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Abstract. One of the methods used for the degree selection in the polynomial regression is the
cross-validation method(CV). In this paper, we implement a CV-based agorithm, in Matlab
6.5 medium and we apply it on some test functions. Then we analyze the results by performing
an ordinary regression analysis. Finally, we propose a new algorithm that combines the CV
method with the classical degree selection.

L.introduction
We consider the regression model,

Y=1f(X)+e,
with X, Y, two random variables and ¢, the error term. After a sampling, we aobtain
the observational mode,

Y = f(xi)+5i’ i=1n

and we supposethat ¢ = (g,,&,,....&, )’~ N(O,O‘2| )
One of the most used regression models is the polynomial regression, that is
Vi =g+ aX + X X+ g
It is well known that such a model can be estimate with least squares method, after a
reduction to a multiple linear model, with the explicative variables, X, X2, X9,

But, before make this estimation, it is necessary to establish the form of the regression
function, or more precisely in this case, the polynom’ s degree.
An ordinary solution to this problem is to estimate the model, for different
values of g and then, to compare these models, by performing a regression analysis.
As an dternative, there exist some data-based selection methods that give the
appropriate vaue for g. One of such method is the cross-validation method(CV).

2.Degree selection based on theregression analysis

The regression analysis for a fitted model can be made, either by graphical
comparison or quantitative methods.

For the graphical comparison of two or more models, obtained for different
values of q, it is necessary to plot the fitted curves versus the data and aso, the

residudls, € =Y, —(a,+ax +..+a,x¢) i=1n, with a,i=1n, the least
sguares estimators.
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Obviously, we choose the model that is more closely to data and which has the
residuals curve as an white noise. For agood model, the residuals need to be randomly
scattered around zero.

Another graphical method is to plot the fitted curves together with the
prediction bounds. If the prediction interval istoo wide, we need to have caution about
using such amodel for prediction.

Also, as a quantitative comparison method, we can analyze the accuracy of the
estimation, if we look at the confidence bounds for estimated coefficients. We cannot
trust in amodel, for that the coefficients have wide confidence intervals.

Another quantitative method consists in the comparison of some usual

regression statistics as squared-R, R?, adjusted squared-R, ﬁz, root mean sguare
error, s and sum of squared residuals, Sé. A good model will have small values for
SZ and s, respectively, values closed to one, for R* and R’ Anyway, in the

polynomial regression, is preferred ﬁz instead of R?, because R depends on the
number of explicative variables that occur linearly in the model.

3.Degr ee selection based on the CV method

A natural way to select the polynom’s degree, g, based on data information, is
to minimize the expected prediction error,

PsE(q)= E(y' - f,(X)F,
where X', y" are new dataand f isthefitted polynom of g degree.

Since additional data are not usually available, we can use just an estimator of
PSE(q). One of such estimator is the (leaving-out-one) cross-validation function,
given by

n
CV(Q):%Z;‘(yi - fq(ii)(xi ))2 J
where fq(‘i) isthe regression polynom, fitted from all data, less the i-th data.

A leaving-out-one resampling method is used here. We obtain the fitted
models, fq(’i),i =1,n, from n learni ng samples(each one, with n—1 data), then we
validate these models by other n test samples, formed with one-leaving-out data.

According to (1), the cross validation function is equal to n- PRESS, where
PRESS is a prediction power measure for the model. Small values for PRESS give

models with large prediction power. So, by minimizing the CV function in respect
with g, we obtain the appropriate degree for the polynomia model.
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4.Numerical experiments

For computational aspects, we implement in Matlab medium, the next
agorithm, based on the CV method:
Algorithm 1

Sepl. Read the sample data (xi VY ),i = ]71 and if is necessary, order and weight the
data, in respect with data sites, X; .

Sep 2. For each 1,1 = 1,n, determine the fitted polynom of ¢ degree, fq(‘i) , based on
the leaving-out-one resampling.
Step 3. Calculate the value of CV/(q) function.
STOP.

In order to obtain g, for which CV(q) is minimum, the following adequate
step must be added:
Sep 4. Cdculate CV(q) for integer and strictly positives different values of q.

The appropriate value of q is q, , with
CV(dey ) = minCV(a).

In this paper, we search g from 1to 7.

In order to see how it works the CV selection, we first consider afourth degree
polynom as a test function. The goa of the CV method will be to reconstitute the
degree of the polynom from noisy data, obtained by the test function and the random
number generator.

Let be the test function

f,(x)=6x* +3x* + 7x* = 2x+5
and for the beginning, the sample of exact data,(xi,yi ) where X; =ﬁ and
Y = f1(Xi )’ i =1100.
The implementation of the agorithm 1, in Matlab medium, gives us the
following values for CV(q):
| 1 | 2 | 3 | 4 | 5 | 6 | 7

CV(q) | 292357 | 009029 | 000093 | O | O | O | O

We mention that the zeros are in fact, some values of 1-107%°, magnitude
order, so areinsignificantly different from zero.
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Now we use noisy data, namely (xi,yi), with X = and

100
y = fl(xi)+ £ i =1100, where &, i =1100, come from a random number
generator simulating independently and identically distributed, N(O;O,l), random
variables.

If we set to 0 the seed of the random number generator, after applying the
algorithm 1, we obtain the value ., = 4.

Otherwise, if we repeat the simulation for 100 replicates, with distinct seeds,
we obtain an average of (., equal to 4,37. But, tacking into account the possible
values for q, the average is not very representative. So, we look at the distribution of
the values of q, , in order to retain the most frequently case.

For the same 100 replicates of average 4,37, we obtain the distribution

(123 4 5 67
qCV'008631865'

Now, we can conclude that, ., =4 isthe optimal value since it occurs in

63% of the cases.
Consequently, the CV method recognizes the degree of the test function.

However, if the data are very noisy, the comparison of (., with the rea g

from the test function will not be relevant, anymore. So, for the validation of the
results obtained by the CV method, it is necessary to perform an ordinary regression
analysis.

After we perform this analysis in the case of the mentioned data, we obtain
that the case =4 has a small advantage, from statistics comparison point of view
and q =3 isrecommended by the accuracy of confidence bounds. Consequently, the
CV method can be viewed as a selection method between two appropriate values
indicated by the regression analysis. Anyway, the CV method selects one of the most
recommended cases by the regression analysis and does this, in a more simple manner,
with lesstime.

Next, we will consider another test function that is not a polynomial one so we
validate the CV method just in the regression analysis and not by comparison with the
real degree.

Let be f,(x)=5"+3¢? and the data (x,y ), with X =ﬁ and

y, = f,(x )+, & ~N(0;01), i =1100.
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If we set the seed of random number generator at O, we obtain by applying
agorithm 1, the value g, = 2. Else, if we repeat the algorithm for 100 replicates,

with different seeds, we obtain the distribution
(1 2 3 4567
G0 74 9733 4)
with average 2,64.
So, after aquick view on the distribution, we retain the value q., = 2, asthe

appropriate fitting polynomial degree.

On the other side, we make the comparative analysis for polynomial fittings,
with q=1,7.

For simplicity, we plot in the following figure just the first degree fitting
polynomial and the second degree fitting polynomial, versus the data. But we need to
mention that in a complete plot, with all seven fitting curves, the curves for q = 3,7
are not too different from the curve, q=2.

Data and fitting curves

5.5
5| « data |
first degree polynomial fitting
45 — second degree polynomial fitting |
- L) [}
4 L
° X Y ° °
3.5+ . ® ° Y o .
.. s = L) .. = > L
3 1 \. hd 1 1 1
0.2 04 06 0.8 1
Residuals

Fig. 1
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We can see that we must eliminate the case =1, sinceit is not close enough
to data and its residuals present some trend, consequently, this case doesn’t offer a
satisfactory fitting.

For more deep analysis, in the following plot, we look at the 95%-prediction
bounds of the fitting curves. Again, for simplicity, we plot just the second degree
fitting polynomial and the sixth degree fitting polynomial.

In this plot, the solid curve, together with the dashed curves, correspond to the
case (=2 and the remaining curves are for the case q=6. The cases =3 and

g=4 arelikewiseto =2 andthecases Q=5 and =7 arelikewiseto q=6.

Data, fitting curves and prediction bounds

T T / 4

Fig. 2
We observe that, out of the data range, the prediction interval for =6 istoo

wide, so we cannot trust in the prediction on the sixth degree polynomial fitting and
we obtain the same conclusion, for q=5and q=7.
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Consequently, just the cases =2, =3 and =4 remain in the
competition. For these cases, we extend the plot interval, in order to compare the
width of the prediction intervals.

The following plot contains the cases =2 and =4 and we observe that
g =4 has more wide prediction interval, than = 2. Again, for =2, we have the
solid curve, together with the dashed curves.

Data, fitting curves and prediction bounds
10F \ T T T T 7 -

Fig. 3

After a comparison between =2 and =3, we obtain the same
conclusion: from this point of view, the case = 2 is more appropriate.

Anyway, for these last three cases, we make also a quantitative comparison
and we obtain the following values for the regression statistics:

Statistics St R s
Degree

2 0,7318 | 0,9781 | 0,0869
3 0,7308 | 0,9779 | 0,0872
4 0,7261 | 0,9778 | 0,0874
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Since the case =2 is recommended by ﬁz and s, respectively the case

q =4 isrecommended by S?, once again the balanceiis favorably for = 2.
Also, the following 95%-confidence bounds for the coefficients indicate more
accuracy in estimation, for the case = 2.

Second-degree polynomial coefficients and confidence bounds:

a, =538 (5,148;5,611),
a, =-3,99 (-4,231; - 3,749),
a, = 3,989 (3,936;4,042).

Third-degree polynomial coefficients and confidence bounds:

a, =0,1701 (-0,7469;1,087),
a, =5,122 (3,713;6,53),
a, =-3,885 (-4,499;-3,271),
a, =3,98 (3,908; 4,052).

Fourth-degree polynomial coefficients and confidence bounds:

a, =-1,446 (-5,096;2,204),
a, =3,091 (-4,34;10,52),

a, =3,219 (-1,788;8,226),
a, = -3,453 (-4,706; - 2,201),
a, =3,957 (3,865;4,049) .

After all these analyses, we conclude that the most appropriate polynomial
fitting, for the data (xi Y ) coincides with the CV-case, = 2.

The following plot contains the test function, the data and the second degree
fitting polynomial.

74



Nicoleta Breaz-The cross-validation method in the polynomial regression

Data, test function and fitting curve

5.5 T T T ! ‘ ‘
O data
------ test function
—— fitting curve
5+ ]

Fig. 4

After these numerical experiments, we can state that the CV-method works
enough well, in the degree selection. Anyway, for an optimal fitting, it is necessary to
use, not just a single method, but more and then, the most appropriate fitting will be
that, with more recommendations.

With these considerations in mind, we propose a composed algorithm for
degree selection, that is cheaper than afull regression analysis and in the sametime, is
more precisely than algorithm 1.

Algorithm 2

Step 1. Find asample with p replicates values of (., and the related distribution.
Step 2. Retain the mode of the distribution, dg, and aso, the mode of the remaining
values, Q2 .

Sep 3. If the fitting with polynomial of order qév is validated by both, graphical and

guantitative regression tests, STOP.
Else, follow the next step.
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Step 4. Make the comparative analysis for the cases dg, , 9y, Jey —1, &, +1 and
establish the optimal fitting.
STOP.

Obviously, for nonsimulated data, the distribution of replicates isn't exist, so
at the step 4, we compare just the case (., , with ., —1 and g, +1.

References

1.Eubank R. L. - Nonparametric Regression and Spline Smoothing-Second Edition,
Marcel Dekker, Inc., New York , Basel, 1999

2.Saporta G.- Probabilites, Analyse des Donnes et Statistique. Editions Techniq, Paris,
1990

3.Stapleton J.H.- Linear Statistical Models. A Willey-Interscience Publications, Series
in Probability and Statistics, New Y ork, 1995

4.Tassi Ph.- Methodes statistiques, 2° edition, Economica, Paris, 1989

Author:

Nicoleta Breaz, ,,1 Decembrie 1918” University of Alba lulia, Romania,
nbreaz@uab.ro

76



