain φJJ )( == 1
1

1 , the well-known Euler 
totient function. 

The Gauss' type formula for the function )1(
kJ is given in  

Theorem 2.1. The following formula holds 

 ∑ 
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Proof. First of all let us note the following relation 
 ( ) ( )nJnFnF kkk

)1(
11 )1( +−= ++  (2.2) 

Consider the set 
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Replacing  n by n-1 in the above relation we get 
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From (2.3) and (2.4) and then by using (2.2) it follows  

∑ 



















 −

−











=








+
−+

−







+
+

=







+
−+

+++
nd

kkk d
nF

d
nFF

k
kn

k
kn

k
kn

/
111

1
1

1
11

1
 

( ) ( )( ) ( )∑∑ =−−= ++
nd

k
nd

kk dJdFdF
/

)1(

/
11 1  

For k = 1. from (2.1) we obtain the classical Gauss' formula. 
 

Theorem 2.2. Fur any positive, integer k ≥  2 the following relation is  satisfied 

 ( )∑
=

−=
2

)1(
1)(

m
kk mJnF   (2.5) 

Proof. From (2.1) and from the well- known Mobius inversion formula we have 
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where 
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k =1 . Using the relations (2.2) and 

(2.6) the formula (2.5) quickly follows.  
 

Theorem 2.3. The following formula holds 
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Proof. We have 
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and the formula is proved.  
Corollary 2.4. If n is a prime, then 

 

 ( ) ( )2
2
1 2

1

1

1

−+=∑∑






=

−

=

nnm
s
n

m

n

s

ϕ     (2.8) 

Proof. Consider k = 2 in (2.7).  
 

3. The arithmetic function )(
kJ 2 and the connection to Jordan's function kJ  

Consider the set 
 ( ) ( ) }1,,gcd:,{)( 11 =∈= + naaZaanP k

k
kk KK  

and define )(#)( nPnG kk = . Let us define the integer 
 

( ) }:,{#)( 1
)2( nequalisacomponentaleastatPaanJ jkkk ∈= K  

The Gauss' type formula for the function )2(
kJ  is given by  
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Theorem 3.1. The fallowing formula holds 
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Proof. Note that the following relation is valid 
 ( ) ( )nJnGnG kkk
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Replacing n by n - 1 we get  
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It follows 
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Remarks.  

1) If k = 2, then 
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and from relation (3.1) we obtain 
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that is the classical Gauss' formula for Eulers totient function. 
 
2) The functions )1(

kJ , )2(
kJ are not multiplicative. Indeed, if CZf →+: is 

a numerical function with f(1) = 1, define its summation function S by formula 
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( )∑
nd

dfnS
/

)(  . It is easy to see that if f is multiplicative then S is multiplicative. 

From formulas (2.1) and (3.1) the summation functions of )1(
kJ and )2(

kJ  are 
not multiplicative, hence these functions are not multiplicative.  

  
Theorem 3.2. The fallowing formla holds 
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Proof. Applying the Möbius inversion formula, from (3.1) we obtain 
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where gk(m) = mk - (m - 1 )k. That is µ*)2(
kk gJ = . From (3.6) and (3.2) it follows 

relation (3.5).  
The connection between )(

kJ 2  and the Jordan's functions Ji is given by 
 

Theorem 3.3. The following relation holds 
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Remarks.  

1) An other argument for formula (3.7) can he obtained by using 
inclusion-exclusion principle as follows. Denote by M the set of all vectors 
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( ) 1
11 ,, +

++ ∈ k
k Zaa K such that ( ) 1,gcd,1 1111 =≤≤≤≤ ++ kk aanaa KK  and n is a 

component of the vector ( )11, +kaa K  at least once. Also, consider the sets M, 

consisting in all vectors ( ) 1
11, +

++ ∈ k
k Zaa K , 

 ( ) 1,gcd,1 1111 =≤≤≤≤ ++ kk aanaa KK , and n is the sth component of the 
vector, s = 1,2,..., k+1. 

It is clear that U
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i.e. the connection between )2(
kJ and Jordan's functions given in the formula 

(3.7).  
  
2) Consider 1
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and a simple mathematical induction argument it follows 
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From formula (3.8) we deduce immediately that the Jordan function Js is mul-
tiplicative. 

Also, by using formula (3.8) and Möbius inversion formula we obtain the Gauss' 
formula for Jk, i.e. 

k
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k ndJ =∑

/

)(  

 
References 
 
[1] Cohen, E.. Theorie des nombres, Herman, Paris, 1914. 
[2] Cohen, E., Some Totient Functions, Duke Math. J. 23. 515-522. 1956. 



Proceedings of the International Conference on Theory and Applications of 
Mathematics and Informatics – ICTAMI 2003, Alba Iulia  

 
 

 22

[3] Dajani. K., Kraaikamp, C., A Note on the Approximation by Continued Fractions 
under an Extra  Condition, New York ,1. Math. 3A(1998), 69-80. 
[4] Dickson. L. E., History of the Theory of Numbers. Chelsea Publishing Company, 
New York. 1971, vol. 1. 
[5] Haukkanen, P., Some. Limits Involving Jordan's Function and the Divisor Function, 
Octogon Math. Mag., Vol. 3. No. 2(1995), 8-11. 
[6] Haukkanen, P., Wang,J., A Generalization of Menon's Identity woth Respect to a 
Set of Polynomials, Portulagiae Matematica, Vol. 53, Fase. 3 - 1996, 331-337. 
[7] Jordan, C., Traitee. substitutions et des equations algebriques, Gauthier-Yillars. Paris, 
1957. 
[8] McCarthy, P. J., Introduction to Arithmetical Functions, Springer-Verlag, New 

York, 1986. 
[9] Niveu. I., Zuckerman. H. S., Montgomery, H. L., An Introduction in the Theory of 
Numbers. John Wiley & Sons, Inc., New York – Chichester - Brisbane Toronto    
Singapore, 1991. 
[10] Sandor,  J.,  Note,  on Jordan's arithmetical function. Octogon Math.  Mag. 

1(1993), 1-4. 
[11] Schulte, J., Uber die Jordansche Verallgemeinerunq der Eulerschen Funktion, 

Resultate der Mathemalik, Vol. 36, No. 3/4, 354-364, 1999. 
[12] Shonhiwa, T., A generalization of the Euler and Jordan totient, functions. The 

Fibonacci Quarterly, Vol. 37(1999), No. 1, 67-76. 
 
Authors: 
Dorin Andrica – “Babeş-Bolyai” University, Faculty of Mathematics and Computer 
Science, Cluj Napoca, Romania, e-mail: dandrica@math.ubbcluj.ro 
 
Mihai Piticari – “Dragoş-Vodă” National College Câmpulung Moldovenesc, Romania 
 

 
 
 
 


