ABOUT SOME INEQUALITIES CONCERNING THE FRACTIONAL PART

by
 Alexandru Gica

Abstract

The main purpose of this paper is to find the rational numbers x which have the property that $\left\{2^{\mathrm{n}} \cdot \mathrm{x}\right\} \geq \frac{1}{3}, \forall \mathrm{n} \in \mathbf{N}$.

Key words: fractional part, length.

INTRODUCTION

If $n \in \mathbf{N}, n \geq 2$ has the standard decomposition $n=p_{1}^{a_{1}} \ldots p_{r}^{a_{r}}$, we define the length of n to be the number $\Omega(n)=\sum_{i=1}^{n} a_{i}, \Omega(1)=0$. In [1] and [2] I showed that $\forall n \in \mathbf{N}, n>3$, there exists the positive integers a, b such that $n=a+b$ and $\Omega(a b)$ is an even number. The second proof from [2] uses the following lemma: if $\mathrm{r} \in \mathbf{N}^{*}, \mathrm{n} \in \mathbf{N}$, and p_{j} has the usual meaning (the j-th prime number) and p is a prime number $\mathrm{p} \equiv \pm 3$, there exist the natural numbers $a_{j}, j=\overline{1, r}$ such that

$$
\left\{p_{1}^{a_{1}} \ldots p_{r}^{a_{r}} \frac{n}{p}\right\} \leq \frac{1}{p_{r+1}} .
$$

If $r=1$, it results that there is an $a \in \mathbf{N}$ such that $\left\{2^{a} \cdot \frac{n}{p}\right\} \leq \frac{1}{3}$. Starting from this point I posed the problem of finding the rational numbers x such that $\left\{2^{n} \cdot x\right\} \geq$ $\frac{1}{3}, \forall n \in \mathbf{N}$.

THE MAIN RESULTS

It is enough to consider the case when $x=\frac{n}{k}(n, k \in \mathbf{N},(n, k)=1)$ is a rational number $0<x<1$. After some multiplications with 2, we can suppose that k and n are odd numbers. If $1>x>\frac{1}{2}$, then $\{2 x\}=2 x-1<x$ and, after some multiplications with 2 , then we can suppose that $\frac{1}{3} \leq x<\frac{1}{2}$. We will prove now the main statement of the paper.

Proposition 1

Let x a rational number $x=\frac{n}{k}$, where n, k are coprime, odd natural numbers. The number x has the property that:

$$
\frac{1}{3} \leq x<\frac{1}{2}
$$

and

$$
\left\{2^{m} \mathbf{x}\right\} \geq \frac{1}{3}, \forall m \in \mathbf{N} .
$$

Then

$$
x=\frac{2^{a_{r}}+2^{a_{r-1}}+\ldots+2^{a_{1}}+2^{a_{0}}}{2^{a_{r}+2}-1}
$$

where

$$
a_{0}=0<a_{1}<a_{2}<\ldots<a_{r}
$$

are natural numbers which satisfy the inequalities

$$
a_{i+1}-a_{i} \leq 2, \forall i=\overline{0, r-1}
$$

$r \in \mathbf{N}$ and $a_{r}+2$ is the smallest number $l \in \mathbf{N}^{*}$ for which

$$
2^{l} \equiv 1 .
$$

Proof. We show by induction that $\forall m \in \mathbf{N}$ we have

$$
\left[2^{m+2} x\right]=2^{b_{r}}+2^{b_{r-1}}+\ldots+2^{b_{1}}+2^{b_{0}},
$$

Alexandru Gica-About some inequalities concerning the fractional part
where $b_{0}<b_{1}<b_{2} \ldots<b_{\mathrm{r}}=m$ are natural numbers depending on m and satisfying the inequalities

$$
b_{i+1}-b_{i} \leq 2, \forall i=\overline{0, r-1}
$$

b_{0} could be only 0 or 1 . For $m=0$ the statement is obvious since $[4 x]=1$; the last equality holds since

$$
\frac{1}{3} \leq x<\frac{1}{2}
$$

The same inequality shows that $[8 x]=2$ or $[8 x]=3=2+1$. This means that the statement is true for $m=1$. Let us suppose that the statement is true for $m \in \mathbf{N}^{*}$ and we want to prove the statement for $m+1$. Using the induction hypothesis we infer that

$$
2^{m+2} x=\left[2^{m+2} x\right]+\left\{2^{m+2} x\right\}=2^{b_{r}}+2^{b_{r-1}}+\ldots+2^{b_{1}}+2^{b_{0}}\left\{2^{m+2} x\right\}
$$

where $b_{0}<b_{1}<b_{2} \ldots<b_{r}=m$ are natural numbers depending on m and satisfying the inequalities

$$
b_{i+1}-b_{i} \leq 2, \forall i=\overline{0, r-1}
$$

b_{0} could be only 0 or 1 . We analyze first the case

$$
\left\{2^{m+2} x\right\}<\frac{1}{2}
$$

We will show that in this case $b_{0}=0$. Let us suppose that $b_{0}=1$. It results that

$$
2^{m+1} x=2^{b_{r}-1}+2^{b_{r-1}-1}+\ldots+2^{b_{1}-1}+2^{b_{0}-1}+\frac{1}{2}\left\{2^{m+2} x\right\} .
$$

From this last equality we obtain (taking into account that $b_{0}=1$ and $\left\{2^{m+2} x\right\}<$ $\frac{1}{2}$) that

$$
\left\{2^{m+1} x\right\}<\frac{1}{2}\left\{2^{m+2} x\right\}<\frac{1}{4}
$$

The last inequality is impossible since from the hypothesis we know that

$$
\left\{2^{m+1} x\right\} \geq \frac{1}{2}
$$

Therefore $b_{0}=0$. From the above equalities we obtain that

$$
2^{m+3} x=2^{b_{r}+1}+2^{b_{r-1}+1}+\ldots+2^{b_{1}+1}+2^{b_{0}+1}+2\left\{2^{m+2} x\right\}
$$

which lead us (taking into account the fact that that $\left\{2^{m+2} x\right\}<\frac{1}{2}$ at the conclusion that
The properties of numbers b_{i} together with $b_{0}=0$ (then $b_{0}+1=1$) ensure us that the induction step is true in this case. We have to analyze the case

$$
\left\{2^{m+2} x\right\} \geq \frac{1}{2} .
$$

Using again the equality

$$
2^{m+3} x=2^{b_{r}+1}+2^{b_{r-1}+1}+\ldots+2^{b_{1}+1}+2^{b_{0}+1}+2\left\{2^{m+2} x\right\}
$$

we obtain that
The properties of numbers b_{i} ensure us that also in this case the induction step is proved. We showed therefore by induction that $\forall m \in \mathbf{N}$ we have the identity

$$
\left[2^{m+2} x\right]=2^{b_{r}}+2^{b_{r-1}}+\ldots+2^{b_{1}}+2^{b_{0}},
$$

where $b_{0}<b_{1}<b_{2} \ldots<b_{r}=m$ are natural numbers depending on m and satisfying the inequalities

$$
b_{i+1}-b_{i} \leq 2, \forall i=\overline{0, r-1} .
$$

b_{0} could be only 0 or 1 . Let $a_{r}+2$ the smallest $l \in \mathbf{N}^{*}$ such that

$$
2^{l} \equiv 1 .
$$

$a_{r}+2$ exists since k is odd. We have $a_{r}+2 \geq 2$ since $k \neq 1$ (do not forget that $x=\frac{n}{k}$, n and k being coprime odd natural numbers; also we have $\frac{1}{2} \leq x<\frac{1}{2}$. Since $2^{a_{r}+2} \equiv 1$ it follows that

$$
\left\{2^{a_{r}+2} \frac{n}{k}\right\}=\left\{\frac{n}{k}\right\}=\{x\}=x=2^{a_{r}+2} x-\left[2^{a_{r}+2} x\right] .
$$

Taking into account these equalities and the statement proved above by induction, it results that

$$
x=\frac{2^{a_{r}}+2^{a_{r-1}}+\ldots+2^{a_{1}}+2^{a_{0}}}{2^{a_{r}+2}-1}
$$

where

$$
a_{0}<a_{1}<a_{2}<\ldots<a_{r}
$$

are natural numbers which satisfy the inequalities

$$
a_{i+1}-a_{i} \leq 2, \forall i=\overline{0, r-1}
$$

a_{0} is 0 or 1 . We have to show that $a_{0}=0$. This result from

$$
\left\{2^{a_{r}+2} x\right\}=x<\frac{1}{2}
$$

and from the first case of the induction above.
We will show now that if

$$
x=\frac{2^{a_{r}}+2^{a_{r-1}}+\ldots+2^{a_{1}}+2^{a_{0}}}{2^{a_{r}+2}-1}
$$

where

$$
a_{0}=0<a_{1}<a_{2}<\ldots<a_{r}
$$

are natural numbers which satisfy the inequalities

$$
a_{i+1}-a_{i} \leq 2, \forall i=\overline{0, r-1}(r \in \mathbf{N}),
$$

then

$$
\left\{2^{m} x\right\} \geq \frac{1}{2}, \forall m \in \mathbf{N} .
$$

For proving this statement it is enough to show that the number

$$
y=\frac{2^{b_{r}}+2^{b_{r-1}}+\ldots+2^{b_{1}}+2^{b_{0}}}{2^{b_{r}+2}-1}
$$

(where

$$
b_{0}=0<b_{1}<b_{2}<\ldots<b_{s}
$$

are natural numbers which satisfy the inequalities

$$
\left.b_{i+1}-b_{i} \leq 2, \forall i=\overline{0, s-1} ; s \in \mathbf{N}\right)
$$

has the property that

$$
\frac{1}{3} \leq y<\frac{1}{2} .
$$

We have

$$
\mathrm{y} \leq \frac{2^{b_{s}}+2^{b_{s}-1}+\ldots+2^{0}}{2^{b_{s}+2}-1}=\frac{2^{b_{s}+1}-1}{2^{b_{s}+2}-1}<\frac{1}{2} .
$$

For showing the second inequality we will consider two cases. The first one is when $b_{s}=2 l ; l \in \mathbf{N}$. In this case we have

$$
\begin{gathered}
y \geq \frac{2^{2 l}+2^{2 l-2}+\ldots+2^{2}+1}{2^{2 l+2}-1}=\frac{1}{3} \\
\text { If } b_{s}=2 l+1 ; l \in \mathbf{N} \text { then } y \geq \frac{2^{2 l+1}+2^{2 l-1}+\ldots+2^{1}+1}{2^{2 l+3}-1}=\frac{2^{2 l+3}+1}{3\left(2^{2 l+3}-1\right)}>\frac{1}{3} .
\end{gathered}
$$

Using the same arguments as in the above Proposition we can show the following result:

Proposition 2

Let x a rational number, $x=\frac{n}{k}$, where n, k are coprime odd natural numbers. We suppose that x has the following property:

$$
\frac{1}{5} \leq x<\frac{1}{4}
$$

and

$$
\left\{2^{m} x\right\} \geq \frac{1}{5}, \forall m \in \mathbf{N} .
$$

Then

$$
x=\frac{2^{a_{r}}+2^{a_{r-1}}+\ldots+2^{a_{1}}+2^{a_{0}}}{2^{a_{r}+3}-1}
$$

where

$$
a_{0}=0<a_{1}<a_{2}<\ldots<a_{r}
$$

are natural numbers which satisfy the inequalities

$$
a_{i+1}-a_{i} \leq 3, \forall i=\overline{0, r}(r \in \mathbf{N}),
$$

If there is an $i(0 \leq i \leq r)$ such that

$$
a_{i+1}-a_{i}=3,
$$

then

$$
a_{i-1}=a_{i}-1 .
$$

We denote

$$
a_{r+1}=a_{r}+3 ; a_{-1}=0 .
$$

It will results that

$$
a_{r-1}=a_{r}-1, a_{1} \leq 2
$$

The number $a_{r}+3$ is the order of 2 in $\mathrm{U}\left(\mathbf{Z}_{k}, \cdot\right)$.
Proof: The proof is similar with that of Proposition 1. The fact that $a_{r+1}=a_{r}+3$ follows from the inequalities

$$
\frac{1}{5} \leq x<\frac{1}{5}
$$

The only fact which has to be proved is that for any $i(0 \leq i \leq r)$ such that

$$
a_{i+1}-a_{i}=3,
$$

then

$$
a_{i-1}=a_{i}-1 .
$$

Replacing x by $\left\{2^{a_{r}-a_{i}} x\right\}$, we observe that it is enough to show the statement only for $i=r$. We have to show that $a_{r-1}=a_{r}-1$. Let us suppose that

$$
a_{r-1} \leq a_{r}-2 .
$$

Then

$$
x \leq \frac{2^{a_{r}}+2^{a_{r}-1}-1}{2^{a_{r}+3}-1}<\frac{1}{5} .
$$

The last inequality is equivalent with

$$
2^{a_{r}+3}-5 \cdot 2^{a_{r}} 2-5 \cdot 2^{a_{r}-1}+4>0
$$

and

$$
2^{a_{r}-1}+4>0 .
$$

The last inequality is obviously true since $a_{r} \geq 1$ (if $a_{r}=0$ then $x=\frac{1}{5}<\frac{1}{5}$; this is impossible). We obtained a contradiction since x is greater than $\frac{1}{5}$. The second part of the proof is identical with that of Proposition 1.

References

[1] A. Gica, The Proof of a Conjecture of Additive Number Theory, Journal of Number Theory 94, 2002, 80--89.
[2] A. Gica, Another proof of a Conjecture in Additive Number Theory, Math. Reports, 4(54), 2(2002), 171--175.

Author:

Alexandru Gica
Faculty of Mathematics
University of Bucharest
Str. Academiei 14
Bucharest 1, Romania 010014
alex@al.math.unibuc.ro

