NONCOMMUTATIVE GEOMETRY AND THE DIFRACTION ONE DIMENSIONAL NETWORK

by
Laurian Pi coran

Abstract

Noncommutative geometry extend the notion from classical differential geometry from differential manifold to discrete spaces and even noncommutative spaces which are given by noncommutative algebra (over \mathbf{R} or \mathbf{C}). Such an algebra A replace the commutative algebra of function of class C^{∞} over a smooth manifold.

In this work I present some aspects about the calculus of the distance in the noncommutative geometry case. An important role in the distance calculus is playing by the Dirac operator.

MSC: 14A22
Keywords: Clifford Algebra, Dirac Operator .

1. Introduction

Definition 1.1_ Let V be a finite dimensional vector space over the scalar field \mathbf{K}, where $\mathbf{K}=\mathbf{R}$ or \mathbf{C}.
A Quadratic form on V is a mapping $Q: V \rightarrow \mathrm{~K}$ such that:

1) $Q(\lambda v)=\lambda^{2} Q(v)$
2) The associated form $B(v, w)=\frac{1}{2}\{Q(v)+Q(w)-Q(v-w)\} \quad v, w \in V$ is biliniar

In this case (V, Q) is a Quadratic space.
Definition 1.2 The pair (A, v) is said to be a Clifford algebra for the quadratic space (V, Q) when :

1) A is generated as an algebra by $\{v(v) \mid v \in V\}$ and $\{\lambda 1 \mid \lambda \in K\}$
2) $\quad\left((v(v))^{2}=-Q(v) 1, v \in V\right.$

Example:1) The \mathbf{R}-algebra of complex numbers \mathbf{C} is generated by 1 and \boldsymbol{i}, verifying the relation:
$\boldsymbol{i}^{2}=-1$, it is a Clifford algebra for the quadratic space (\mathbf{R}, Q) and the Clifford map \boldsymbol{c}, where $Q: \mathbf{R} \rightarrow \mathbf{R}$ and $\mathrm{c}: \mathbf{R} \rightarrow \mathbf{C}$ are given by:
$Q(x)=-x^{2}, \quad c(x)=i x$
2)When we take $C l_{\mathbf{R}}\left(\mathbf{R}^{\mathrm{p}+\mathrm{q}}, Q\right)$ where Q is the quadratic form
$Q(x)=x_{1}^{2}+\ldots+x_{p}^{2}-x_{p+1}^{2} \ldots-x_{p+q}^{2}$
we use the notation $C l(p, q)$, we put $C l(n) \equiv C l(0, n)$ and $C l^{*}(n) \equiv C l(n, 0)$
Hence, for the universal real Clifford algebra $C l_{C}(V,-Q)$ over the vector space $V=\mathbf{R}^{\mathrm{n}}$, where Q comes from the biliniar form of the usual euclidian product in \mathbf{R}^{n}, we use the notation $C l(n)$, that means that if we take an orthonormal basis $e_{1}, e_{2}, \ldots, e_{n}$ in \mathbf{R}^{n}, we have: $e_{i} e_{j}+e_{j} e_{i}=-2 \delta_{i j} 1$

We have for instance:
$C l(1)=\mathrm{C}, C l(2)=\mathrm{H}, C l(3)=\mathrm{H} \oplus \mathrm{H}$
3)Let be the Pauli matrices in $\mathbf{C}^{2 \times 2}$:

$$
\sigma_{0}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma_{1}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \sigma_{3}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

and the associated matrices would be:
$e_{0}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), e_{1}=\left(\begin{array}{cc}i & 0 \\ 0 & -i\end{array}\right), e_{2}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right), e_{3}=\left(\begin{array}{cc}0 & i \\ i & 0\end{array}\right)$.
We have:
$\sigma_{0}^{2}=\sigma_{1}^{2}=\sigma_{2}^{2}=\sigma_{3}^{2}=\boldsymbol{I}, e_{0}^{2}=\boldsymbol{I}, e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-\boldsymbol{I}$
and $\sigma_{j} \sigma_{k}=-i \sigma_{l}, e_{j} e_{k}=e_{l}$, where $\{j, k, l\}$ are cyclic permutation of the set $\{1,2,3\}$.
Let $A_{0,0}=\left\{\lambda \sigma_{0}, \lambda \in \mathrm{R}\right\}, A_{1,0}=\left\{\left.\left(\begin{array}{ll}x & y \\ y & x\end{array}\right) \right\rvert\, x, y \in \mathrm{R}\right\}$,
$A_{0,1}=\left\{\left.\left(\begin{array}{cc}x & y \\ -y & x\end{array}\right) \right\rvert\, x, y \in \mathrm{R}\right\}$,
$A_{0,2}=\left\{\left.\left(\begin{array}{cc}x_{0}+i x_{1} & x_{2}+i x_{3} \\ -x_{2}+i x_{3} & x_{0}-i x_{1}\end{array}\right) \right\rvert\, x_{j} \in \mathrm{R}, j=\overline{0,3}\right\}=\left\{\left.\left(\begin{array}{cc}z_{1} & \frac{z_{2}}{-\overline{z_{2}}} \\ \overline{z_{1}}\end{array}\right) \right\rvert\, z_{j} \in \mathrm{C}\right\}$

Then we have: $A_{0,0} \cong R, A_{1,0} \cong R \oplus R, A_{0,1} \cong C, A_{0,2} \cong H$.

2. Dirac operator relative to a vector bundle

Given a riemannian manifold M, an operator $\Delta \in$ Diff $^{(2)}(E, E)$ of order 2 is said to be a generalized laplacian if $\sigma_{2}(\Delta)\left(\xi_{p}\right)=-\left\|\xi_{p}\right\|_{2}^{p} I_{E_{p}}$ where $\|. . .\|_{g}$ is the metric norm of M, and an operator of order $1, D \in \operatorname{Diff}^{(1)}(E, E)$ is said to be a Dirac operator relative to the vector bundle $\left(E, M, K^{\succ}\right)$ whenever D^{2} is a generalized laplacian. If D is a Dirac operator we can define for any $\xi_{p} \in T_{p}^{*} M$ an K-endomorphism $c\left(\xi_{p}\right)$ of E_{p} given by $c\left(\xi_{p}\right)=\sigma_{1}(D)\left(\xi_{p}\right)$ or, alternatively we define a map:
$\gamma_{p}: T_{p}^{*} M \times E_{p} \rightarrow E_{p}$
$\left(\xi_{p}, u_{p}\right) \rightarrow c\left(\xi_{p}\right)\left(u_{p}\right) \equiv c\left(\xi_{p}\right) u_{p}$
for the tensorization of $T_{p}^{*} M$ by \mathbf{C} we use the above relation $T_{C}^{*} M \equiv\left(T_{p}^{*} M\right) \otimes_{R} C$, so if we don't want to precise if $K=R$ or \mathbf{C} we will write $T_{K}^{*} M \equiv\left(T_{p}^{*} M\right) \otimes_{R} K$, and obviously $T_{R}^{*} M=T_{p}^{*} M$, note that the map γ_{p} could be defined using $T_{K}^{*} M$ instead of $T_{p}^{*} M$.
The endomorphisms $c\left(\xi_{p}\right)$ verify the condition $c\left(\xi_{p}\right)^{2}=-\left\|\xi_{p}\right\|_{g}^{2} I_{E_{p}}$, equivalent to $c\left(\xi_{p}\right) c\left(\eta_{p}\right)+c\left(\eta_{p}\right) c\left(\xi_{p}\right)=-2 g\left(\xi_{p}, \eta_{p}\right) I_{E_{p}}$, this means that we got for any $p \in M$ a K-bilinear map $\gamma_{p}:\left(T_{K}^{*} M\right) \times E_{p} \rightarrow E_{p}$ that is a K-linear map $\left(T_{K}^{*} M\right) \otimes_{K} E_{p} \rightarrow E_{p}$, with the preceding property.
The set of K-linear operators $c\left(\xi_{p}\right): E_{p} \rightarrow E_{p}$ generates an associative and unital sub algebra A of the K - algebra $E n d_{K}\left(E_{p}\right)$ (with $1 \equiv I_{E_{p}}$ as element one) and there exist a K-linear map $c: T_{K}^{*} M \rightarrow A$ given by $\xi_{p} \rightarrow c\left(\xi_{p}\right)$ and verifying $c\left(\xi_{p}\right) c\left(\eta_{p}\right)+c\left(\eta_{p}\right) c\left(\xi_{p}\right)=-2 g\left(\xi_{p}, \eta_{p}\right) 1$
This means that A is a Clifford algebra for the quadratic space $\left(T_{K}^{*} M,-g\right)$ and c is the Clifford mapping. The vector bundle E is a Clifford vector bundle and $\gamma: T_{K}^{*} M \times E \rightarrow E$, given by $\left.\gamma(\xi, u)\right|_{p}=\gamma_{p}\left(\xi_{p}, u_{p}\right)=c\left(\xi_{p}\right) u_{p}$ is the coresponding Clifford action.

The following property exhibit the compatibility of D with the Clifford action:
$D(s f)=c(d f) s+D(s) f \quad\left(f \in \mathrm{~F}_{\mathrm{K}}(M), \quad s \in \Gamma(M, E)\right)$
or alternatively, making $F_{K}(M)$ act multiplicatively in $\Gamma(M, E)$ through $\bar{f}(s)=s f$, we will have :
$D(s f)-D(s) f=(D \circ \bar{f})(s)-(\bar{f} \circ D)(s)=((D \circ \bar{f})-(\bar{f} \circ D))(s)=[D, \bar{f}]=c(d f) s$,
that is:
$[D, \bar{f}]=c(d f)$
or we can write using the previus conventions:
$[D, \bar{f}]=c(d f)$.

We can say that any Dirac operator, relative to the vector bundle $\left(E, M, K^{n}\right)$, with a riemannian manifold in the basis, determines in this vector bundle a structure of Clifford bundle compatible with D in the preceding sense.
Any Clifford vector bundle on a riemannian manifold endowed with a covariant derivative

$$
\bar{\nabla}: \Gamma(M, E) \rightarrow \Gamma\left(M, E \otimes T_{K}^{*} M\right)
$$

compatible with a Clifford action $\gamma: T_{K}^{*} M \otimes E \rightarrow E$ in a sense to be precise later, is associated to a Dirac operator acting on the sections of this vector bundle and compatible with the Clifford action, we will call such a vector bundle a Clifford-Weyl bundle.

The compatibility of $\bar{\nabla}$ with the Clifford action $\xi_{p} s=c\left(\xi_{p}\right) s$ means the following:

$$
\bar{\nabla}_{X}(\omega \cdot s)=\nabla_{X} \omega \cdot s+\omega \cdot \bar{\nabla}_{X} s \quad\left(\omega \in \Omega^{1}(M, K)\right)
$$

or alternatively,

$$
\bar{\nabla}_{X}(c(\omega) s)=c\left(\nabla_{X} \omega\right) s+c(\omega) \bar{\nabla}_{X} s \quad\left(\omega \in \Omega^{1}(M, K)\right)
$$

where $\nabla: \aleph_{K}(M) \rightarrow \aleph_{K}(M) \otimes \Omega^{1}(M, K)$ or else $\nabla_{X}: \aleph_{K}(M) \rightarrow \aleph_{K}(M)$ for any $X \in \aleph_{X}(M)$, is the Levi Cevita covariant derivative in M, determining a covariant derivative $\quad \nabla: \Omega^{1}(M, K) \rightarrow \Omega^{1}(M, K) \otimes \Omega^{1}(M, K) \quad$ or actually, $\nabla_{X}: \Omega^{1}(M, K) \rightarrow \Omega^{1}(M, K)$ for any $X \in \aleph_{K}(M)$.
The set $\Gamma(M, E)$ of the sections of a Clifford-Weyl vector bundle has a structure of $\left(C l_{K}\left(T^{*} M\right), F_{K}(M)\right)$-bimodule, with the following properties of compatibility:
$\bar{\nabla}(s f)=\bar{\nabla}(s) f+s \otimes d f$
$\bar{\nabla}(\omega \cdot s)=(\nabla \omega) \cdot s+\omega \cdot \bar{\nabla} s$

Next, I will prove the folowing result, which is the distance between two diferent points on the straight line, in noncommutative geometry case:

$$
d_{C}(x, y)=\sup _{f \in A}\{|f(x)-f(y)|:\|[D, f]\|<1\}=\sup _{f \in A}\left\{|f(x)-f(y)|:\left\|f^{\prime}\right\|<1\right\}=|x-y|
$$

We know that $[D, \bar{f}]: A \rightarrow A$

$$
\begin{aligned}
& g \rightarrow[D, \bar{f}](g)=(D \circ \bar{f}-\bar{f} \circ D)(g)= \\
& =D(f g)-f(D g)=(f g)^{\prime}-f g^{\prime}=f^{\prime} g+f g^{\prime}-f g^{\prime}=\overline{f^{\prime}}
\end{aligned}
$$

where I use the definition $\bar{f}(s)=s f$.
In general for an operator $T: E \rightarrow E$, we have : $\|T\|=\sup _{\|\xi\| \leq 1}\|T(\xi)\|$
In this case

$$
\|[D, f]\|=\sup _{\|\xi\| \leq 1}\left\|f^{\prime} \xi\right\|=\sup _{\|\xi\| \leq 1}\left\|f^{\prime}\right\| \xi=\left\|f^{\prime}\right\|
$$

and using the inequality:

$$
|f(x)-f(y)| \leq\left\|f^{\prime}\right\| \cdot|x-y|
$$

I prove the distance relation.
Now, I will use the Dirac operator to recover the distance between atoms in a periodical one dimensional diffraction network.
Let assume that we have a network in which, between two atom we have the same distance.
So, we can represent the network in this way:

Using this network we can construct the incidence matrix puting the element 1 when we have a link between two atom and puting 0 if we don't have link.
So, the incidence matrix would be:

$$
\left(\begin{array}{cccccc}
0 & 1 & 0 & 0 & \ldots & 0 \\
0 & 0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 0 & 1 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 1 \\
0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) .
$$

We define:

$$
D_{N}=\left(\begin{array}{cccccc}
0 & \frac{\sin \theta}{\lambda} & 0 & 0 & \ldots & 0 \\
0 & 0 & \frac{\sin \theta}{\lambda} & 0 & \ldots & 0 \\
0 & 0 & 0 & \frac{\sin \theta}{\lambda} & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & \frac{\sin \theta}{\lambda} \\
0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right),
$$

where θ is the angle between two wave and λ is the wave lenght.

Let be $N=\{1,2, \ldots, n\}$ the set of atoms.
We will denote with A, the algebra of all maps $f: N \rightarrow C$.
The function f is represented as

$$
f \rightarrow \tilde{f}=\left(\begin{array}{cccccc}
f_{1} & 0 & 0 & 0 & \ldots & 0 \\
0 & f_{2} & 0 & 0 & \ldots & 0 \\
0 & 0 & f_{3} & 0 & \ldots & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & f_{n} \\
0 & 0 & 0 & 0 & \ldots & 0
\end{array}\right) \in C^{n},
$$

where $f(n)=f_{n}$, and with this representation we can construct the function

$$
\bar{f}=\left(\begin{array}{ll}
f & 0 \\
0 & f
\end{array}\right)
$$

We can associate to the complex function f, a real function F with the properties:
$F_{1}=0$ and $F_{k+1}=F_{k}+\left|f_{k+1}-f_{k}\right|$.
We have the operator

$$
\hat{D}=\left(\begin{array}{cc}
0 & D_{N}^{t r} \\
D_{N} & 0
\end{array}\right)
$$

We know that in general, the distance in noncommutative geometry is given by:

$$
d_{C}(x, y)=\sup _{f \in A}\{|f(x)-f(y)|:\|[D, f]\|<1\}
$$

In our case we can compute, and is easy to prove that

$$
\|[\hat{D}, \bar{f}] \psi\|=\|[\hat{D}, F] \psi\| \quad \text { for } \psi \in C^{n}
$$

So, after easy computation we will get:

$$
\|[\hat{D}, \bar{f}] \left\lvert\,=\max \left\{\frac{\sin \theta}{\lambda}\left|f_{2}-f_{1}\right|, \ldots, \frac{\sin \theta}{\lambda}\left|f_{N}-f_{N-1}\right|\right\}\right.,
$$

and using the condition $\|[D, f]\|<1$, we get:

$$
d(i, i+n)=\frac{\lambda}{\sin \theta}+\ldots+\frac{\lambda}{\sin \theta}=\frac{n \lambda}{\sin \theta}
$$

We can find the same result if we start from physics.

References

[1].Connes A., Noncommutative Geometry, Academic Press, 1990
[2].Landi G., An introduction to Noncommutative Spaces and their geometriesSpringer Verlag 1997
[3].Paulo Almeida. Noncommutative Geometry, Lisboa 2001

Author:

Pișcoran Laurian
Department of Mathematics and Computer science
North University of Baia Mare
Victoriei street nr. 76
4800, Baia Mare, Romania

