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NONCOMMUTATIVE GEOMETRY AND THE 
DIFRACTION ONE DIMENSIONAL NETWORK 

 
 

by 
Laurian Pişcoran 

 
 
Abstract. Noncommutative geometry extend the notion from classical differential geometry   
from differential manifold to discrete spaces and even noncommutative spaces  which are 
given by noncommutative algebra (over R or C). Such an algebra A  replace the commutative 
algebra of function of class C∞  over a smooth manifold. 

In this work  I present some aspects about the calculus of the distance in the 
noncommutative geometry case. An important role in the distance calculus is playing by the  
Dirac operator. 
    
MSC: 14A22 
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1. Introduction 
 
Definition 1.1  Let V be a finite dimensional vector space over the scalar field K , 
where  K=R or C.   
A  Quadratic form  on V is a mapping  : KQ V →  such that: 
1) )()( 2 vQvQ λλ =  

2) The associated form  { } VwvwvQwQvQwvB ∈−−+= ,)()()(
2
1),(   is biliniar 

In this case  ),( QV is a Quadratic space. 
Definition 1.2 The pair ),( νA is said to be a Clifford algebra for the quadratic space 

),( QV  when : 
1) A is generated as an algebra by }|)({ Vvv ∈ν  and { }1| Kλ λ∈  

2) 1)())((( 2 vQv −=ν  ,  Vv∈  
 
 
Example:1) The R-algebra of complex numbers C is generated by 1 and i ,  
verifying the relation: 

12 −=i , it is a Clifford algebra for the quadratic space (R,Q) and the Clifford map c , 
where  Q :R→R and c: R→C  are given by: 
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2)( xxQ −= ,    ixxc =)(  
2)When we take ClR (Rp+q, Q) where Q  is the quadratic form  

22
1

22
1 .......)( qppp xxxxxQ ++ −−++=  

we use the notation ),( qpCl , we put ),0()( nClnCl ≡  and )0,()( nClnCl ≡∗  
 
  Hence, for the universal real Clifford algebra ClC (V,-Q) over the vector space V=Rn, 
where Q  comes from the biliniar form of the usual euclidian product in Rn, we use the 
notation )(nCl , that means that if we take an orthonormal basis neee ,...,, 21  in Rn, we 
have: 12 ijijji eeee δ−=+  
   
We have for instance:  
 

HH)3(  H,)2(  ,C)1( ⊕=== ClClCl  
3)Let be the Pauli matrices in C2x2: 
 

 0

1 0
0 1

σ
 

=  
 

,  1

1 0
0 1

σ
 

=  − 
,  2

0
0
i

i
σ

− 
=  
 

,  3

0 1
1 0

σ
 

=  
 

  

 
and the associated matrices would be:    
 

0

1 0
0 1

e  
=  
 

,  1

0
0
i

e
i

 
=  − 

,  2

0 1
1 0

e  
=  − 

,  3

0
0
i

e
i

 
=  
 

. 

 
We have:  
 

2 2 2 2
0 1 2 3σ σ σ σ= = = = I , 2

0e = I , 2 2 2
1 2 3e e e= = = −I   

and j k liσ σ σ= − ,  j k le e e= , where { }, ,j k l  are cyclic permutation of the set{ }1, 2,3 . 

  Let  { }R,00,0 ∈= λλσA , 
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Then we have: HACARRARA ≅≅⊕≅≅ 2,01,00,10,0   ,  ,  , . 
 
2. Dirac operator relative to a vector bundle 
 

Given a riemannian manifold ,M  an operator ),()2( EEDiff∈∆  of order 2 is 

said to be a generalized laplacian if 
pE

p
pp I

22 ))(( ξξσ −=∆  where  
g

...  is the 

metric norm of M , and an operator of order 1 , ),()1( EEDiffD∈  is said to be a 
Dirac operator relative to the vector bundle ),,( fKME   whenever 2D is a 
generalized laplacian. If D  is a Dirac operator we can define for any MTpp

∗∈ξ  an 
K -endomorphism )( pc ξ of pE  given by ))(()( 1 pp Dc ξσξ =  or, alternatively we 
define a map: 

pppp EEMT →×∗:γ  

pppppp ucucu )())((),( ξξξ ≡→  

for the tensorization of MTp
∗  by C we use the above relation ( ) CMTMT RpC ⊗≡ ∗∗ , so 

if we don’t want to precise if RK =  or C we will write KMTMT RpK ⊗≡ ∗∗ )( , and 

obviously MTMT pR
∗∗ = , note that the map pγ could be defined using MTK

∗  instead 

of MTp
∗ . 

The endomorphisms )( pc ξ  verify the condition  
pEgpp Ic

22)( ξξ −= , equivalent to 

pEpppppp Igcccc ),(2)()()()( ηξξηηξ −=+ , this means that we got for any Mp∈  a 

K -bilinear map ppKp EEMT →×∗ )(:γ   that is a K -linear map ppKK EEMT →⊗∗ )( , 
with the preceding property. 
The set of K -linear operators ppp EEc →:)(ξ  generates an associative and unital 
sub algebra A  of the −K algebra )( pK EEnd  (with 

pEI≡1 as element one) and there 

exist a K -linear map AMTc K →∗:  given by )( pp c ξξ →  and verifying 

1),(2)()()()( pppppp gcccc ηξξηηξ −=+  

This means that A  is a Clifford algebra for the quadratic space ),( gMTK −∗ and c  is 
the Clifford mapping. The vector bundle E  is a Clifford vector bundle and 

EEMTK →×∗:γ , given by pppppp ucuu )(),(),( ξξγξγ ==  is the coresponding 

Clifford action. 
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The following property exhibit the compatibility of D with the Clifford action: 
)),(),(F()()()( K EMsMffsDsdfcsfD Γ∈∈+=  

or alternatively, making )(MFK  act multiplicatively in ),( EMΓ  through sfsf =)( , 
we will have : 

sdfcfDsDffDsDfsfDfsDsfD )(],[)))(()(())(())(()()( ==−=−=− oooo , 
that is: 

)(],[ dfcfD =  
or we can write using the previus conventions: 

)(],[ dfcfD = . 
 

We can say that any Dirac operator, relative to the vector bundle  ),,( nKME , with a 
riemannian manifold in the basis, determines in this vector bundle a structure of 
Clifford bundle compatible with D in the preceding sense. 
Any Clifford vector bundle on a riemannian manifold endowed with a covariant 
derivative 

),(),(: MTEMEM K
∗⊗Γ→Γ∇  

compatible with a Clifford  action EEMTK →⊗∗:γ  in a sense to be precise later, is 
associated to a Dirac operator acting on the sections of this vector bundle and 
compatible with the Clifford action, we will call such a vector bundle a Clifford-Weyl 
bundle. 

The compatibility of ∇  with the Clifford action scs pp )(ξξ =  means the 
following: 

sss XXX ∇⋅+⋅∇=⋅∇ ωωω )(  )),(( 1 KMΩ∈ω  
or alternatively, 

scscsc XXX ∇+∇=∇ )()())(( ωωω  )),(( 1 KMΩ∈ω  
where ),()()(: 1 KMMM KK Ω⊗ℵ→ℵ∇  or else )()(: MM KKX ℵ→ℵ∇  
for any )(MX Xℵ∈ , is the Levi Cevita covariant derivative in M, determining a 
covariant derivative  ),(),(),(: 111 KMKMKM Ω⊗Ω→Ω∇  or actually, 

),(),(: 11 KMKMX Ω→Ω∇  for any )(MX Kℵ∈ . 
The set ),( EMΓ  of the sections of a Clifford-Weyl vector bundle has a structure of 

))(),(( MFMTCl KK
∗ -bimodule, with the following properties of compatibility: 

dfsfssf ⊗+∇=∇ )()(  
sss ∇⋅+⋅∇=⋅∇ ωωω )()(  
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          Next, I will prove the folowing result, which is the distance between two 
diferent points on the straight line, in noncommutative geometry case: 
 
        yxfyfxffDyfxfyxd

AfAf
C −=<′−=<−=

∈∈
}1:)()({sup}1],[:)()({sup),(  

   We know that AAfD →:],[  
     

    
fgfgfgfgffgDgffgD

gDffDgfDg

′=′−′+′=′−′=−=

=−=→

)()()(

))(()](,[ oo
 

 where I use the definition   sfsf =)( . 
 
 In general for an operator EET →:  , we have : )(sup

1
ξ

ξ
TT

≤
=     

 
 In this case        

ffffD ′=′=′=
≤≤

ξξ
ξξ 11
supsup],[  

 and using the inequality: 
 

yxfyfxf −⋅′≤− )()(  
 

I prove the distance relation. 
 

    Now, I will use the Dirac operator to recover the distance between atoms in a 
periodical one dimensional diffraction network. 
 Let assume that we have a network in which, between two atom we have the same 
distance. 
So, we can represent the network in this way: 

       
                      1       2                                n            

                                                                     ..............             
        
Using this network we can construct the incidence matrix puting the element 1 when 
we have a link between two atom and puting 0 if we don’t have link. 
  So, the incidence matrix would be:    
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0...0000
1...0000
..................
0...1000
0...0100
0...0010

. 

 
We define:  
 

=ND































0...0000

sin...0000
..................

0...sin000

0...0sin00

0...00sin0

λ
θ

λ
θ

λ
θ

λ
θ

, 

 
where θ  is the angle between two wave and λ  is the wave lenght. 
 
     
                                                      θ   
 

                                  ..............             
 

Let be { }nN ,...,2,1=  the set of atoms. 
 We will denote with A , the algebra of all maps CNf →: . 
 The function f  is represented as  
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=→ ff ~
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...0000
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0...000
0...000
0...000

3

2

1

nf

f
f

f

nC∈ ,  

 
where nfnf =)( , and with this representation we can construct the function  









=

f
f

f
0

0
. 

We can associate to the complex function f , a real function F  with the properties: 
01 =F  and kkkk ffFF −+= ++ 11 . 

We have  the operator  









=

0
0ˆ

N

tr
N

D
D

D  

We know that in general, the distance in noncommutative geometry is given by: 
 
                        }1],[:)()({sup),( <−=

∈
fDyfxfyxd

Af
C  

 
In our case we can compute, and is easy to prove that 
 
[ ] [ ]ψψ FDfD ,ˆ,ˆ =    for nC∈ψ . 

 
So, after easy computation we will get:  
 

[ ]






 −−= −112

sin,....,sinmax,ˆ
NN fffffD

λ
θ

λ
θ

, 

and using the condition 1],[ <fD , we get:  
 

θ
λ

θ
λ

θ
λ

sinsin
...

sin
),( nniid =++=+ . 

 
We can find the same result if we start from physics. 
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