ON SOME EXTENSIONS OF JORDAN'S ARITHMETIC FUNCTIONS

by
 Dorin Andrica and Mihai Piticari

Abstract

In this paper we introduce and study the arithmetic functions, $J_{k}^{(1)}$ and $J_{k}^{(2)}$ of Jordan's type. The basic theory of Jordan's totient function J_{k} is reobtained by using some properties of our second function.

Keywords: Jordan totient, greatest common divisor
Mathematics Subject Classification (2000): 11A25,11A05

1. Introduction

An arithmetic function generalizing the well-known Euler totient function φ is the Jordan's function of order k, where k is a positive integer. This function is denoted by J_{k} and it is defined by $J_{k}(n)=$ the number of all vectors $\left(a_{1}, \ldots\right.$, $\left.a_{k}\right) \in Z_{+}^{k}$ with the properties $a_{i} \leq n, i=1,2, \ldots, k$ and $\operatorname{gcd}\left(a_{1}, \ldots, a_{1}, n\right)=1$. It is clear that $J_{i}=\varphi$. The early history of the function J_{k} is presented in [4].

The function J_{k} has some interesting properties and numerous applications. In what follows we recall few of them.
1.The function J_{k} is multiplicative, i.e. for any positive integers m, n with $\operatorname{gcd}(m, n)=1$ the relation $J_{k}(m n)=J_{k}(m) J_{k}(n)$ holds ([7], [8]).
2. If p is a primp and a is a positive integer, then

$$
J_{k}\left(p^{\alpha}\right)=p^{\alpha}-p^{k(\alpha-)}
$$

3. If the unique prime decomposition of n is $n=p_{1}^{\alpha_{1}} \ldots p_{m}^{\alpha_{m}}$ then

$$
J_{k}(n)=n^{k}\left(1-\frac{1}{p_{1}^{k}}\right) \ldots\left(1-\frac{1}{p_{m}^{k}}\right)
$$

An easy argument for this formula is the inclusion-exclusion principle (see [7], [8]).
4. (Gauss' type formula) The following formula holds

$$
\sum_{d / n} J_{k}(d)=n^{k}
$$

(see [7] and [8]).
5. The following formula holds

$$
\sum_{d / n} \frac{\mu(d)}{d^{k}}=\frac{J_{k}(n)}{n^{k}}
$$

where n is the Möbius inversion function. That is for all positive integers n

$$
J_{k}(n)=\sum_{d / n}\left(\frac{n}{d}\right)^{k} \mu(d)=\sum_{d / n} d^{k} \mu\left(\frac{n}{d}\right)=\left(\zeta_{k} \times \mu\right)(n)
$$

where $\zeta_{k}(n)=n^{k}$ and "*" is the Dirichlet convolution defined by

$$
\left(f^{*} g\right)(n)=\sum_{d / n} f(d) g\left(\frac{n}{d}\right)
$$

for any functions $f, g: Z_{+} \rightarrow C$ ([8, pp. 12-13]).
6. Recall that the Riemann ζ function is defined by

$$
\zeta(z)=\sum_{n=1}^{\infty} \frac{1}{n^{z}}, \operatorname{Re} z>1
$$

The following formula holds

$$
\frac{\zeta(z-k)}{\zeta(z)}=\sum_{n=1}^{\infty} \frac{J_{k}(n)}{n^{z}}, \operatorname{Re} z>1 .
$$

Proceedings of the International Conference on Theory and Applications of
Mathematics and Informatics - ICTAMI 2003, Alba Iulia
7. The following asymptotic formula holds ([8, pp. 265-272])

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{k+1}} \sum_{s=1}^{n} J_{k}(s)=\frac{1}{(k+1) \zeta(k+1)}
$$

In the case $k=2 m-1$ we get

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2 m}} \sum_{s=1}^{n} J_{2 m-1}(s)=\frac{(2 m-1)!}{2^{m-1}\left|B_{2 m}\right| \pi^{2 m}}
$$

8. The von Sterneck function H_{k} is defined by

$$
H_{k}(n)=\sum_{\substack{\left[s_{1}, \ldots, s_{k} k \\ 1 \leq n, n \\ 1 \leq, \ldots, k \leq n\right.}}\left(s_{1}\right) \ldots \quad\left(s_{k}\right)
$$

where $\left[s_{l}, \ldots, s_{k}\right]$ denotes the latest common multiple of integers s_{l}, \ldots, s_{k}. For all positive integers k the following formula is true ([8. Proposition 1.7, pp. 15]):

$$
J_{k}=H_{k}
$$

9. The interpretation of the integer $J_{k}(t)$ in the theory of finite groups is the following. Consider the Abelian group defined as the cross product $Z_{n}^{k}=Z_{n} \times \ldots Z_{n}$, where $\left(Z_{n},+\right)$ is the well-known group of residues modulo n. Then for $t \mid n$ we have (see [11])

$$
J_{k}(t)=\#\left\{g \in Z_{n}^{k}: \operatorname{ord}(g)=t\right\}
$$

10. Some interesting applications in determining the order of some matrices finite groups are given by

$$
\begin{aligned}
& \left|G L\left(m, Z_{n}\right)\right|=n^{\frac{m(m-1)}{2}} \prod_{k=1}^{m} J_{k}(n) \\
& \left|S L\left(m, Z_{n}\right)\right|=n^{\frac{m(m-1)}{2}} \prod_{k=2}^{m} J_{k}(n) \\
& \left|S p\left(2 m, Z_{n}\right)\right|=n^{m^{2}} \prod_{k=1}^{m} J_{2 k}(n)
\end{aligned}
$$

where $G L\left(m, Z_{n}\right), S L\left(m, Z_{n}\right), S p\left(2 m, Z_{n}\right)$ are the general linear group, the special linear group and the symplectic group, respectively, of matrices of order m with elements

Proceedings of the International Conference on Theory and Applications of Mathematics and Informatics - ICTAMI 2003, Alba Iulia
in the ring Z_{n}. The first two formulas are obtained by C. Jordan [7] and they are also contained in [1]. The third formula is given in [11]. The multiplicative group $G(n)$ is defined by

$$
G(n)=\left\{\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right): \alpha, \beta, \gamma, \delta \in Z_{n} \text { and } \alpha \delta-\beta \gamma= \pm 1\right\}
$$

For any positive integer $n \geq 3$ the order of $G(n)$ is given by

$$
|G(n)|=2 n J_{2}(n) .
$$

11. Other applications of the Jordan's function J_{2} are given in Diophantine Analysis (see [3]). Some special properties of J_{k} are obtained in the paper [5], [6] and [10].

There are few generalizations of Jordan's totient function. We mention here the recent one given in [12] and defined by

$$
S_{m}^{k}(n)=\sum_{\substack{1 \leq a_{1}, \ldots, a_{m} \leq n \\ \operatorname{gcd}\left(a_{1}, \ldots, a_{m}, k\right)=1}} 1
$$

where m and k are fixed positive integers. It is dear that. $S_{k}^{k}(n)=J_{k}(n)$.
In this paper we introduce two functions of Jordan' type and we make the connection with the function J_{k}. The basic theory for Jordan's function J_{k} is reobtained by using our second function.

2. The arithmetic function $J_{k}^{(1)}$

For a fixed positive integer k define $Z_{+}^{k+1}=\underbrace{Z_{+} \times \ldots \times Z_{+}}_{k+1 \text { limes }}$ and consider the sets

$$
\begin{aligned}
& M_{k+1}(n)=\left\{\left(a_{1}, \ldots a_{k+1}\right) \in Z_{+}^{k+1}: 1 \leq a_{1} \leq \ldots \leq a_{k+1} \leq n\right. \text { and } \\
& \left.\quad \operatorname{gcd}\left(a_{1}, \ldots a_{k+1}, n\right)=1\right\} \\
& N_{k}(n)=\left\{\left(a_{1}, \ldots a_{k}, n\right) \in Z_{+}^{k+1}: 1 \leq a_{1} \leq \ldots \leq a_{k+1} \leq n\right. \text { and } \\
& \left.\operatorname{gcd}\left(a_{1}, \ldots a_{k}, n\right)=1\right\}
\end{aligned}
$$

The cardinal numbers of these finite sets are denoted by

$$
F_{k+1}(n)=\# M_{k+1}(n) \text { and } J_{k}^{(1)}(n)=\# N_{k}(n)
$$

It is clear that for $k=1$ we obtain $J_{1}^{(1)}=J_{1}=\varphi$, the well-known Euler totient function.

The Gauss' type formula for the function $J_{k}^{(1)}$ is given in
Theorem 2.1. The following formula holds

$$
\begin{equation*}
\sum_{d / n} J_{k}^{(1)}(d)=\binom{n+k-1}{k} \tag{2.1}
\end{equation*}
$$

Proof. First of all let us note the following relation

$$
\begin{equation*}
F_{k+1}(n)=F_{k+1}(n-1)+J_{k}^{(1)}(n) \tag{2.2}
\end{equation*}
$$

Consider the set

$$
\begin{gathered}
S_{d}(n)=\left\{\left(a_{1}, \ldots a_{k+1}\right) \in Z_{+}^{k+1}: 1 \leq a_{1} \leq \ldots \leq a_{k+1} \leq n\right. \text { and } \\
\left.\operatorname{gcd}\left(a_{1}, \ldots a_{k+1}\right)=d\right\}
\end{gathered}
$$

We have the relations

$$
\begin{equation*}
\binom{n+k}{k+1}=\sum_{d=1}^{n} \# S_{d}(n)=\sum_{s=1}^{n} F_{k+1}\left(\left[\frac{n}{d}\right]\right) \tag{2.3}
\end{equation*}
$$

Replacing n by $n-1$ in the above relation we get

$$
\begin{equation*}
\binom{n+k-1}{k+1}=\sum_{s=1}^{n-1} F_{k+1}\left(\left[\frac{n-1}{s}\right]\right) \tag{2.4}
\end{equation*}
$$

From (2.3) and (2.4) and then by using (2.2) it follows

$$
\begin{gathered}
\binom{n+k-1}{k+1}=\binom{n+k}{k+1}-\binom{n+k-1}{k+1}=\sum_{d / n} F_{k+1}\left(F_{k+1}\left(\left[\frac{n}{d}\right]\right)-F_{k+1}\left(\left[\frac{n-1}{d}\right]\right)\right) \\
=\sum_{d / n}\left(F_{k+1}(d)-F_{k+1}(d-1)\right)=\sum_{d / n} J_{k}^{(1)}(d)
\end{gathered}
$$

For $k=1$. from (2.1) we obtain the classical Gauss' formula.
Theorem 2.2. Fur any positive, integer $\mathrm{k} \geq 2$ the following relation is satisfied

$$
\begin{equation*}
F_{k}(n)=\sum_{m=2} J_{k-1}^{(1)}(m) \tag{2.5}
\end{equation*}
$$

Proof. From (2.1) and from the well-
known Mobius inversion formula we have 17

$$
\begin{equation*}
J_{k}^{(1)}(n)=\sum_{d / n} \mu\left(\frac{n}{d}\right) f_{k}(d) \tag{2.6}
\end{equation*}
$$

where $f_{k}(m)=\binom{m+k-1}{k}$ i.e. $F_{k}^{(1)}(n)=f_{k} * \mu$. Using the relations (2.2) and (2.6) the formula (2.5) quickly follows.

Theorem 2.3. The following formula holds

$$
\begin{equation*}
J_{k}^{(1)}(n)=\sum_{\substack{s<n \\ \operatorname{gcc}(s, n)=1}} \sum_{m=1}^{\left[\frac{n}{s}\right]} J_{k-1}^{(1)}(m) \tag{2.7}
\end{equation*}
$$

Proof. We have

$$
J_{k}^{(1)}(n)=\# N_{k}(n)=\sum_{\substack{s<n \\ \operatorname{gcd}(s, n)=1}} \# S_{S}(n)=\sum_{\substack{s<n \\ \operatorname{gcd}(s, n)=1}} F_{k}\left(\left[\frac{n}{s}\right]\right)=\sum_{\substack{s<n \\ \operatorname{gcd}(s, n)=1}} \sum_{m=1}^{\left[\frac{n}{s}\right]} J_{k-1}^{(1)}(m)
$$

and the formula is proved.
Corollary 2.4. If n is a prime, then

$$
\begin{equation*}
\sum_{s=1}^{n-1} \sum_{m=1}^{\left[\frac{n}{s}\right]} \varphi(m)=\frac{1}{2}\left(n^{2}+n-2\right) \tag{2.8}
\end{equation*}
$$

Proof. Consider $k=2$ in (2.7).

3. The arithmetic function $J_{k}^{(2)}$ and the connection to Jordan's function J_{k}

Consider the set

$$
P_{k}(n)=\left\{\left(a_{1}, \ldots a_{k}\right) \in Z_{+}^{k}: \operatorname{gcd}\left(a_{1}, \ldots a_{k}, n\right)=1\right\}
$$

and define $G_{k}(n)=\# P_{k}(n)$. Let us define the integer

$$
J_{k}^{(2)}(n)=\#\left\{\left(a_{1}, \ldots a_{k}\right) \in P_{k}: \text { at least a component } a_{j} \text { is equal } n\right\}
$$

The Gauss' type formula for the function $J_{k}^{(2)}$ is given by

Theorem 3.1. The fallowing formula holds

$$
\begin{equation*}
\sum_{d / n} J_{k}^{(2)}(d)=n^{k}-(n-1)^{k} \tag{3.1}
\end{equation*}
$$

Proof. Note that the following relation is valid

$$
\begin{equation*}
G_{k}(n)=G_{k}(n-1)+J_{k}^{(2)}(n) \tag{3.2}
\end{equation*}
$$

Consider the set

$$
N_{d}(n)=\left\{\left(a_{1}, \ldots a_{k}\right) \in Z_{+}^{k}: 1 \leq a_{1} \leq \ldots \leq a_{k} \leq n \text { and } \operatorname{gcd}\left(a_{1}, \ldots a_{k}\right)=d\right\}
$$

and obtain

$$
\begin{equation*}
n^{k}=\sum_{s=1}^{n} \# N_{s}(n)=\sum_{s=1}^{n} G_{k}\left(\left[\frac{n}{s}\right]\right) \tag{3.3}
\end{equation*}
$$

Replacing n by $\mathrm{n}-1$ we get

$$
\begin{equation*}
(n-1)^{k}=\sum_{s=1}^{n} G_{k}\left(\left[\frac{n-1}{s}\right]\right) \tag{3.4}
\end{equation*}
$$

It follows

$$
\sum_{d / n} J_{k}^{(2)}(d)=\sum_{d / n}\left(G_{k}(d)-G_{k}(d-1)\right)=n^{k}-(n-1)^{k}
$$

Remarks.

1) If $k=2$, then

$$
J_{k}^{(2)}(n)= \begin{cases}2(n) & \text { if } n>1 \\ 2(n)-1=1 & \text { if } n=1\end{cases}
$$

and from relation (3.1) we obtain

$$
\sum_{d / n} J_{k}^{(2)}(d)=\sum_{d / n} 2(d)-1=n^{2}-(n-1)^{2}=2 n-1
$$

that is the classical Gauss' formula for Eulers totient function.
2) The functions $J_{k}^{(1)}, J_{k}^{(2)}$ are not multiplicative. Indeed, if $f: Z_{+} \rightarrow C$ is a numerical function with $f(1)=1$, define its summation function S by formula
$S(n) \sum_{d / n} f(d)$. It is easy to see that if f is multiplicative then S is multiplicative.
From formulas (2.1) and (3.1) the summation functions of $J_{k}^{(1)}$ and $J_{k}^{(2)}$ are not multiplicative, hence these functions are not multiplicative.

Theorem 3.2. The fallowing formla holds

$$
\begin{equation*}
G_{k}(n)=1+\sum_{m=2}^{n} J_{k}^{(2)}(m) \tag{3.5}
\end{equation*}
$$

Proof. Applying the Möbius inversion formula, from (3.1) we obtain

$$
\begin{equation*}
J_{k}^{(2)}(n)=\sum_{d / n} \mu\left(\frac{n}{d}\right) g_{k}(d) \tag{3.6}
\end{equation*}
$$

where $g_{k}(m)=m^{k}-(m-1)^{k}$. That is $J_{k}^{(2)}=g_{k} * \mu$. From (3.6) and (3.2) it follows relation (3.5).

The connection between $J_{k}^{(2)}$ and the Jordan's functions J_{i} is given by
Theorem 3.3. The following relation holds

$$
\begin{equation*}
J_{k}^{(2)}(n)=\sum_{s=1}^{k+1}(-1)^{s+1}\left(\frac{k+1}{s}\right) J_{k+1-s}(m) \tag{3.7}
\end{equation*}
$$

Proof. Note that we can write

$$
\begin{gathered}
J_{k}^{(1)}(n)=\sum_{d / n} \mu\left(\frac{n}{d}\right)\left(d^{k+1}-(d-1)^{k+1}\right)=\sum_{d / n} \mu\left(\frac{n}{d}\right) d^{k+1} \mu-\sum_{d / n}(d-1)^{k+1} \mu\left(\frac{n}{d}\right)= \\
=J_{k+1}(n)-\sum_{d / n}(d-1)^{k+1} \mu\left(\frac{n}{d}\right)=J_{k+1}(n)-\sum_{d / n} \sum_{m=0}^{k+1}(-1)^{k+1}\binom{k+1}{s} \mu\left(\frac{n}{d}\right) d^{k+1-s}= \\
=\sum_{s=1}^{k+1}(-1)^{s+1}\binom{k+1}{s} J_{k+1-s}(n)
\end{gathered}
$$

Remarks.

1) An other argument for formula (3.7) can he obtained by using inclusion-exclusion principle as follows. Denote by M the set of all vectors
$\left(a_{1}, \ldots, a_{k+1}\right) \in Z_{+}^{k+1}$ such that $1 \leq a_{1} \leq \ldots \leq a_{k+1} \leq n, \operatorname{gcd}\left(a_{1}, \ldots a_{k+1}\right)=1$ and n is a component of the vector $\left(a_{1}, \ldots a_{k+1}\right)$ at least once. Also, consider the sets M, consisting in all vectors $\left(a_{1}, \ldots a_{k+1}\right) \in Z_{+}^{k+1}$,
$1 \leq a_{1} \leq \ldots \leq a_{k+1} \leq n, \operatorname{gcd}\left(a_{1}, \ldots a_{k+1}\right)=1$, and n is the $s^{\text {th }}$ component of the vector, $s=1,2, \ldots, k+1$.

It is clear that $M=\bigcup_{s=1}^{k+1} M_{s}$ and from inclusion-exclusion principle we have

$$
\# M=\sum_{s=1}^{k+1} \# M_{s}-\sum_{1 \leq i \leq j \leq k+1} \# M_{i} \bigcap M_{j}+\ldots
$$

That is

$$
J_{k}^{(2)}(n)=\left(\frac{k+1}{1}\right) J_{k}(n)-\left(\frac{k+1}{1}\right) J_{k}(n)+\ldots
$$

i.e. the connection between $J_{k}^{(2)}$ and Jordan's functions given in the formula (3.7).
2) Consider $n=p_{1}^{\alpha 1} \ldots p_{1}^{\alpha 1}$ the prime factorization of n. Using formula (3.7) and a simple mathematical induction argument it follows

$$
\begin{equation*}
J_{k}^{(2)}(n)=\sum_{d / n} \mu\left(\frac{n}{d}\right) d^{k}=n^{k}\left(1-\frac{1}{p_{1}^{k}}\right) \ldots\left(1-\frac{1}{p_{m}^{k}}\right) \tag{3.8}
\end{equation*}
$$

From formula (3.8) we deduce immediately that the Jordan function J_{s} is multiplicative.

Also, by using formula (3.8) and Möbius inversion formula we obtain the Gauss' formula for J_{k}, i.e.

$$
\sum_{d / n} J_{k}(d)=n^{k}
$$

References

[1] Cohen, E.. Theorie des nombres, Herman, Paris, 1914.
[2] Cohen, E., Some Totient Functions, Duke Math. J. 23. 515-522. 1956.
[3] Dajani. K., Kraaikamp, C., A Note on the Approximation by Continued Fractions under an Extra Condition, New York ,1. Math. 3A(1998), 69-80.
[4] Dickson. L. E., History of the Theory of Numbers. Chelsea Publishing Company, New York. 1971, vol. 1.
[5] Haukkanen, P., Some. Limits Involving Jordan's Function and the Divisor Function, Octogon Math. Mag., Vol. 3. No. 2(1995), 8-11.
[6] Haukkanen, P., Wang,J., A Generalization of Menon's Identity woth Respect to a Set of Polynomials, Portulagiae Matematica, Vol. 53, Fase. 3-1996, 331-337.
[7] Jordan, C., Traitee. substitutions et des equations algebriques, Gauthier-Yillars. Paris, 1957.
[8] McCarthy, P. J., Introduction to Arithmetical Functions, Springer-Verlag, New York, 1986.
[9] Niveu. I., Zuckerman. H. S., Montgomery, H. L., An Introduction in the Theory of Numbers. John Wiley \& Sons, Inc., New York - Chichester - Brisbane Toronto Singapore, 1991.
[10] Sandor, J., Note, on Jordan's arithmetical function. Octogon Math. Mag. 1(1993), 1-4.
[11] Schulte, J., Uber die Jordansche Verallgemeinerunq der Eulerschen Funktion, Resultate der Mathemalik, Vol. 36, No. 3/4, 354-364, 1999.
[12] Shonhiwa, T., A generalization of the Euler and Jordan totient, functions. The Fibonacci Quarterly, Vol. 37(1999), No. 1, 67-76.

Authors:
Dorin Andrica - "Babeş-Bolyai" University, Faculty of Mathematics and Computer Science, Cluj Napoca, Romania, e-mail: dandrica@math.ubbcluj.ro
Mihai Piticari - "Dragoş-Vodă" National College Câmpulung Moldovenesc, Romania

