THE R - PERFECT MORPHISMES

by Dumitru Botnaru and Alina Țurcanu

Definition. Let \mathbb{R} – a reflective subcategory of the C category. The epimorphisme $p: X \to Y$ is called \mathbb{R} - extension if for any object $A \in |\mathbb{R}|$, any morphism $f: X \to A$ extends trough the morphisme p, i.e f = g p for some morphism p.

We shall denote by γR the class of all R – extensions. The class lower ortogonale morphisms $(\gamma R)^{\perp}$ of the class γR is called the class of R-perfect morphisms. It is well known that in a small cowell category with inductive limits $(\gamma R, (\gamma R)^{\perp})$ is a right-bicategorical structure. For some reflective subcategories the classes γR and $(\gamma R)^{\perp}$ have been described (to see [S]). We shall examine some properties of these classes. For some categories there are conditions when $(\gamma R, \gamma R)^{\perp}$) is a right-bicategorical structure and there is a process for obtaining $(\gamma R, (\gamma R)^{\perp})$ -factorization of any morphism.

Lemma. Let C - a categorie with puschout square, m e - an epi and m - an universal mono. Then e is an epi.

Proof. Let

u e = v e (1) and we shall prove that u = v. We construct the pull-back squares: on the morphisms *m* and *u*

on the morphisms m and v

$$m_2 v = v' m \tag{3}$$

on the morphisms m_1 and m_2

$$m_2 m_1 = m_1' m_2$$
 (4)

.

We have

$$m'_1v'me = (from(3)) = m'_1m_2ve = (from(1)) = m'_1m_2ue =$$

= (from(4)) = m'_2m_1ue = (from(2)) = m'_2u'me

i.e.

$$m_1'v'me = m_2'u'me \tag{5}$$

and since m e is epi it follows that

$$m_1'v' = m_2'u' \tag{6}$$

Then

$$m'_2m_1u = (from(2)) = m'_2u'm = (from(6)) = m'_1v'm =$$

= $(from(3)) = m'_1m_2v = (from(4)) = m'_2m_1v$

i.e.

$$m_2 m_1 u = m_2 m_1 v \tag{7}$$

Since *m* is a universal mono and the squares are (2)-(4) are puschout we deduce that m_1 , m_2 , m_1' and m_2' are monomorphisms. Thus $m_2' m_1$ is a monomorphisme. Then from the equality (7) it follows that u = v.

Corollary. Let C – category with puschout squares, fg – an epi and an universal mono. The morphisme g is an epi iff f is an universal mono.

Proof. Let f be an epi. Then the square $fg = 1 \cdot (fg)$ is puschout and thus f is an universal mono. The reciprocal affirmation follows from the above lemma.

Definition. The class A of morphisms of a category C is called left-stabled if from the fact that a f' = f a' is a pull-back square and $a \in A$ it follows that $a' \in A$, too.

Let C be a category with pull-back and puschout squares, the left-stabled class M_{μ} of universal mono, and R be a monoreflective subcategory. Then $(\gamma R, (\gamma R)^{\perp})$ is a right-bicategorical structure. The both classes contain the class of izomorphisms and are closed respect to the composition. It remains to prove that the $(\gamma R, (\gamma R)^{\perp})$ – factorization of the morphisms from the category C. Let $f: X \to Y \in C$, $r^X: X \to Y$ rX and $r^{Y}: Y \rightarrow rY$ the R-replicas of the respective objects. Then

 $r^{Y}f = r(f) r^{X}$ (1) for some morphism r(f). We construct the pull-back squares on the morphisms r^{Y} and r(f):

$$r^{Y}u = r(f) v \tag{2}$$

Then

$$\begin{aligned} f &= u t \\ r^X &= v t \end{aligned} (3)$$

for some morphism *t*. A monoreflective subcategory is at the same time an epireflective and M_u - reflective. Thus, $r^Y \in M_u$, and by the hypotheses, $v \in M_u$. By the lemma, from the equality (4) it follows that *t* is an epi. Thus, $t \in \gamma \mathbb{R}$. Further, $\mathbb{R} \subset (\gamma \mathbb{R})^{\perp}$, thus $r(f) \in (\gamma \mathbb{R})^{\perp}$. Since the square (2) is pull-back, we deduce that $u \in (\gamma \mathbb{R})^{\perp}$. In this way we have proved that the equality (3) is the $(\gamma \mathbb{R}, (\gamma \mathbb{R})^{\perp})$ – factorization of the morphisms *f*. The unity of the factorization follows from the fact that the $\gamma \mathbb{R}$ and $(\gamma \mathbb{R})^{\perp}$ classes are ortogonals. So, I have proved the follow result:

Theorem. Let C be a category with pull-back and puschout squares, the left-stabled class M_u of universal mono, and R be a monoreflective subcategory. Then:

- 1. $(\gamma R, (\gamma R)^{\perp})$ is a right-bicategorical structure.
- 2. For all morphism $f: X \to Y$ the equality f = u t is the $(\gamma R, (\gamma R)^{\perp}) factorization of the morphisms <math>f$.
- 3. $f \in (\gamma \mathbb{R})^{\perp}$ iff $r(f) r^{X} = r^{Y} f$ is a pull-back squares.

Remark. We mention that in the catgory of locally convex spaces C_2V and C_2Ab (of the abeliene local convex groups), the class M_u is left-stable and any non-null reflective subcategory is monoreflective.

References

[1] Strecker G.E., On characterizations of perfect morphisms and epireflective hulls. Lecture Notes in Math., 1974, v.378, p.468-1500.

Authors:

Dumitru Botnaru and Alina Țurcanu - Technical University of Moldova 2005 Bul. Stefan cel Mare, 168, Dep. Math., email:dvbotnaru@mail.md; talina@moldova.cc