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DETERMINING OF AN EXTREMAL DOMAIN FOR THE 
FUNCTIONS FROM THE S-CLASS 

   
by 

 Miodrag Iovanov 
 
 
Abstract.  Let S be the class of analytic functions of the form f(z) = z + a2 z2 +…, f(0)= 0, 
f′(0)=1  defined on the unit disk z <1. Petru T. Mocanu [2] raised the question of the 

determination max Re f(z) when Rez f′(z)=0, z = r,  r>0 given. For solving the problem we 
shall use the variational method of Schiffer-Goluzin [1]. 
 
Key words: olomorf functions, variational method, extremal functions.  

 
 

1. Let S the class of functions f(z) = z + a2 z2 +…, f(0)= 0, f′(0)=1 holomorf 
and univalent in the unit disk  z <1. 

For the first time Petru T. Mocanu [2] brought into discussion the problem of 
determination the max Re f(z) when Rez f′(z)=0, z = r,  r>0 existed. 

Geometrically this is expressed like in the figure below:  

 
In region (Ωe) any parallel (Re z >Re|ze| ) to Ox, is intersected  f( z = r), in 

one point. Because the class S is compact, exists this region. In this paper we will 
resolve this problem with the variational method of Schiffer-Goluzin [1]. 
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2.Let z = r and let f∈S with Rez f′(z)=0, extremal function for exists the 
maximum max Re f(z),   f∈S. We consider a variation f∗(z) for the function f(z) given 
by Schiffer-Goluzin formula [1], 
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Is known that for λ  sufficiently small, the function f∗(z) is in the class S. We 

consider a variation z∗  for z:  

z∗  =z + λ h + O(λ 2),   h=
0=

∗

∂
∂

λλ
z

 

where satisfy the conditions: 
 
(3)  rz =∗  şi Re z∗ f∗’ (z∗)=0 

Observing that :  
 

λ222
+=∗ zz Re( z h) +O( 2λ ) =  r2. 

 
Because rz =  from relation (3) we obtain : 

 
(4)  Re ( z h) = 0. 
 

Replacing  z with  z∗ in f∗(z) we have : z∗f∗’(z∗) = A +Bλ + O( 2λ )  where : 
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The condition Re z∗f∗’(z∗) =0 from relation (3) become: 
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(5)  Re { } 0);;('))(")('( =++ ψζzzVzzfzfh . 

 
Because f(z) is extremes we have: 

 
Re f∗(z*)≤Re f(z) 

where is equivalent with : 
 

Re{ } Re):;()()( ≤+++′+ LL ψζλλ zVzfhzf  f(z) 
or 

(6)  Re{ } .0);;()( ≤+′ ψζzVzfh  
 

From (5)  ( h h
z
z

−= ) and  (6) we obtain:  

−′+′′+′ );;())()(( ψζzVzzfzzfh )(( zfh
z
z ′ ⋅+ z )(zf ′′ ) ⋅+ z 0);;( =′ ψξzV  

from where: 
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We will use the next denotations: 
 

f= f(z), w=f(ζ ) , ),(zfl ′=  m = )(zf ′′  ,V = (z; ψζ ; ), );;( ψζzVV Z′=′ . 
 

With previous denotations, the relations (6) and  (7) can be writhed as follows: 
 

(8)   Re { } 0≤+′ VVpz  
 

where  p = 
mzlzmzzl

lzzl
⋅+⋅+−−

⋅−
22

   (p real). 

 
Ι .We suppose that Im (zl + z2m) ≠ 0  (-zl + z2m + 02 ≠⋅+⋅ mzlz ). From 

the relation (2) obtain: 
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Replacing in relation  (8) the expression of  V and V /  we obtain: 
 
(9)  Re [ ] ,0)( ≤−GFEeiψ  
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Because ψ  is arbitrary, from relation (8) is result that the function )(ξfw =  
has to satisfy the differential equation : 
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The extremal function transforms the unit disk in the domain without external 

points. To justify this thing is sufficient to suppose that the transformed domain  by an  
external function )(ζfw =  has an external point w0 and to consider the function the 
variation: 
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3.Is known that the extrema function )(ζfw =  transform the unit disk ζ < 

1, in whole plane, cutted lengthwise of a finite number of analytically arc. Let q = θie , 
the point of the circle  ζ =1 where corresponding the extremity of this kind of  

section in which ( ) 0/ =qw  and  q=ζ  is double root for the polynom  ∑
=

4

0k

k
kt ζ . 

Because q=ζ    is double root for this polynom , we can write : 
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From the relation about the coefficients tk ,    4,0=k    results that we can take 
.,2, 4

2
2100 tqakqata ⋅=−==  

 
The differential equation (10) can be write: 
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4.After radical extraction in (11)  we obtain: 
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From double integration: 
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For calculation the integral from left side of  (12) we denote: 
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From  (14) obtain : 
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(15)   
12

22

−
−

⋅=
v
v ασζ  with q

t4

δσ =  and 2
402

δ
α

tt
= . 
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By using previous relations we obtain: 
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From  (1)  we obtain the next values for the coefficients: 
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From the relation (14) observe that: 
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With the relations (13) and (20) the relation (12) becomes: 
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With calculus the previsious equality can be writhed: 
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where ζ(u ) and )(ζv  is obtained by the relations (22) and (21). 
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The relation (23) represent under the implicitly equation where is verify the 
extremal function )(ζww = , where realized ).(Remax zf

Sf∈
  

II. We suppose that .0)Im( 2 =+ mzzl  In this case the expression of p, have 

to 0=− lzzl . How 0=+ lzzl  implies 0=zl . If )0(0 >== rzl  then .0=l  
From  (6) results that )(ζw  have to verify the condition: 
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How ψ  is arbitrary, real,  results that )(ζw  verify next differential equation: 
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How f(z) is considerate the extremal from  (29) obtained after some calculus that 
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)( zzw = . Observe that: 
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Fig 2 

 
 
and the condition 0)(Re / =zzw implies )(0 iyxzx +== .  

Then 0)(Remax == zwz , so for 0=ez  and ,ezz >∀ any parallel to Ox 

intersected )( rzf =  in one point. 
We exclude this ordinary case, it showing that the problem is true. 
From I and II, result that the extremal function which is corresponding to the 

extremal region eΩ  from fig 1, has the implicitly form in equation (23). 
5.Still remain to show how to determine the θ . For this we make in (11) 

;z→ζ  and after simplifications and by multiplication of equality from lz
3

  we 
obtained: 
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With θ  and k determinated in this way the extremal function from equation 
(27) is well determine and with its assisting we find )(Remax zfz

wfe ∈
=  with the 

geometrical property enounced: in domain { },ee zzz >=Ω  any parallel to the Ox  

axis intersect )( rzf = in one point (eventually in maximum one point). 
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