DETERMINING OF AN EXTREMAL DOMAIN FOR THE FUNCTIONS FROM THE S-CLASS

by
 Miodrag Iovanov

Abstract

Let S be the class of analytic functions of the form $f(z)=z+a_{2} z^{2}+\ldots, f(0)=0$, $\mathrm{f}^{\prime}(0)=1$ defined on the unit disk $|z|<1$. Petru T. Mocanu [2] raised the question of the determination max $\operatorname{Re} f(z)$ when $\operatorname{Rez} f^{\prime}(z)=0,|z|=r, r>0$ given. For solving the problem we shall use the variational method of Schiffer-Goluzin [1].

Key words: olomorf functions, variational method, extremal functions.

1. Let S the class of functions $f(z)=z+a_{2} z^{2}+\ldots, f(0)=0, f^{\prime}(0)=1$ holomorf and univalent in the unit disk $|z|<1$.

For the first time Petru T. Mocanu [2] brought into discussion the problem of determination the max $\operatorname{Re} \mathrm{f}(\mathrm{z})$ when $\operatorname{Rez} \mathrm{f}^{\prime}(\mathrm{z})=0,|z|=\mathrm{r}, \mathrm{r}>0$ existed.

Geometrically this is expressed like in the figure below:

In region $\left(\Omega_{\mathrm{e}}\right)$ any parallel $\left(\operatorname{Re}|z|>\operatorname{Re}\left|\mathrm{z}_{\mathrm{e}}\right|\right)$ to Ox , is intersected $\mathrm{f}(|z|=\mathrm{r})$, in one point. Because the class S is compact, exists this region. In this paper we will resolve this problem with the variational method of Schiffer-Goluzin [1].
2.Let $|z|=r$ and let $f \in S$ with $\operatorname{Rez} f^{\prime}(z)=0$, extremal function for exists the maximum max $\operatorname{Re} f(z), f \in S$. We consider a variation $f^{*}(z)$ for the function $f(z)$ given by Schiffer-Goluzin formula [1],

$$
\begin{equation*}
f^{*}(z)=f(z)+\lambda V(z ; \zeta ; \psi)+O\left(\lambda^{2}\right),|\zeta|<1, \lambda>0 \tag{1}
\end{equation*}
$$

ψ real, where
(2) $\quad\left\{\begin{array}{l}\mathrm{V}(\mathrm{z} ; \zeta ; \psi)=\mathrm{e}^{\mathrm{i} \psi} \frac{f^{2}(z)}{f(z)-f(\zeta)}-e^{i \psi} \mathrm{f}(\mathrm{z})\left[\frac{f(\zeta)}{\zeta f^{\prime}(\zeta)}\right]^{2}- \\ -e^{\mathrm{i} \psi} \cdot \frac{z f^{\prime}(z)}{z-\zeta} \cdot \zeta \cdot\left[\frac{f(\zeta)}{\zeta f^{\prime}(\zeta)}\right]^{2}+e^{-\mathrm{i} \psi} \cdot \frac{z^{2} f^{\prime}(z)}{1-\bar{\zeta} z} \cdot \overline{\zeta\left[\frac{f(\zeta)}{\zeta f^{\prime}(\zeta)}\right]^{2}} .\end{array}\right.$

Is known that for λ sufficiently small, the function $\mathrm{f}^{*}(\mathrm{z})$ is in the class S . We consider a variation z^{*} for z :

$$
\mathrm{z}^{*}=\mathrm{z}+\lambda \mathrm{h}+\mathrm{O}\left(\lambda^{2}\right), \quad \mathrm{h}=\left.\frac{\partial z^{*}}{\partial \lambda}\right|_{\lambda=0}
$$

where satisfy the conditions:

$$
\begin{equation*}
\left|z^{*}\right|=r \operatorname{şi} \operatorname{Re} \mathrm{z}^{*} \mathrm{f}^{*}\left(\mathrm{z}^{*}\right)=0 \tag{3}
\end{equation*}
$$

Observing that:

$$
\left|z^{*}\right|^{2}=|z|^{2}+2 \lambda \operatorname{Re}(\bar{z} \mathrm{~h})+\mathrm{O}\left(\lambda^{2}\right)=\mathrm{r}^{2} .
$$

Because $|z|=r$ from relation (3) we obtain :

$$
\begin{equation*}
\operatorname{Re}(\bar{z} \mathrm{~h})=0 . \tag{4}
\end{equation*}
$$

Replacing z with z^{*} in $\mathrm{f}^{*}(\mathrm{z})$ we have : $\mathrm{z}^{*} \mathrm{f}^{*}\left(\mathrm{z}^{*}\right)=\mathrm{A}+\mathrm{B} \lambda+\mathrm{O}\left(\lambda^{2}\right)$ where :

$$
\left\{\begin{array}{c}
A=h f^{\prime}(z) \\
B=h f^{\prime}(z)+z h f^{\prime \prime}(z)+z V^{\prime}(z ; \zeta ; \psi)
\end{array}\right.
$$

The condition $\operatorname{Re} z^{*} f^{*}\left(z^{*}\right)=0$ from relation (3) become:

$$
\begin{equation*}
\operatorname{Re}\left\{h\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)+z V^{\prime}(z ; \zeta ; \psi)\right\}=0 . \tag{5}
\end{equation*}
$$

Because $f(z)$ is extremes we have:

$$
\operatorname{Re} f^{*}\left(z^{*}\right) \leq \operatorname{Ref} f(z)
$$

where is equivalent with :

$$
\operatorname{Re}\left\{f(z)+\lambda h f^{\prime}(z)+\cdots+\lambda V(z ; \zeta: \psi)+\cdots\right\} \leq \operatorname{Re} \mathrm{f}(z)
$$

or

$$
\begin{equation*}
\operatorname{Re}\left\{h f^{\prime}(z)+V(z ; \zeta ; \psi)\right\} \leq 0 . \tag{6}
\end{equation*}
$$

From (5) ($\bar{h}=-\frac{\bar{z}}{z} h$) and (6) we obtain: $h\left(f^{\prime}(z)+z f^{\prime \prime}(z)\right)+z V^{\prime}(z ; \zeta ; \psi)-\frac{\bar{z}}{z} h\left(\overline{f^{\prime}(z)}+\bar{z} \cdot \overline{f^{\prime \prime}(z)}\right)+\bar{z} \cdot \overline{V^{\prime}}(z ; \xi ; \psi)=0$
from where:

$$
\begin{equation*}
\mathrm{h}=\frac{z \bar{z} \cdot \bar{V}^{\prime}(z ; \zeta ; \psi)+z^{2} \cdot V^{\prime}(z ; \zeta ; \psi)}{-z f^{\prime}(z)-z^{2} f^{\prime \prime}(z)+\overline{z \cdot f^{\prime}(z)}+\overline{z^{2}} \cdot \overline{f^{\prime \prime}(z)}} . \tag{7}
\end{equation*}
$$

We will use the next denotations:

$$
\mathrm{f}=\mathrm{f}(\mathrm{z}), \quad \mathrm{w}=\mathrm{f}(\zeta), l=f^{\prime}(z), \mathrm{m}=f^{\prime \prime}(z), \mathrm{V}=(\mathrm{z} ; \zeta ; \psi), V^{\prime}=V_{Z}^{\prime}(z ; \zeta ; \psi)
$$

With previous denotations, the relations (6) and (7) can be writhed as follows:

$$
\begin{equation*}
\operatorname{Re}\left\{p z V^{\prime}+V\right\} \leq 0 \tag{8}
\end{equation*}
$$

where $\mathrm{p}=\frac{z l-\bar{z} \cdot \bar{l}}{-z l-z^{2} m+\bar{z} \cdot \bar{l}+\overline{z^{2}} \cdot \bar{m}} \quad$ (p real).
I. We suppose that $\operatorname{Im}\left(\mathrm{zl}+\mathrm{z}^{2} \mathrm{~m}\right) \neq 0\left(-\mathrm{zl}+\mathrm{z}^{2} \mathrm{~m}+\bar{z} \cdot \bar{l}+\overline{z^{2}} \cdot \bar{m} \neq 0\right)$. From the relation (2) obtain:

$$
\left.V=e^{i \psi} \cdot \frac{f^{2}}{f-w}-e^{i \psi} \cdot f\left(\frac{w}{\zeta \cdot w^{\prime}}\right)^{2}-e^{i \psi} \cdot \frac{z l}{z-\zeta} \cdot \zeta \cdot\left(\frac{w}{\zeta \cdot w^{\prime}}\right)^{2}+e^{-i \psi} \cdot \frac{z^{2} l}{1-\bar{\zeta} \cdot z} \cdot \bar{\xi} \cdot \overline{\left(\frac{w}{\zeta \cdot w^{\prime}}\right.}\right)^{2}
$$

and

$$
\begin{gathered}
V^{\prime}=e^{i \psi} \cdot \frac{f l(f-2 w)}{(f-w)^{2}}-e^{i \psi} \cdot l \cdot\left(\frac{w}{\zeta \cdot w^{\prime}}\right)^{2}-e^{i \psi} \frac{z(z-\zeta) \cdot m-\zeta \cdot l}{(z-\zeta)^{2}} \cdot \zeta \cdot\left(\frac{w}{\zeta \cdot w^{\prime}}\right)^{2}+ \\
+e^{-i \psi} \frac{z^{2}(1-\bar{\zeta} \cdot z) m+z l(2-\bar{\zeta} z)}{(1-\bar{\zeta} z)^{2}} \cdot \bar{\zeta} \cdot \overline{\left(\frac{w}{\zeta \cdot w^{\prime}}\right)^{2}} \cdot
\end{gathered}
$$

Replacing in relation (8) the expression of V and V^{\prime} we obtain:

$$
\begin{equation*}
\operatorname{Re}\left[e^{i \psi}(E-G F)\right] \leq 0, \tag{9}
\end{equation*}
$$

where:

$$
\left\{\begin{array}{l}
E=\frac{f\left[(-f-2 p z l) w+f^{2}+p z l f\right]}{(f-w)^{2}} \\
G=f+\frac{z l}{z-\zeta} \zeta-\frac{\bar{z}^{2} \cdot \bar{l}}{(1-\bar{z} \zeta)^{2}} \zeta+p z l+ \\
+\frac{p z[z(z-\zeta) m-\zeta \cdot l] \cdot \zeta}{(z-\zeta)^{2}}-\frac{p z\left[\bar{z}^{2}(1-\zeta \cdot \bar{z}) \cdot \bar{m}+\bar{z} \cdot \bar{l} \cdot(2-\zeta \cdot \bar{z})\right] \cdot \zeta}{(1-\bar{z} \cdot)^{2}} \\
F=\left(\frac{w}{\zeta w^{\prime}}\right)^{2} .
\end{array}\right.
$$

Because ψ is arbitrary, from relation (8) is result that the function $w=f(\xi)$ has to satisfy the differential equation :

$$
\begin{equation*}
\left(\frac{\zeta \cdot w^{\prime}}{w}\right)^{2} \cdot \frac{f\left[(-f-2 p z l) w+f^{2}+p z l f\right]}{(f-w)^{2}}=\frac{\sum_{k=0}^{4} t_{k} \zeta^{k}}{(z-\zeta)^{2}(1-\bar{z} \cdot \zeta)^{2}} \tag{10}
\end{equation*}
$$

where

$$
\left\{\begin{array}{l}
t_{0}=z^{2}(f+p z l)+f \\
t_{1}=-2 z f\left(1+r^{2}\right)+z^{2} l-\bar{z}^{2} \bar{l}-2 p l z^{2}\left(1-r^{2}\right)+p z^{3} m-p r^{2}(\overline{m z} \bar{z}+2 \bar{l}), \\
t_{2}=f\left(r^{4}+4 r^{2}+1\right)-z l\left(2 r^{2}+1\right)-\bar{z} \cdot \bar{l}\left(2 r^{2}+r^{4}\right)+p z l\left(r^{4}+4 r^{2}+1\right)- \\
-p z\left(2 r^{2} \cdot z m+m z+l\right)+p z\left[2 r^{2}(\bar{m} \cdot \bar{z}+2 \cdot \bar{l})+r^{4}(\bar{m} \cdot \bar{z}+\bar{l})\right] \\
t_{3}=-2 f \bar{z}(1-2 \bar{r})+r^{2} z l(\bar{z}+2)-\bar{z}^{2} \bar{l}\left(1+2 r^{2}\right)+p r^{2}\left(-2 r^{2}+m r^{2} z+2 m z-\overline{m z}-2 \bar{l}-2 r^{2} \overline{z m}-2 r^{2} \bar{l}\right) \\
t_{4}=f_{\bar{z}}^{-2}+p\left[\bar{m}\left(z^{4}-\bar{z}^{4}\right)+\bar{z}^{2}((z-\bar{l} \cdot \bar{z})] .\right.
\end{array}\right.
$$

The extremal function transforms the unit disk in the domain without external points. To justify this thing is sufficient to suppose that the transformed domain by an external function $w=f(\zeta)$ has an external point w_{0} and to consider the function the variation:

$$
f^{*}(z)=f(z)+\lambda e^{i \psi} \frac{f^{2}(z)}{f(z)-w_{0}}, \lambda>0, \psi \text { real, } f^{*} \in S
$$

3.Is known that the extrema function $w=f(\zeta)$ transform the unit disk $|\zeta|<$ 1 , in whole plane, cutted lengthwise of a finite number of analytically arc. Let $\mathrm{q}=e^{i \theta}$, the point of the circle $|\zeta|=1$ where corresponding the extremity of this kind of section in which $w^{\prime}(q)=0$ and $\zeta=q$ is double root for the polynom $\sum_{k=0}^{4} t_{k} \zeta^{k}$. Because $\zeta=q$ is double root for this polynom, we can write :

$$
\sum_{k=0}^{4} t_{k} \zeta^{k}=(1-\bar{q} \cdot \zeta)^{2}\left(a_{0}+a_{1} \zeta+a_{2} \zeta^{2}\right)
$$

From the relation about the coefficients $\mathrm{t}_{\mathrm{k}}, k=\overline{0,4}$ results that we can take $a_{0}=t_{0}, a_{1}=-2 k q, a_{2}=q^{2} \cdot t_{4}$.

The differential equation (10) can be write:

$$
\begin{equation*}
\left(\frac{\zeta w^{\prime}}{w}\right)^{2} \cdot \frac{f\left[(-f-2 p z l) w+f^{2}+p z l f\right]}{(f-w)^{2}}=\frac{(1-\bar{q} \zeta)^{2}\left(t_{0}-2 k q \zeta+q^{2} t_{4} \zeta^{2}\right)}{(z-\zeta)^{2}(1-\bar{z} \zeta)^{2}} \tag{11}
\end{equation*}
$$

4.After radical extraction in (11) we obtain:

$$
\frac{\sqrt{f\left[(-f-2 p z l) w+f^{2}+p z l f\right]}}{w(f-w)} d w=\frac{(1-\bar{q} \zeta) \sqrt{t_{0}-2 k q \zeta+q^{2} t_{4} \zeta^{2}}}{\zeta(z-\zeta)(1-\bar{z} \zeta)} .
$$

From double integration:

$$
\begin{equation*}
\int_{0}^{w} \frac{\sqrt{f\left[(-f-2 p z l) w+f^{2}+p z l f\right]}}{w(f-w)} d w=\int_{0}^{\zeta} \frac{(1-\bar{q} \zeta) \sqrt{t_{0}-2 k q \zeta+q^{2} t_{4} \zeta^{2}}}{\zeta(z-\zeta)(1-\bar{z} \zeta)} . \tag{12}
\end{equation*}
$$

For calculation the integral from left side of (12) we denote:

$$
I_{1}=\int \frac{\sqrt{f\left[(-f-2 p z l) w+f^{2}+p z l f\right]}}{w(f-w)} d w .
$$

We observe that:

$$
I_{1}=\sqrt{f(-f-2 p z l)} \int \frac{\sqrt{w+a^{2}}}{w(f-w)} d w \text { where we denoted } \frac{f^{2}+p z l f}{-f-2 p z l}=a^{2} .
$$

For the calculation of I_{1} we make the substitution : $w=u^{2}-a^{2}, d w=2 u d u$. We obtain $I_{1}=\sqrt{f(-f-2 p z l)} \int \frac{-2 u^{2} d u}{\left(u^{2}-a^{2}\right)\left(u^{2}-b^{2}\right)}, b^{2}=a+f$.
Observe that :

$$
\frac{-2 u^{2}}{\left(u^{2}-a^{2}\right)\left(u^{2}-b^{2}\right)}=\frac{2 a^{2}}{b^{2}-a^{2}} \cdot \frac{1}{u^{2}-a^{2}}-\frac{2 b^{2}}{b^{2}-a^{2}} \cdot \frac{1}{u^{2}-b^{2}} .
$$

So:

$$
I_{1}=\sqrt{f(-f-2 p z l)} \cdot\left[\frac{a}{b^{2}-a^{2}} \ln \frac{u-a}{u+a}-\frac{b}{b^{2}-a^{2}} \ln \frac{u-b}{u+b}\right]
$$

or

$$
I_{1}=\frac{\sqrt{f-(-f-2 p z l)}}{b^{2}-a^{2}} \cdot \ln \left[\left(\frac{u-a}{u+a}\right)^{a} \cdot\left(\frac{u+b}{u-b}\right)^{b}\right]
$$

where :

$$
u=\sqrt{w+a^{2}}
$$

For calculation the integral from right side of (12) we denote:

$$
I_{2}=\int \frac{(1-\bar{q} \zeta) \sqrt{t_{0}-2 k q \zeta+q^{2} t_{4} \zeta^{2}}}{\zeta(z-\zeta)(1-\bar{z} \zeta)} d \zeta
$$

We have: $q^{2} t_{4} \zeta^{2}-2 k q \zeta+t_{0}=q^{2} t_{4} \cdot\left(\zeta-\zeta_{1}\right)\left(\zeta-\zeta_{2}\right)$
where $\zeta_{1,2}=\frac{k \pm \sqrt{k^{2}-t_{0} t_{4}}}{t_{4}} \bar{q}$. If we denotation $k-\sqrt{k^{2}-t_{0} t_{4}}=\delta$ observe that $\zeta_{1}=\frac{\delta}{t_{4}} \bar{q}$ and $\zeta_{2}=\frac{t_{0}}{\delta} \bar{q}$.
with this denotations, $\sqrt{q^{2} t_{4}-2 k q \zeta+t_{0}}=\sqrt{q^{2} t_{4}} \sqrt{\left(\zeta-\frac{\delta}{t_{4}} \bar{q}\right)\left(\zeta-\frac{t_{0}}{\delta} \bar{q}\right)}$. For the calculate the integral I_{2} make the substitution:

$$
\begin{equation*}
\sqrt{\left(\zeta-\frac{\delta}{t_{4}} \bar{q}\right)\left(\zeta-\frac{t_{0}}{\delta} \bar{q}\right)}=v\left(\zeta-\frac{\delta}{t_{4}} \bar{q}\right) \tag{14}
\end{equation*}
$$

From (14) obtain :

$$
\begin{equation*}
\zeta=\sigma \cdot \frac{v^{2}-\alpha^{2}}{v^{2}-1} \text { with } \sigma=\frac{\delta}{t_{4}} \bar{q} \text { and } \alpha^{2}=\frac{t_{0} t_{4}}{\delta^{2}} \text {. } \tag{15}
\end{equation*}
$$

By an elementary calculation from (15) obtained successively:

$$
\left\{\begin{array}{l}
d \zeta=\frac{2 v \sigma\left(\alpha^{2}-1\right)}{\left(v^{2}-1\right)^{2}} d v, z-\zeta=(z-\sigma) \cdot \frac{v^{2}-\beta^{2}}{v^{2}-1} \text { cu } \beta^{2}=\frac{\sigma \alpha^{2}-z}{\sigma-z}, \tag{16}\\
1-\bar{z} \zeta=(1-\bar{z} \sigma) \cdot \frac{v^{2}-\gamma^{2}}{v^{2}-1} c u \gamma^{2}=\frac{1-\bar{z} \sigma \alpha^{2}}{1-\overline{z \sigma}}, 1-\bar{q} \zeta=(1-\bar{q} \sigma) \frac{v^{2}-\delta^{2}}{v^{2}-1} \\
\operatorname{cu} \delta^{2}=\frac{1-\bar{q} \sigma \alpha^{2}}{1-\bar{q} \sigma} s i \sqrt{\left(\zeta-\frac{\delta}{t_{4}} \bar{q}\right)\left(\zeta-\frac{t_{0}}{\delta} \bar{q}\right)}=\frac{\sigma\left(1-\alpha^{2}\right) v}{v^{2}-1} .
\end{array}\right.
$$

By using previous relations we obtain:

$$
\begin{equation*}
I_{2}=\frac{2 \sigma q(1-\bar{q} \sigma)\left(1-\alpha^{2}\right)^{2} \sqrt{t_{4}}}{(\sigma-z)(1-\bar{z} \sigma)} \int \frac{v^{2}\left(v^{2}-\delta^{2}\right)}{\left(v^{2}-1\right)\left(v^{2}-\alpha^{2}\right)\left(v^{2}-\beta^{2}\right)\left(v^{2}-\gamma^{2}\right)} d v . \tag{17}
\end{equation*}
$$

Let:

$$
F(v)=\frac{v^{2}\left(v^{2}-\delta^{2}\right)}{\left(v^{2}-1\right)\left(v^{2}-\alpha^{2}\right)\left(v^{2}-\beta^{2}\right)\left(v^{2}-\gamma^{2}\right)} ;
$$

we are looking for a decomposition

$$
\begin{equation*}
F(v)=\frac{A_{1}}{v-1}+\frac{A_{2}}{v+1}+\frac{A_{3}}{v-\alpha}+\frac{A_{4}}{v+\alpha}+\frac{A_{5}}{v-\beta}+\frac{A_{6}}{v+\beta}+\frac{A_{7}}{v-\gamma}+\frac{A_{8}}{v+\gamma} . \tag{18}
\end{equation*}
$$

From (1) we obtain the next values for the coefficients:

$$
\left\{\begin{array}{l}
A_{1}=A_{2}=\frac{1-\delta^{2}}{2\left(1-\alpha^{2}\right)\left(1-\beta^{2}\right)\left(1-\gamma^{2}\right)} \stackrel{\text { not }}{=} \tau_{1} \\
A_{3}=-A_{4}=\frac{\alpha\left(\alpha^{2}-\delta^{2}\right)}{2\left(\alpha^{2}-1\right)\left(\alpha^{2}-\beta^{2}\right)\left(\alpha^{2}-\gamma^{2}\right)}=\tau_{2} \tag{19}\\
A_{5}=-A_{6}=\frac{\beta\left(\beta^{2}-\delta^{2}\right)}{2\left(\beta^{2}-1\right)\left(\beta^{2}-\alpha^{2}\right)\left(\beta^{2}-\gamma^{2}\right)}=\tau_{3} \\
A_{7}=-A_{8}=\frac{\gamma\left(\gamma^{2}-\delta^{2}\right)}{2\left(\gamma^{2}-1\right)\left(\gamma^{2}-\alpha^{2}\right)\left(\gamma^{2}-\beta^{2}\right)}=\tau_{4}
\end{array}\right.
$$

We denote, $\mu=\frac{2 \sigma q(1-\bar{q} \sigma)\left(1-\alpha^{2}\right)^{2} \cdot \sqrt{t_{4}}}{(\sigma-z)(1-\bar{z} \sigma)}$; from (18) and (19) we obtain for I_{2} the expression:
(20) $I_{2}=\mu\left[\tau_{1} \ln \frac{v-1}{v+1}+\tau_{2} \ln \frac{v-\alpha}{v+\alpha}+\tau_{3} \ln \frac{v-\beta}{v+\beta}+\tau_{4} \ln \frac{v-\gamma}{v+\gamma}\right]$.

From the relation (14) observe that:

$$
\begin{equation*}
v(\zeta)=\sqrt{\frac{\zeta-\frac{t_{0}}{\delta} \bar{q}}{\zeta-\frac{\delta}{t_{4}} \bar{q}}}, \quad v(0)= \pm \alpha \tag{21}
\end{equation*}
$$

and from $w=u^{2}-a^{2}$ we obtain:

$$
\begin{equation*}
u(\zeta)=\sqrt{w(\zeta)-\frac{f^{2}+2 p z l f}{f+2 p z l}}, \quad u(0)= \pm a \tag{22}
\end{equation*}
$$

With the relations (13) and (20) the relation (12) becomes:

$$
\left.I_{1}\right|_{0} ^{w}=\left.I_{2}\right|_{0} ^{5}
$$

For $\zeta=0$ from (13), (20) and (12) obtained the constant (which is obtained from that two members of relations (13) and (20) corresponding to $\frac{u-a}{u+a}$ from $\frac{v-\alpha}{v+\alpha}$ (from left)): $\ln (-1)^{\frac{a \sqrt{f(-f-2 p z l)}}{b^{2}-a^{2}}}+\mu \tau_{2}, ~ o b t a i n e d ~ i n ~ l e f t ~ m e m b e r ~ o f ~ e q u a l i t y ~(12 ') . ~ T h u s, ~$ $\left(12^{\prime}\right)$ can be writhed:

$$
\begin{aligned}
& \frac{\sqrt{f(-f-2 p z l)}}{b^{2}-a^{2}} \ln \left[\left(\frac{u(\zeta)-a}{u(\zeta)+a}\right)^{2} \cdot\left(\frac{u(\zeta)+b}{u(\zeta)-b}\right)^{2}\right]+\frac{\sqrt{f(-f-2 p z l)}}{b^{2}-a^{2}} \ln \left(\frac{a+b}{a-b}\right)^{b} \\
& +\ln (-1)^{\frac{a \sqrt{f(-f-2 p z l)}}{b^{2}-a^{2}}+\mu \tau_{2}}= \\
& =\mu\left[\ln \left(\frac{v(\zeta)-1}{v(\zeta)+1}\right)^{\tau_{1}}+\ln \left(\frac{v(\zeta)-\alpha}{v(\zeta)+\alpha}\right)^{\tau_{2}}+\ln \left(\frac{v(\zeta)-\beta}{v(\zeta)+\beta}\right)^{\tau_{3}}+\ln \left(\frac{v(\zeta)-\gamma}{v(\zeta)+\gamma}\right)^{\tau_{4}}\right]- \\
& -\mu \ln \left[\left(\frac{\alpha-1}{\alpha+1}\right)^{\tau_{1}} \cdot\left(\frac{\alpha-\beta}{\alpha+\beta}\right)^{\tau_{3}}\left(\frac{\alpha-\gamma}{\alpha+\gamma}\right)^{\tau_{4}}\right] .
\end{aligned}
$$

With calculus the previsious equality can be writhed:

$$
\left\{\begin{array}{l}
{\left[\left(\frac{a-u(\zeta)}{a+u(\zeta)}\right)^{a} \cdot\left(\frac{u(\zeta)+b}{u(\zeta)-b} \cdot \frac{a+b}{a-b}\right)^{b}\right]^{\frac{\sqrt{f(-f-2 p z l)}}{b^{2}-a^{2}}}=} \tag{23}\\
=\left[\left(\frac{v(\zeta)-1}{v(\zeta)+1}\right)^{\tau_{1}} \cdot\left(\frac{\alpha-v(\zeta)}{\alpha+v(\zeta)}\right)^{\tau_{2}} \cdot\left(\frac{v(\zeta)-\beta}{v(\zeta)+\beta} \cdot \frac{\alpha+\beta}{\alpha-\beta}\right)^{\tau_{3}}\left(\frac{v(\zeta)-\gamma}{v(\zeta)+\gamma} \cdot \frac{\alpha-\gamma}{\alpha+\gamma}\right)^{\tau_{4}}\right]^{\mu} .
\end{array}\right.
$$

where $u(\zeta)$ and $v(\zeta)$ is obtained by the relations (22) and (21).

The relation (23) represent under the implicitly equation where is verify the extremal function $w=w(\zeta)$, where realized $\max _{f \in S} \operatorname{Re} f(z)$.
II. We suppose that $\operatorname{Im}\left(z l+z^{2} m\right)=0$. In this case the expression of p , have to $z l-\bar{z} \bar{l}=0$. How $z l+\bar{z} \bar{l}=0$ implies $z l=0$. If $l=0(|z|=r>0)$ then $\bar{l}=0$. From (6) results that $w(\zeta)$ have to verify the condition:

$$
\begin{equation*}
\operatorname{Re}\left\{e^{i \psi}\left[\frac{f^{2}}{f-w}-f\left(\frac{w}{\zeta w^{\prime}}\right)\right]\right\} \leq 0 . \tag{24}
\end{equation*}
$$

How ψ is arbitrary, real, results that $w(\zeta)$ verify next differential equation:

$$
\begin{equation*}
\left(\frac{w}{\zeta w^{\prime}}\right)^{2}=\frac{f}{f-w} . \tag{25}
\end{equation*}
$$

or $\frac{\sqrt{f} d w}{w \sqrt{f-w}}=\frac{d \zeta}{\zeta}$. From double integration:

$$
\begin{equation*}
\int_{0}^{w} \frac{\sqrt{f} d w}{w \sqrt{f-w}}=\int_{0}^{\zeta} \frac{d \zeta}{\zeta} \tag{26}
\end{equation*}
$$

With denotation $\sqrt{f-w}=t$, obtained $w=f-t^{2}, d w=-2 t d t$. The relation (26) becomes (without limits of integration):

$$
\begin{aligned}
& \int \frac{\sqrt{f}(-2 t) d t}{\left(f-t^{2}\right) \cdot t}=\int \frac{d \zeta}{\zeta} \text { or } \int \frac{2 \sqrt{f}}{t^{2}-(\sqrt{f})^{2}} d t=\ln \zeta, \text { from where } \\
& \ln \frac{t-\sqrt{f}}{t+\sqrt{f}}=\ln \zeta \text { or }
\end{aligned}
$$

$$
\begin{equation*}
\left.\ln \frac{\sqrt{f-w}-\sqrt{f}}{\sqrt{f-w}+\sqrt{f}}\right|_{0} ^{w}=\left.\ln \zeta\right|_{0} ^{\zeta} . \tag{27}
\end{equation*}
$$

After the calculus we obtained successively:

$$
\left\{\begin{array}{l}
\ln \frac{\sqrt{\mathrm{f}-\mathrm{w}}-\sqrt{\mathrm{f}}}{\sqrt{\mathrm{f-w}}+\sqrt{\mathrm{f}}}-\left.\ln \frac{\sqrt{\mathrm{f}-\mathrm{w}}-\sqrt{\mathrm{f}}}{\sqrt{\mathrm{f}-\mathrm{w}}+\sqrt{\mathrm{f}}}\right|_{0}=\ln \zeta-\left.\ln \zeta\right|_{\zeta=0}, \\
\text { and } \\
\ln \frac{\sqrt{\mathrm{f}-\mathrm{w}}-\sqrt{\mathrm{f}}}{\sqrt{\mathrm{f}-\mathrm{w}}+\sqrt{\mathrm{f}}}+\left.\ln \left(\frac{\zeta(\sqrt{\mathrm{f}-\mathrm{w}}+\sqrt{\mathrm{f}})^{2}}{-\mathrm{w}}\right)\right|_{\zeta=0}=\ln \zeta
\end{array}\right.
$$

from where:

$$
\ln \left(\frac{\sqrt{f}-\sqrt{f-w}}{\sqrt{f}+\sqrt{f-w}} \cdot 4 f\right)=\ln \zeta
$$

and

$$
\begin{equation*}
\frac{\sqrt{f}-\sqrt{f-w}}{\sqrt{f}+\sqrt{f-w}}=\frac{\zeta}{4 f} \tag{28}
\end{equation*}
$$

From (28) we obtained:

$$
\begin{equation*}
w(z)=\frac{16 z f^{2}(z)}{(4 f(z)+z)^{2}} . \tag{29}
\end{equation*}
$$

How $f(z)$ is considerate the extremal from (29) obtained after some calculus that $w(z)=\frac{z}{4}$. Observe that:

(w)

Fig 2
and the condition $\operatorname{Re} z w^{\prime}(z)=0$ implies $x=0(z=x+i y)$.
Then $\bar{z}=\max \operatorname{Re} w(z)=0$, so for $z_{e}=0$ and $\forall|z|>\left|z_{e}\right|$, any parallel to Ox intersected $f(|z|=r)$ in one point.

We exclude this ordinary case, it showing that the problem is true.
From I and II, result that the extremal function which is corresponding to the extremal region Ω_{e} from fig 1 , has the implicitly form in equation (23).
5.Still remain to show how to determine the θ. For this we make in (11) $\zeta \rightarrow z$; and after simplifications and by multiplication of equality from $\bar{z}^{3} \bar{l}$ we obtained:

$$
r^{3}\left(r^{2}-1\right) l \bar{l} \cdot p=(1-\bar{q} z)^{2}\left(t_{0}-2 k q z+q^{2} \cdot t_{4} \cdot z^{2}\right) \cdot \bar{z}^{3} \cdot \bar{l}
$$

or :

$$
\begin{equation*}
r^{3}\left(r^{2}-1\right) l \bar{l} \cdot p=\left(\bar{z}-\bar{q} r^{2}\right)^{2}\left(t_{0} \bar{z} \bar{l}-2 k q \bar{l} r^{2}+q^{2} t_{4} \bar{l} z \cdot r^{2}\right) \tag{30}
\end{equation*}
$$

Because p is real, $r^{3}\left(r^{2}-1\right) \bar{l} p$, is real from the relation (30) we obtain a system with two equation and determinate θ and k :

$$
\left\{\begin{array}{l}
r^{3}\left(r^{2}-1\right) \bar{l} \bar{l} p=\operatorname{Re}\left[\left(\bar{z}-\bar{q} r^{2}\right)^{2}\left(t_{0} \bar{z} \bar{l}-2 k q \bar{l} r^{2}+q^{2} t_{4} \bar{l} z r^{2}\right)\right] \tag{31}\\
\operatorname{Im}\left[\left(\bar{z}-\bar{q} r^{2}\right)\left(t_{0} \bar{z} \bar{l}-2 k q \bar{l} r^{2}+q^{2} t_{4} \bar{l} z r^{2}\right)\right]=0
\end{array}\right.
$$

With θ and k determinated in this way the extremal function from equation (27) is well determine and with its assisting we find $z_{e}=\max _{f \in w} \operatorname{Re} f(z)$ with the geometrical property enounced: in domain $\Omega_{e}=\left\{z| | z\left|>\left|z_{e}\right|\right|\right.$, any parallel to the Ox axis intersect $f(|z|=r)$ in one point (eventually in maximum one point).

References

[1].G.M. Goluzin, Geometriceskaia teoria complecsnogo peremenogo, MoscvaLeningrad, 1952.
[2].Petru T. Mocanu, O problemă extremală în clasa funcțiilor univalente, Universitatea Babeş Bolyai-Cluj Napoca, Facultatea de Matematică, 1998.

Author:

Miodrag Iovanov, "Constantin Brâncuşi" University of Târgu-Jiu, Romania

